The Search for Planets Transiting White Dwarf Stars

Keaton J. Bell NSF AAPF, DiRAC Fellow University of Washington ZTF Team Meeting October 19, 2020

White dwarfs as planet hosts

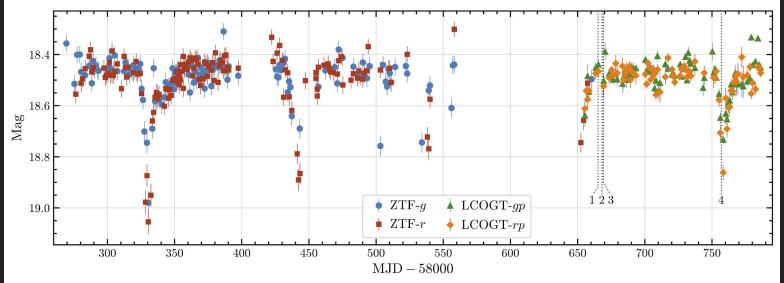
<u>Facts:</u>

- 1. Most main sequence stars host planets
- 2. Most main sequence stars become white dwarfs
 - \rightarrow Most white dwarf stars host planets

White dwarfs as planet hosts

<u>Facts:</u>

- 1. Most main sequence stars host planets
- 2. Most main sequence stars become white dwarfs
 - \rightarrow Most white dwarf stars host planets


Additional evidence:

- ~27--50% of white dwarfs are currently accreting planetary debris (Koester, Gänsicke & Farihi, 2014, A&A, 566, A34)
- ~2% show IR emission from debris disks (Rebassa-Mansergas et al. 2019, MNRAS, 489, 3990)
- Detected planetesimal systems, e.g., WD 1145+017 (Vanderburg et al. 2015, Nature, 526, 54), ZTF J0139+5245 (Vanderbosch et al. 2020, ApJ, 897, 171)

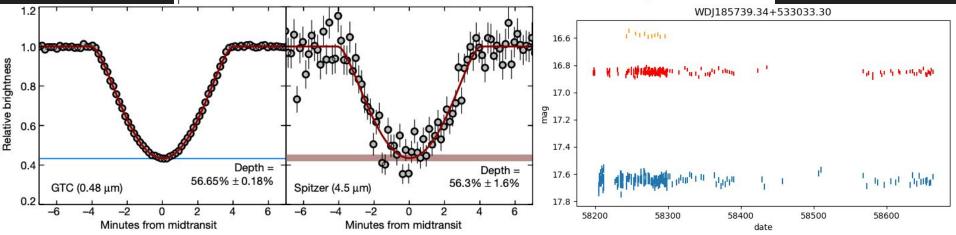
A White Dwarf with Transiting Circumstellar Material Far outside the Roche Limit

Z. Vanderbosch^{1,2}, J. J. Hermes³, E. Dennihy⁴, B. H. Dunlap¹, P. Izquierdo^{5,6}, P.-E. Tremblay⁷, P. B. Cho^{1,2}, B. T. Gänsicke⁷, O. Toloza⁷, K. J. Bell^{8,9}, M. H. Montgomery^{1,2}, and D. E. Winget^{1,2}
 ¹ Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA; zvanderbosch@astro.as.utexas.edu
 ² McDonald Observatory, Fort Davis, TX 79734, USA
 ³ Department of Astronomy, Boston University, Boston University, Boston, MA 02215, USA
 ⁴ Gemini Observatory, Casilla 603, La Serena, Chile
 ⁵ Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain
 ⁶ Departament of Physics, University of Warwick, Coventry CV4 7AL, UK
 ⁸ DIRAC Institute, Department of Astronomy, University of Washington, Seattle, WA 98195, USA
 Received 2019 August 22; revised 2020 May 21; accepted 2020 May 23; published 2020 July 15

Article

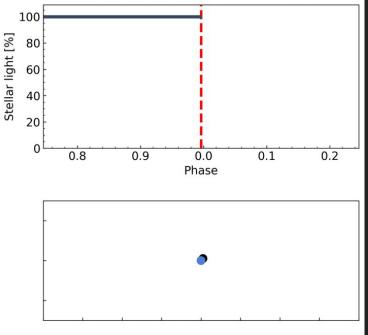
A giant planet candidate transiting a white dwarf

