

ZTF Photometric Calibration Status and Plans

Andrew Drake on behalf of the ZTF Calibration Team

October 2020

Further details at:

http://web.ipac.caltech.edu/staff/fmasci/ztf/ztf_pipelines_deliverables.pdf

http://www.oir.caltech.edu/twiki_ptf/bin/view/ZTF/Calibration

http://nesssi.cacr.caltech.edu/ZTF/Web/Calib.html

ZTF Photometric Calibration

Current Calibration.

Select set of PS1 photometric calibrators for each field/quadrant

$$m_{cal} = m_{inst} + ZP_f + c_f \left(m_1^{PS1} - m_2^{PS1} \right),$$

Fit for colour coeff C_f and zero point ZP_f , using ZTF g, r, *i* instrumental magnitudes (*minst*) and m1,m2 among PS1 colours g,r,i,z. eg.

$$g^{PS1} - g = ZP_g + c_g(g^{PS1} - r^{PS1})$$

$$r^{PS1} - r = ZP_r + c_r(g^{PS1} - r^{PS1})$$

$$i^{PS1} - i = ZP_i + c_i(r^{PS1} - i^{PS1})$$

Further details, see ZSDS section 6.5 (Masci et al.):

61	60	57	5 6	53	52	49 1	48
62	63	58	59	54	4 55	50	5 51
45	44	41	40 1	37	36	33	32
46	47	42	43	38	39	34	35
29	28	25	24	21	20	17	16
29 0 30	28 8 31	25 0 26	24 7 27	21 	20 6 23	17 0 18	16 5
29 30 q2 13	28 8 31 q1 12	25 0 26 09	24 7 27 08	21 22 05	20 6 23 04	17 0 18 01	16 5- 19 00

Masci et al. 2018 ZSDS

http://web.ipac.caltech.edu/staff/fmasci/ztf/ztf_pipelines_deliverables.pdf

Current Status of PSF photometry

• ZTF g,r-band photometric error limits

- Individual observations raw RMS ~2-5%
- Calibrated individual obs. vs PS1, RMS ~1.2-1.8%
- Calibrated median object mags vs PS1, RMS ~0.7% (mag < 18.5)

- Currently observe small (< 2%) systematics with:
 - Source colour, magnitude, location, airmass, reddening, skylevel, number of calibrator stars, and with time.

Sources of Uncertainty

- Instrumental
 - Uncertainties in filter and CCD response
 - Dust accumulation
 - Instrument changes (CCD linearity, timing, readout)
 - Malfunctions (shutter errors, etc.)
- Software
 - PSF model inaccuracies, biases
 - Incomplete modelling (spatial variations, etc.).
- Observational Conditions
 - Seeing, skylevel, airmass
 - Clouds, varying atmospheric components.
- Calibration Data
 - Phot. uncertainties in calibrators
 - Reddening uncertainties

Instrumental variations

Variation in g-band median flatfield values over time, due to dust and instrumental changes.

ZTF CCD6 instrumental magnitude vs g-band residuals

Colour response from LED flats

ZTF filter bandpasses and normalized flatfielding LED spectra (Rosnet et al. 2020).

Spatial variation of CCD colour response

R-band CCD colour dependence based on ratio of 594 and 653nm LED flats.

I-band CCD colour dependence based on ratio of 740 and 864nm LED flats.

g-band residuals depend on skylevel

Photometric residuals in g-band wrt PS1 for sources with g < 18.5 and 600 < ncat < 3000.

r-band residuals depend on source colour

Photometric residuals in ZTF r-band wrt PS1 for bright sources in a halo field

Stars with poor calibration

same halo ZTF field

For r-band, sources with PS1 g-r > 1.2 can be calibrated using their r-i colours.

PSF variations with mag and x,y

PSF shape variations traced by sharpness

sharpness = FWHM²_{obs} - FWHM²_{model}

Spatial variations in sharpness

PSF colour dependence

PSF shape variations (traced with chi) with colour

Chi = (PSF fit RMS)/(readnoise predicted RMS)

0.2 0.1 sharpness -0.1-0.20.5 1.5 2.5 2 1 $(g - r)_{PS1}$

PSF shape variations (traced with sharpness) with colour

sharpness = FWHM²_{obs} - FWHM²_{model}

Spatial photometric residuals

Current calibration error sources

- PSFs variations with colour, magnitude and location are poorly modelled.
- Calibration is only performed on a per quadrant basis.
 - =>Trends with skylevel in g-band for sparse fields due to lack of calibrator stars.
- Current model does not account for intra-quadrant variations with airmass or reddening.
- ZTF calibrated to PS1, but filter differences lead to errors.
 - => High RMS for red sources in r-band.
- Issues with scattered light and long-term stability.
- Strong spatial phoometric residual structure.
- Overscan, crosstalk, ghost artifacts in early ZTF data.

Ref. Ngeow et al. (2019)

Steps towards a ZTF Ubercalibration (Zubercal)

Current ZTF calibration:

Single ZP and colour coefficients fit on a per frame basis. Variations in airmass, reddening, and spatial structure not fit. Limited by no. of calibration stars within quadrant.

Zubercal approach:

Calibrate all frames taken on a night simultaneously. Increase number of calibrator by a factor of a few hundred. => Better account for spatial and temporal variations and dependencies.

=> Possibly extend across full CCDs, or full FoV.

Colours represent different Galactic latitudes.

ZTF Photometric Calibration

Current calibration: $m_{cal} = m_{inst} + ZP_f + c_f \left(m_1^{PS1} - m_2^{PS1} \right)$,

A more complete description: $m_{cal} = m_{inst} + ZP_f + c_1(m_1 - m_2) + c_2X + c_3X(m_1 - m_2) + c_4E_{bv} + c_5UT + c_6f(x,y) + ...$

Varying observational conditions

Time dependence based on fields observed on hundreds of times a night.

Varying observational conditions

Three images of F310 taken in sequence during ~2 min on 2018-12-22.

Atmospheric components

Atmospheric components and variations with wavelength measured for atmospheric components (Aerosol optical depth, AOD 550nm), Precipitible Water Vapor (PWV), O3 (Ozone)) (Guyonnet et al.~2019).

Photometric System Modelling

Problem: ZTF does not have a dedicated photometric monitoring telescope (c.f. SDSS, LSST, etc.), and ...

band	$T < 1 \mathrm{hour}$	$1 {\rm hour} < T < 1 {\rm day}$	$1 {\rm day} < T < 10 {\rm day}$
u	20.9	27.4	30.9
g	10.7	17.9	25.2
r	19.7	17.9	26.3
i	12.6	15.8	21.5
\boldsymbol{z}	7.6	15.4	30.0

Zero-point scatter (mmag) for images in delay range.

Transparency variations from Magnier et al. (2008)

However: If we can accurately model the ZTF photometric dependencies, we can estimate transparency for each observation.

Variations in ZTF Zero Points

Field dependence

Time dependence

Current Accuracy of ZP Modelling

Additional Work by Calibration Group

- LED flats in SED weighted combinations.
- Unfiltered vs filtered flat comparison (to account for scattered light).
- CCD depth and charge diffusion modelling.
- Spatial PSF modelling with PIFF
- Spectrophotometric calibration via monochrometer (DePoy et al.)
- Alternate photometric catalogue testing: Gaia EDR3, Dec 2020, (1.8 billion sources, 1mmag at G=17, 5mmag at G=20).

Weekly meeting Fri. 8:30am: https://zoom.us/j/951591406