
ZADS
The ZTF Alert Distribution System

Eric Bellm, Maria Patterson, Frank Masci, Steve Groom, et al.
August 8, 2017

Why are we building ZADS?

2

ZTF promised (as an MSIP deliverable) an “LSST-like” near-real-
time alert stream of the public survey to build up community
infrastructure
⇒ ZTF needs a production alert stream

UW LSST group is responsible for producing the actual LSST
transient stream (“Level 1”, “Alert Production”).

Image processing
Image differencing
Alert packaging and distribution

⇒ UW interested in prototyping distribution system on real data

ZTF collaboration can benefit from early adoption of technology
expected to be adopted by LSST

PTF used a database-centric model to access candidates.

3find events by querying central database (batch)

IPAC has moved away from
database-centered access for ZTF.

4

Large and unpredictable user load on operations database
Wide range of query types and frequencies

15x larger data volume than PTF
(modulo possible improvements in image subtraction)

Larger potential user base (MSIP)

⇒ Move filtering load from centralized database to users

+ Technically less risky, lower cost
+ Aligns with LSST “alert” model
+ Great flexibility for science users
- Larger outbound bandwidth for file transfer
- Users need to write own retrieve/parse/filter/process code

ZADS will use Kafka, an industrial queue system.

5find events by filtering alert stream (stream)

Image processing and alert packaging happens at IPAC.

6

ZADS feeds event brokers and a filter system.

7

We expect marshals will consume filtered streams.

8

Kafka offers several advantages over file-based retrieval.

9

file-based candidate retrieval ZADS Kafka-based system

No way to control outbound
bandwidth (denial of service) Per-user throttling

latency between image processing
and user retrieval

Queued events available
immediately after ingest

Users must check manually for new
candidates

ZADS consumers receive alerts
automatically

Downstream consumers must
parse candidate files, infer types

Existing libraries for parsing;
formats enforced by schema

Users must pull full stream to apply
filters

Flexible filtering service can be built
naturally “in line”

ZADS will use rich alert packets.

10

https://zwickytransientfacility.github.io/ztf-avro-alert/

candidates record contains:
position, time, filter, magnitudes, Real/Bogus score, distance to nearest
reference source, PSF metrics, solar system counterpart (if applicable), star/
galaxy score, number of past detections in the survey, number of past
observations

Who receives ZADS streams? (preliminary)

11

MSIP observations Collaboration
observations

full stream finite number (TBD) of
external “brokers” or “TOMs” ?

filtered sub-
streams

external science users;
public marshals;
ZTF collaboration users &
marshals

ZTF collaboration users
& marshals

ZADS Filtering
Service

ZADS will provide a filtering service.

13

In an alert-based architecture, filtering is critical for science
productivity: return only the subset of events of interest

ZADS provides a natural stream->filter->stream interface: 
input stream and output stream have same UI

Containerized filter service: downstream users can append
further filters (re)using the same code.

We propose to begin by building a set of ~10 hard-coded filters
to get up and running.
E.g., listen to the Young Supernova channel, or potential asteroids channel

Expand to more sophisticated approaches as time and
resources allow—no inherent technical limitation.

We envision building the ZADS filtering service
on Spark Streaming.

14

Distributed, scalable, open source
Filters can be written in pure Python
Supports joins to other data/streams
(Batch processing of potential alert archive)

Filters can be organized into a mechanistic taxonomy.

15

Filters operating only on data within a single alert packet

Filters operating on an aggregated stream of alert packets

Filters incorporating external information

Single-packet alert filtering covers many use cases.

16

Description Examples

Drop columns/alert fields Remove image cutouts from the
alert packet

Filter on a scalar value in the packet RB cut, star-galaxy cut

Filter on logical combinations of
several fields

PS1 color cut AND outburst
amplitude cut

Filter on past detection history Two detections separated by > 20
minutes with no previous
detections

Filter on image cutouts User-computed RB computation

Filter on a classifying model Goodness of fit to a SN Ia
lightcurve model

Aggregated stream use cases center on QA.

17

Description Examples

Filter on alert rate
Reject (or sample/throttle) alerts
which occur at a higher-than
expected incidence per time

Filter on spatial correlation with
other ZTF candidates

Reject events occurring in spatial
proximity, such as around a
saturated star bleed trail

Possible in Spark Streaming, but not
envisioned for initial implementation

Filters can add value with external information.

18

Description Examples

Filter on cross-match with external
static catalogs

Return events coincident with
GALEX sources

Filter on temporal & spatial
correlation with other alert streams

Identify events in Advanced LIGO
error boxes

Possible in Spark Streaming.
Crossmatch coming once the basic service is deployed

What are intermediate-term goals for the filtering service?

19

Crossmatching to additional catalogs within ZADS
Supported by Spark Streaming; just need time to build it

Filtering within ZADS based on parameters that change
(e.g., field id; changing RB cut values)
This is hard in any alert-based architecture!
Clients can filter broad queries further, downstream, but
must transfer the full stream

Goal:
DIY service for users to upload/clone filters and direct them
to a new Kafka endpoint

Replay from archive

We need the science teams to develop filters.

20

Pseudocode only; UW team will deal with implementation and
deployment for initial set.

“Two detections tonight separated by > 30 minutes and no
previous detections”
“Has stellar counterpart & this detection > 5x RMS of past
history”

First filters implemented will be single packet only;
consult documentation for contents

Priorities for crossmatch catalogs and other features also helpful.

Current development status

21

Initial alert packet format implemented at IPAC.

Sample ZTF packets (from random simulated input) produced

Kafka alert distribution and Spark filtering systems prototyped

UW/AWS hosting being arranged; initial deployment this month

Science collaborations solicited for initial filters

Documentation work beginning, focus on interfaces & sample
code

Open question: how do we best architect the marshals?