https://doi.org/10.1038/s41586-020-2713-y

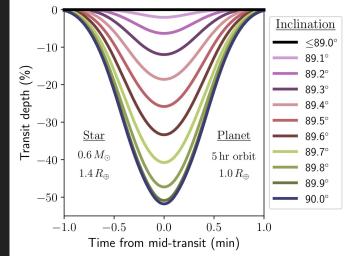

Received: 16 March 2020

Accepted: 15 July 2020

Published online: 16 September 2020

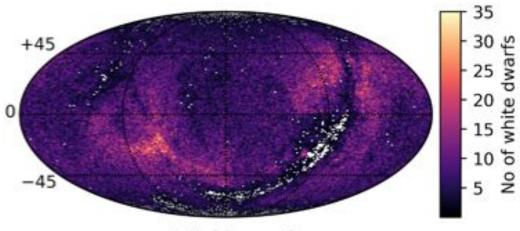

Check for updates

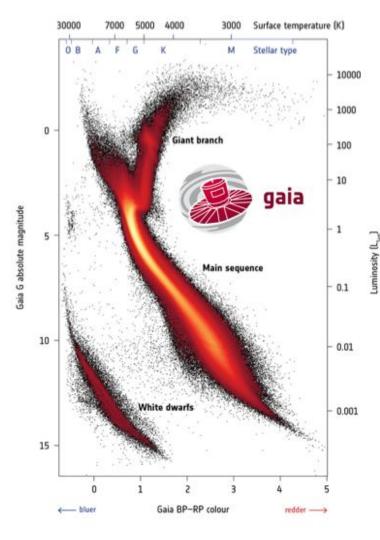
Andrew Vanderburg^{1,2}, Saul A. Rappaport³, Siyi Xu⁴, Ian J. M. Crossfield⁵, Juliette C. Becker⁶, Bruce Gary⁷, Felipe Murgas^{1,9}, Simon Blouin¹⁰, Thomas G. Kaye^{11,12}, Enric Palle^{8,9}, Carl Melis¹³, Brett M. Morris¹⁴, Laura Kreidberg^{15,16}, Varoujan Gorjian¹⁷, Caroline V. Morley², Andrew W. Mann¹⁸, Hannu Parviainen^{8,9}, Logan A. Pearce¹⁹, Elisabeth R. Newton²⁰, Andreia Carrillo², Ben Zuckerman²¹, Lorne Nelson²², Greg Zeimann²³, Warren R. Brown¹⁶, René Tronsgaard²⁴, Beth Klein²¹, George R. Ricker³, Roland K. Vanderspek³, David W. Latham¹⁶, Sara Seager^{3,25,26}, Joshua N. Winn²⁷, Jon M. Jenkins²⁸, Fred C. Adams^{28,30}, Björn Benneke^{31,32}, David Berardo³, Lars A. Buchhave²⁴, Douglas A. Caldwell^{28,33}, Jessie L. Christiansen³⁴, Karen A. Collins¹⁶, Knicole D. Colón³⁵, Tansu Daylan³, John Doty³⁶, Alexandra E. Doyle³⁷, Diana Dragomir³⁸, Courtney Dressing³⁹, Patrick Dufour^{31,22}, Akihiko Fukul^{8,40}, Ana Glidden^{3,25}, Natalia M. Guerrero³, Xueying Guo³, Kevin Heng¹⁴, Andreea I. Henriksen²⁴, Chelsea X. Huang³, Lisa Kaltenegger^{41,42}, Stephen R. Kane⁴³, John A. Lewis¹⁶, Jack J. Lissauer²⁸, Farisa Morales^{17,44}, Norio Narita^{8,45,46,47,48}, Joshua Pepper⁴⁹, Mark E. Rose²⁸, Jeffrey C. Smith^{28,33}, Keivan G. Stassun^{50,51} & Liang Yu^{3,52}


An observational challenge

White dwarfs are compact objects ~Earth size = small transit target

Animated with github.com/oscaribv/tango




$N_p = N_{WD} \times f_p \times f_t \times N_{obs}$

where:

- N_p = number of transiting planets we expect to discover
- Nwd = the number of white dwarfs observed
- f_p = the fraction of white dwarfs with planets
- ft = the fraction of time these planets are transiting
- Nobs = the number of observations of each white dwarf

R.A. [degrees]

$N_p = N_{WD} \times f_p \times f_t \times N_{obs}$

where:

- N_p = number of transiting planets we expect to discover
- Nwd = the number of white dwarfs observed

- f_p = the fraction of white dwarfs with planets
- ft = the fraction of time these planets are transiting
- Nobs = the number of observations of each white dwarf

$N_p = N_{WD} \times f_p \times f_t \times N_{obs}$

where:

- N_p = number of transiting planets we expect to discover
- Nwd = the number of white dwarfs observed
- f_p = the fraction of white dwarfs with planets
- ft = the fraction of time these planets are transiting
- Nobs = the number of observations of each white dwarf

~200,000

~870

$N_p = N_{WD} \times f_p \times f_t \times N_{obs}$

where:

- N_p = number of transiting planets we expect to discover
- Nwd = the number of white dwarfs observed
- f_p = the fraction of white dwarfs with planets
- ft = the fraction of time these planets are transiting
- Nobs = the number of observations of each white dwarf

~200,000

~0.00001 ~870

$N_p = N_{WD} \times f_p \times f_t \times N_{obs}$

where:

- N_p = number of transiting planets we expect to discover
- Nwd = the number of white dwarfs observed
- f_p = the fraction of white dwarfs with planets
- ft = the fraction of time these planets are transiting
- Nobs = the number of observations of each white dwarf

~200,000 ~0.01? ~0.00001 ~870

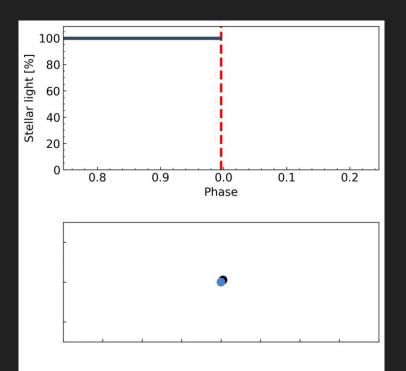
$N_p = N_{WD} \times f_p \times f_t \times N_{obs}$

where:

Np = White Dwarfs as Probes of Fundamental Physics: Tracers of Planetary, Stellar and Galactic Evolution Proceedings IAU Symposium No. 357, 2019 M. A. Barstow, S. J. Kleinman, J. L. Provencal & L. Ferrario, eds. doi:10.1017/S1743921320000204

f_p = t
f_t = t

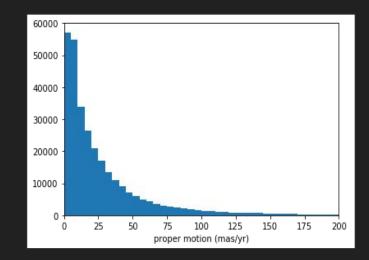
Nwd


Nobs

The search for planet and planetesimal transits of white dwarfs with the Zwicky Transient Facility

Keaton J. Bell⁰

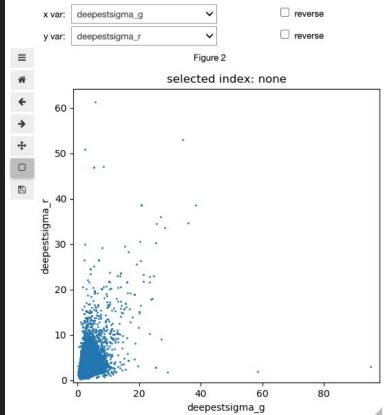
NSF Astronomy and Astrophysics Postdoctoral Fellow and DiRAC Institute Fellow, Department of Astronomy, University of Washington, Seattle, WA 98195, USA email: keatonb@uw.edu ~17? ~200,000 ~0.01? ~0.00001 ~870


Silver lining: only short-period planets transit

Generating light curves

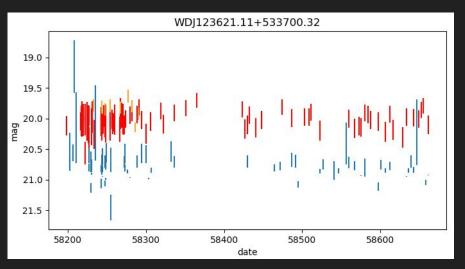
Using AXS for rapid analysis of large data set (detections table) Cross match to Gaia WD positions (proper motion propagated)

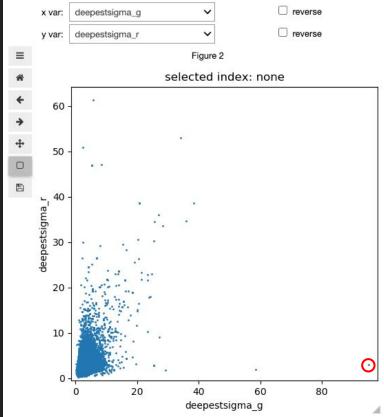
THE ASTRONOMICAL JOURNAL, 158:37 (14pp), 2019 July © 2019. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-3881/ab2384



