

Type Ia supernova cosmology with ZTF: DR1 and First results

Cosmology and Lensed SN SWG update

ZTF Collaboration Meeting, Caltech, 20 October 2020

Outline

- Motivation for low-z Type Ia supernova
- Hubble diagram
 - Summary statistics
 - Comparison to the literature
 - Future applications
- Spectroscopic data
- Ongoing work on calibration
- Investigations with Y1 sample

SN cosmology: low-z sample

Ideal sample to measure Ho, dark energy and growth of structure

ZTF DR1 already comparable to all low-z combined

Untargeted => test environmental bias

- Hubble tension: New cosmology or astrophysical bias?
- Nature of dark energy: low-z sample largest systematics
- Future competitive probe of growth of structure

Hubble Diagram

- 157 SNe in "gold" sample -> host redshift

Greater than *all lowZ combined*

- ZTF σrms = 0.16 mag
 Foundation σrms = 0.17 mag
- LowZ σ rms = 0.20 mag

- ZTF <z> = 0.062
- Foundation $\langle z \rangle = 0.029$
- LowZ <z> = 0.031
- Host-z required; SN-z sample 3 X

Year 1 sample

Dhawan et al. in prep

5

- Sky distribution of Year 1 sample
 - High cadence fields have > 1 SN
- Important for growth of structure
- Test directional dependence, e.g. Ho

Sample selection + lightcurves

Dhawan et al. in prep

Cut	# SNe Ia	SNe rejected
2018 Cosmo-Marshal	799	
Host redshift	301	498
Duplicate/not '18/not Ia	290	11
Peculiar	273	17
Phase Coverage	230	43
Redshift cut	200	30
Cosmo cut (salt param)	156	44

- Pipeline developed for ZUDS
- Custom reference for each SN/field

z <= 0.015 for future Cepheid distances

Use z >= 0.1 using selection function model

Model Fitting toward an upgrade

Dhawan et al. in prep

i band tests

- Colour calibration tests
 - Fewer outliers than Foundation
 - Need to improve scatter
- Independent i-band Hubble diagram
- Improve photo-classification
- Second peak => explosion properties

Spectra for DR1

- Do subclasses (e.g. high/low velocity) have smaller scatter?

SEDm data yield accurate velocities! High-velocity SN (> 5σ determination)

NIR follow-up in ZTF2

- SNe Ia are almost standard candles in the NIR
- "Snapshot" distances: single/two epochs of observing
 Use well-studied templates to get peak
- HAWK-I **approved** proposal (PI: Dhawan) - Target sample of 200 in 3 semesters
- Test host galaxy mass step in the NIR
- Debate about poorly known extinction properties
 NIR provides a wide wavelength coverage

Ongoing work: Calibration

New PSF model dev by IN2P3 team (from PIFF)

see also Andrew Drake's talk on Monday

Projected Cosmology Improvement

centre

Sample	Hubble Constant	Dark energy	Unique addition
Gold sample Y1 (157 SNe)	30% better than current SN sample	50% improvement compared to LSST alone	Environmental dependence + single system
ZTF-I 3Yr sample (1800 SNe)	2.5 X smaller error	2 X improvement compared to LSST alone	Directional dependence tests Subpopulation studies
ZTFI+II sample (4000 SNe)	3 X smaller error	3 X improvement compared to LSST alone	Growth of structure at 5% ZTF-only calibrators

Ongoing + future works

Projects Ongoing with DR1 sample

- Local distance ladder H₀
- Measuring the CMB dipole
- Directional dependence of the Hubble constant
- Properties of dust around reddened SNe Ia
- Spectroscopic subclasses based on line velocities
- SNIa clustering (see Ariel's talk)
- Characterising the SN population (see Rahul's talk)

Summary + Conclusions

- Complete cosmology sample ~ 2000 SNe Ia
- DR1 sample: Already greater than combined low-z in the literature
- Excellent rise and late phase coverage
 - Test new standardisation methods
 - Extend existing SALT2 model
- Low intrinsic scatter of 0.15 mag
- Follow-up cosmology studies: H₀, CMB dipole, directional dependence
- Sample of reddened SNe used to constrain extinction properties
 - NIR follow-up of ZTF2 SNe
- Lensed SN search: skyportal instance setup and in development
 - New simulations on expected rate of glSNe

15 mgoing Host galaxy Analysis

Yr1 sample: 281 hosts in SDSS - 151 from the gold sample

Samples the underlying distribution - Unlike the current low-z

Intrinsic scatter

- Compare scatter to the literatureFoundation is on PS1 system
 - rms of 0.17 mag
 - -----
- ZTF Y1 has rms scatter of 0.16 mag
- Intrinsic scatter including fit error
 No systematics included
- $\sigma_{int} = 0.15 \text{ mag}$ (Foundation), 0.14 mag (ZTF Y1)

Crear Klein gISN monitoring search

- AMPEL has several useful filters and provides an API for new filters

- Use SkyPortal instance to engage GLSN group to look at the alert stream for only **GLSN** filtered candidates

- Objective : set up a sufficient stream with relatively limited resources for rare transients

time - 2458435.83

time - 2458435.83

Lightcurve examples

-20

0

20

time - 2458376.42

40

-20

0

20

time - 2458376.42

40

ZTF is untargeted!

