&N\DS

The ZTF Alert Distribution System

Eric Bellm, Maria Patterson, Frank Masci, Steve Groom, et al.
August 8, 2017

Why are we building ZADS?

/TF promised (as an MSIP deliverable) an “LSST-like” near-real-
time alert stream of the public survey to build up community

INnfrastructure
/TF needs a production

alert stream

UW LSST group is responsible for producing the actual LSST

transient stream (“Level 17,
Image processing
Image differencing

Alert packaging and dis

= UW interested Iin prototy

“Alert Production”).

ribution

0iNg distribution system on real data

/TF collaboration can benefit from early adoption of technology

expected to be adopted by LSST

PTF used a database-centric model to access candidates.

Epochal Reference
Images Images

\\/\ \\/\

lv — — YY

N
N
N
Image - . Candidates Scanning page .
Differencing Crossmatching [Database < > (cgi) User scanning
N— —
T A
~ TN
N~
N ————
B —
External —N
Catalogs ¢)
Marshaldo |
N— B S - Marshal web
> s(,gs:g:g) interface
LBNL
— —
Canill

find events by querying central database (batch) .

IPAC has moved away from
database-centered access for ZTF.

Large and unpredictable user load on operations database
Wide range of query types and frequencies

15x larger data volume than PTF
(modulo possible improvements in image subtraction)
Larger potential user base (MSIP)

= Move filtering load from centralized database to users

+ Technically less risky, lower cost

+ Aligns with LSST “alert” model

+ Great flexibility for science users

- Larger outbound bandwidth for file transfer

- Users need to write own retrieve/parse/filter/process code

ZADS will use Kafka, an industrial queue system.

Epochal Reference
Images Images
l ! —_—_— l'
—_—
Recent
Difflglggsin Candidates Pa?ll:rtin
9 Database ging

Historical
Candidates
Database

External
Catalogs

Kafka

Queue

IPAC

Kafka
Queue

Alert Archive

uw

Kafka Event Broker
consumer . AN'(I'eA%{'I’ES)
Event Broker Compute
Predefined D Filtered Kafka
Filter 1 L Queue
\\/—\
Kafka Predefined B Filtered Kafka]
Queue Filter 2] Queue
_/—\
Predefined > | iFiItered Kafka
Filter N Queue
o

I

External
Catalogs

AWS

kafka

Gt

A distributed streaming platform

User filtering
(optional)

Kafka
>

consumer

User Analysis,

— > Storage,

or Display

AWS or Science User's Compute

find events by filtering alert stream (stream)

5

Image processing and alert packaging happens at IPAC.

Epochal
Images

\I/\

Reference

Images

vy v

Image

Differencing

Recent

P»| Candidates

Database

g

\ 4/

~ Y

Historical
Candidates
Database

Alert

Packaging

S— e’

A4

Kafka
Queue

External
Catalogs

IPAC

ZADS feeds event brokers and a filter system.

Event Broker

Kafka

Event Broker Compute

Filtered Kafka
Queue

Predefined
Filter 1

——» Kafka » Kafka

Predefined Filtered Kafka
Queue Queue Filter 2 Queue
N\ N
‘ Predefined » Filtered Kafka
_— — Filter N Queue
N A ~ N

v

Alert Archive External
Catalogs
N— S _ -
Uw AWS

We expect marshals will consume filtered streams.

'

Predefined Filtered Kafka
: | . Filter 1 o Queue
|

—1 Kafka b Predefined > Filtered Kafka .

Queue Filter 2 \J\Q%_\I

\
\ \/\ ‘
Predefined Filtered Kafka
Filter N Queue

~ TN A
_’/
__/
v

External

Catalogs
N— S

AWS

User Analysis,

Kafka User filtering
> > : —>> Storage,
consumer (optional) or Display

AWS or Science User's Compute

Kafka offers several advantages over file-based retrieval.

file-based candidate retrieval ZADS Kafka-based system

No way to control outbound

bandwidth (denial of service) éPer—user throttiing

latency between image processing :Queued events available

and user retrieval immediately after ingest

Users must check manually for new ZADS consumers receive alerts
candidates automatically

Downstream consumers must Existing libraries for parsing;

parse candidate files, infer types éformats enforced by schema

Jsers must pull full stream to apply éFIexibIe filtering service can be built
filters naturally “in ling”

ZADS will use rich alert packets.

ztf.alert https://zwickytransientfacility.github.io/ztf-avro-alert/

The top-level alert contains the following fields:

Field Type Contents

alertld long unique identifier for the alert

candid long unique identifier for the subtraction candidate
candidate ztf.alert.candidate candidate record

prv_candidates array of ztf.alert.prv_candidate or null candidate records for 30 days' past history
cutoutScience ztf.alert.cutout or null cutout of the science image

cutoutTemplate ztf.alert.cutout or null cutout of the coadded reference image
cutoutDifference ztf.alert.cutout or null cutout of the resulting difference image

candidates record contains:

position, time, filter, magnitudes, Real/Bogus score, distance to nearest
reference source, PSF metrics, solar system counterpart (if applicable), star/
galaxy score, number of past detections in the survey, number of past
observations

Who receives ZADS streams? (preliminary)

full stream

finite number (TBD) of

MSIP observations

external “brokers” or “TOMSs”

Collaboration
observations

filtered sub-
streams / TF collaboration users &

marshals

external science users:
public marshals;

/ TF collaboration users

& marshals

11

&ADS Filtering
Service

ZADS will provide a filtering service.

n an alert-lbased architecture, filtering is critical for science
oroductivity: return only the subset of events of interest

ZADS provides a natural stream->filter->stream intertace:
iInput stream and output stream have same Ul

Containerized filter service: downstream users can append
further filters (re)using the same code.

We propose to begin by building a set of ~10 hard-coded filters

to get up and running.
E.g., listen to the Young Supernova channel, or potential asteroids channel

Expand to more sophisticated approaches as time and
resources allow—no inherent technical limitation.

We envision building the ZADS filtering service
on Spark Streaming.

Predefined Filtered Kafka
Filter 1

Queue

_/-\
—— Kafka Predefined Filtered Kafka '
Queue Filter 2 L Queue
\ \\—/—\
\ \/‘\
Predefined Filtered Kafka
Filter N Queue
— /—\
k___/
v
v
External T
Catalogs

N—

AWS

APACHE

Spor K" Streaming

Distributed, scalable, open source

Filters can be written in pure Python
Supports joins to other data/streams
(Batch processing of potential alert archive)

Filters can be organized into a mechanistic taxonomy.

Filters operating only on data within a single alert packet
Filters operating on an aggregated stream of alert packets

Filters incorporating external information

Single-packet alert filtering covers many use cases.

Description Examples

ERemove image cutouts from the

Drop columns/alert fields éalert packet

Filter on a scalar value In the packeﬁ RB cut, star-galaxy cut

Filter on logical combinations of PS1 color cut AND outburst
several fields ;amplltude cut

éTwo detections separated by > 20

Filter on past detection history . | |
‘minutes with no previous

Filter on image cutouts éUser—computed RB computation

éGoodness of fit to a SN la

Filter on a classifying model lightcurve model

Aggregated stream use cases center on QA.

Description Examples

éReject (or sample/throttle) alerts
Filter on alert rate which occur at a higher-than
expected incidence per time

éReject events occurring in spatial
proximity, such as around a
saturated star bleed trall

Filter on spatial correlation with
other ZTF candidates

Possible in Spark Streaming, but not
envisioned for initial implementation

Filters can add value with external information.

Description Examples

Filter on cross-match with external éReturn events coincident with
static catalogs GALEX sources

Filter on temporal & spatial éldentify events in Advanced LIGO
correlation with other alert streams error boxes

Possible in Spark Streaming.
Crossmatch coming once the basic service is deployed

What are intermediate-term goals for the filtering service?

Crossmatching to additional catalogs within ZADS
Supported by Spark Streaming; just need time to build it

Filtering within ZADS based on parameters that change
(e.q., field id; changing RB cut values)
This is hard in any alert-based architecture!
Clients can filter broad queries further, downstream, but
must transfer the full stream

Goal:
DIY service for users to upload/clone filters and direct them
to a new Kafka endpoint

Replay from archive

We need the science teams to develop filters.

Pseudocode only; UW team will deal with implementation and
deployment for initial set.
“Iwo detections tonight separated by > 30 minutes and no
previous detections”
“Has stellar counterpart & this detection > 5x RMS of past
history”

First filters implemented will be single packet only;
consult documentation for contents

Priorities for crossmatch catalogs and other features also helpful.

Current development status

Initial alert packet format implemented at IPAC.

Sample ZTF packets (from random simulated input) produced
Kafka alert distribution and Spark filtering systems prototyped
UW/AWS hosting being arranged; initial deployment this month
Science collaborations solicited for initial filters

Documentation work beginning, focus on interfaces & sample
code

Open question: how do we best architect the marshals”