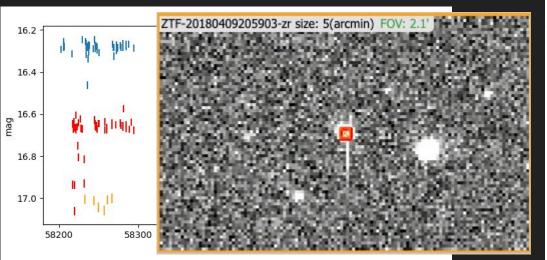
AXS: A Framework for Fast Astronomical Data Processing Based on Apache Spark

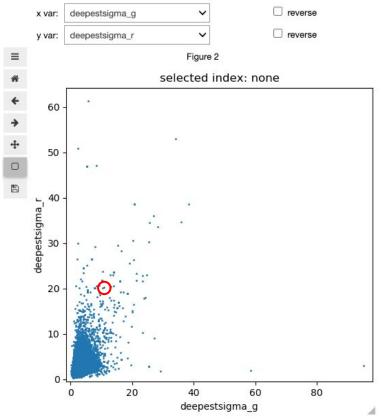
Petar Zečević^{1,2}, Colin T. Slater³, Mario Jurić³, Andrew J. Connolly³, Sven Lončarić¹, Eric C. Bellm³, V. Zach Golkhou^{3,4}, and Krzysztof Suberlak³, ¹ Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia; petar.zecevic@fer.hr ² Visiting Fellow, DIRAC Institute, University of Washington, Seattle, USA ³ DIRAC Institute and the Department of Astronomy, University of Washington, Seattle, USA *Received 2019 March 26; revised 2019 May 17; accepted 2019 May 20; published 2019 July 1*


Calculate various statistics of interest in each band (highest-sigma dip, standard deviation flux, etc.)

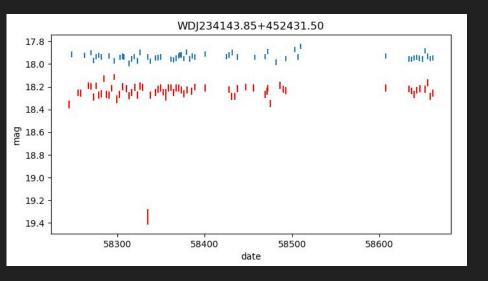

Explore with dfbrowser: github.com/keatonb/dfbrowser

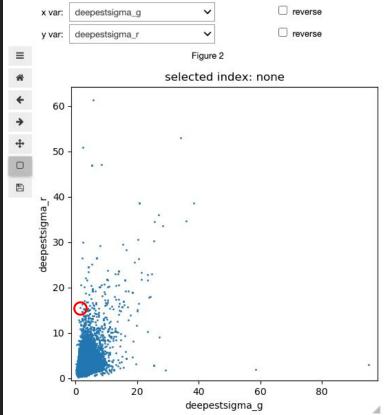
Calculate various statistics of interest in each band (highest-sigma dip, standard deviation flux, etc.)


Explore with dfbrowser: github.com/keatonb/dfbrowser

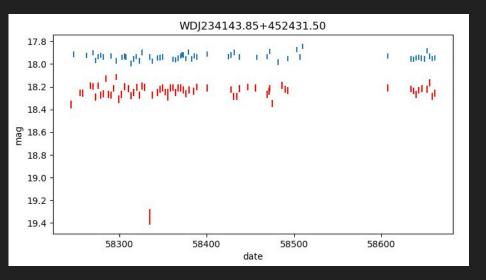


Calculate various statistics of interest in each band (highest-sigma dip, standard deviation flux, etc.)


Explore with dfbrowser: github.com/keatonb/dfbrowser

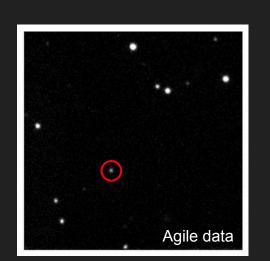


Calculate various statistics of interest in each band (highest-sigma dip, standard deviation flux, etc.)


Explore with dfbrowser: github.com/keatonb/dfbrowser

Calculate various statistics of interest in each band (highest-sigma dip, standard deviation flux, etc.)

Explore with dfbrowser: github.com/keatonb/dfbrowser


ZTF-20180807346875-zr size: 5(arcmin),...

ZTF-20180804361887-zr size: 5(arcmin) ...

Apache Point Observatory 3.5-meter Telescope

ZTF-20180807346875-zr size: 5(arcmin) ...

ZTF-20180804361887-zr size: 5(arcmin) ...

Improvements in progress:

Upper limits from non-detections

Compile and consider SEDs (check IR excess)

Now that candidates are quite robust, include an RV follow-up approach

ZTFQuery to replace manual IRSA search?