- Host properties => impact DE/H0 constraints
- Underlying cause unknown
 - Different dust properties?
 - Intrinsic 56Ni difference?
- SDSS ugriz photometry fitted
 - LePHARE for fitting 281 hosts
 - Pan-STARRS to increase sample
- Symmetric distribution in mass
 - Low-z data is asymmetric (e.g. Kim et al. 2019)
 - Important to test selection effects

ZUDS Summary Stats

- N detections > 3σ
 - Median g-band 8 observations
 - Need to process late time tail for $\sim 1/2$ g-band data
 - Median r-band 15 observations

Comparison with IPAC FPS

55 SNe in common IPAC FPS-Basecorr is 0.188 mag ZUDS is 0.132 mag

Comparison with alert

72 SNe in common IPAC Alert is 0.142 mag ZUDS is 0.132 mag

Pipeline Comparison

- ZUDS: custom references, subtractions i-band photometry, lowest scatter, lightcurve where there are no alert photometry points

- Alert: with checks from IPAC, no i-band, flux in reference, still low scatter for ones with good $\mathsf{g}\mathsf{+}\mathsf{r}$

- IPAC FPS: good to check number of detections, long baseline, Frank doesn't trust over alert photometry

standard deviation from best fit ZUDS - 0.13 mag Alert - 0.14 mag IPAC FPS - 0.18 mag

16 18

20

600

800

Sample Update

- All light curves made: Some hurdles/incompletion
 - Corrupt files, especially for SNe on two fields
 - Some are all on the secondary grid
 - Too early to get an estimate of tmax
 - Alert in 2018 but SN is from 2020
 - ZUDS removes good seeing data
 - Use epochs with seeing < 1.7"

flux (ZP_{AB} = 25.0)

pull

Alert versus ZUDS

z = 0.023608280 $c = -0.012 \pm 0.029$ $t_0 = 2458331.028 \pm 0.060$ MW ebv = 0.076194772 $MW r_v = 3.1000000$ $x_0 = (6.59 \pm 0.20) \times 10^{-3}$ z=0.023608280 $c = -0.89 \pm 0.77$ $x_1 = (10 \pm 66) \times 10^{-3}$ $t_0 = 58331.16 \pm 0.33$ MW ebv = 0.076194772 $MW r_v = 3.1000000$ $x_0 = (8.2 \pm 1.2) \times 10^{-3}$ 3000 $x_1 = 0.51 \pm 0.43$ 3000 p48g p48r flux $(ZP_{AB} = 25.0)$ 2000 3000 p48g 2000 2000 1000 1000 1000 0 0 0 bull -8 -20 20 40 -20 0 20 40 0 -2020 40 0 time - 2458331.03 time - 2458331.03 time - 58331.16

time - 2458772.19

time - 2458772.19

Redshift upper limit

- After what z are the residuals brighter?

Low-z Anchor : State of the art

	\mathbf{T}	able 4.	
	Sample	Number	Mean z
1	CSP	26	0.024
	CFA3	78	0.031
	CFA4	41	0.030
	CFA1	9	0.024
	CFA2	18	0.021
,	SDSS	335	0.202
	PS1	279	0.292
	SNLS	236	0.640
	SCP	3	1.092
	GOODS	15	1.120
	CANDELS	6	1.732
	CLASH	2	1.555
	Tot	1048	

Growth of structure

- Measure growth of structure from velocity correlations
- Independent probe of σ_8 tension
- Require few thousand SNe (statistically equivalent to ~15000 galaxies)
- Large coherent motion (bulk flow) in ZTF volume could contradict ACDM structure formation
- ZTF 1+2 will provide ideal sample

Sample statistics

- Redshift 0.03 < z < 0.1

- Low impact of peculiar velocities
- $-z \ge 0.1$ Malmquist biased

- SNe are bluer and wider than average

- Median > 15 observations in g+r

- Subset with \sim 100 points around peak

- Early discoveries: novel constraints on the rise

