
AMPEL
Alert Management, Photometry and Evaluation of Lightcurves

AMPEL is a tool allowing methods/tools/algorithms developed for
individual transients to be consistently and reproducibly applied to
large samples of objects.

Jakob Nordin, HU Berlin

The AMPEL
project

Source(s) of
alerts

Source(s) of photometry

The AMPEL
project

Scientifically
interesting?

Existing analysis
software

Source(s) of photometry

Goal: Well defined
transient population

Source(s) of
alerts

The AMPEL
project

Database of active
transients

Scientifically
interesting?

Existing analysis
software

Source(s) of photometry

Goal: Well defined
transient population

Source(s) of
alerts

The AMPEL
project

Should I consider this transient ?
(Ampel = Berlin traffic light)

Database of active
transients

Scientifically
interesting?

Existing analysis
software

AMPEL takes care of the arrows and database!

Source(s) of photometry

Goal: Well defined
transient population

Source(s) of
alerts

The AMPEL
project

Database of active
transients

The AMPEL team focus is on
the framework!

Schematic overview

Alerts are matched to
the list of active
channels

Accepted transients are
monitored in the live DB

Requested analysis
modules run as new data
are added

Users get updates:
- Slack messages
- Marshal push
- Telescope trigger
- (Database copy)

Ampel 101

● Users access Ampel through a channel. This specifies both what kind of alerts could
be interesting and what should be done to them.

Ampel 101

● Users access Ampel through a channel. This specifies both what kind of alerts could
be interesting and what should be done to them.

● Ampel is internally divided into four layers or tiers:

○ Tier 0 filters what alerts are sufficiently interesting to be ingested into the DB,

○ Tier 1 monitors the state of known transients.

○ Tier 2 performs analysis calculations on a single transient state.

○ Tier 3 executes actions based on combined T0, T1, T2 information, possibly
from multiple transients

Ampel 101

● Users access Ampel through a channel. This specifies both what kind of alerts could
be interesting and what should be done to them.

● Ampel is internally divided into four layers or tiers:

○ Tier 0 filters what alerts are sufficiently interesting to be ingested into the DB,

○ Tier 1 monitors the state of known transients.

○ Tier 2 performs analysis calculations on a single transient state.

○ Tier 3 executes actions based on combined T0, T1, T2 information, possibly
from multiple transients

● Running Ampel requires things to be done at the right level:

○ Tier 0 operations can be exposed to all incoming alerts (limited complexity).

○ Tier 2 modules can be more complex, but have lower priority.

○ All transfer of information from Ampel is done at the T3 level.

Ampel 101

● Users access Ampel through a channel. This specifies both what kind of alerts could
be interesting and what should be done to them.

● Ampel is internally divided into four layers or tiers:

○ Tier 0 filters what alerts are sufficiently interesting to be ingested into the DB,

○ Tier 1 monitors the state of known transients.

○ Tier 2 performs analysis calculations on a single transient state.

○ Tier 3 executes actions based on combined T0, T1, T2 information, possibly
from multiple transients

● Running Ampel requires things to be done at the right level:

○ Tier 0 operations can be exposed to all incoming alerts (limited complexity).

○ Tier 2 modules can be more complex, but have lower priority.

○ All transfer of information from Ampel is done at the T3 level.

● There is no “frontend” to Ampel, nor is it (currently) possible to “log in” to the Ampel
DB. T3 functions exist to export information.

Example: AMPEL in the Cosm. SWG
Transient selection (T0): RB & SG limits; at least three detections

SN classification (T3, run each day)
● Load candidates without type, with decent SNIa match, (photo)-z <0.1,

predicted peak day in >-3 days, mag <~ 19.5
● Push ranked list to marshal/slack/telescope list (see Ulis talk)

SN pull (T3, run each day)
● Read classification information from external sources

After survey, rerun full stream while varying parameters. Compare ranks & final types..

T2: Template lightcurve fit (after each photopoint / non-detection)
● Determine fit qualities and estimated peak dates

T2: Host galaxy (once / candidate)
● Host galaxy shape analysis
● Spec-z search
● Photometric redshift

How do I use Ampel?
● AMPEL will be a public service, keeping track of data access rights. There

is an initial practical limit to the number of channels we host.
● Get general information at:

○ https://ampelproject.github.io/Ampel
○ http://noir.caltech.edu/twiki_ptf/bin/view/ZTF/CosmoAMPEL
○ Contact: ampel-info@desy.de

● Define a channel for a science goal:
○ Clone Ampel T0-ref repository
○ Edit the configuration file
○ Implement specific T0 filter python class, if needed
○ Implement a T3 information push
○ Probably want a testing / visualization plan
○ Contact the Ampel channel manager: ampel-channels@desy.de

● Provide T2 analysis modules for use by you and/or others
● Provide catalogs/ToO maps (see later slide)
● Eventually, each channel will be provided with their final Mongo DB

containing all transient history

http://noir.caltech.edu/twiki_ptf/bin/view/ZTF/CosmoAMPEL
mailto:ampel-channels@desy.de

Sample channel configuration file
[{ "_id": "HU_EARLY_SN",

"version": 1.0,
"active": true,
"input": [

{
"instrument": "ZTF",
"alerts": "IPAC",
"parameters": {

"ZTFPartner": true,
"autoComplete": true,
"updatedHUZP": false

} }],
"t0Filter": { "id": "BasicFilter",

"runConfig": {
"criteria": [

{
"rb": 0.8,
"operator": ">"

},],
"len": 3,
"operator": ">"} },

"t2Compute": [
{

"t2Unit": "SNCOSMO",
"runConfig": "SALT2"

},],
"t3React": [

{
"t3Unit": "SLACK",
"runConfig": {

"criteria": [
{
 "T3SNCOSMO”: [

fitchi": 0.1,
 "operator": ">"
}]
"slack": [
{

"slackid": “ZTF Berlin”,,
"slackchannel”:”sandbox”,
“botid”:”24035704358”

}]

"t2Compute": [
{

"t2Unit": "SjoertsGaiaComparator",
"runConfig": {

“Reject” : true,
},],

[{ "_id": "HU_EARLY_SN",
"version": 1.0,
"active": true,
"input": [

{
"instrument": "ZTF",
"alerts": "IPAC",
"parameters": {

"ZTFPartner": true,
"autoComplete": true,
"updatedHUZP": false

} }],
"t0Filter": { "id": "MyFilterClass",

"runConfig": {
"criteria": “Model”

},}

Full power through python implementation

An implementation of the T0 ref filter class.
Manipulation of all alert info + restricted
catalog matching

A python package following the
AMPEL IO rules, available with
setup.py through eg github.

Catalog matching

Ampel is not only a tool for catalog matching! That said, MG has
created a specific code for organizing and quering catalogs.

Once the catalog is imported into AMPEL, it is easy to do catalog
matching in T0/2 implementations.

Catalogs are DBs: they can be modified on the fly. A util module can
then replay part of the alert stream for the affected filters. Provides
mechanism for matching alerts to external detections (eg GW).

More catalog matching talks to follow !

Rule of thumb:

● “small” (<100M sources) catalogs can be done at the T0 level.
● “large” catalogs (e.g. PS1) has to be queried as a T2 module (or a ‘late’ T0).

https://github.com/MatteoGiomi/extcats

https://github.com/MatteoGiomi/extcats

Modules currently developed by
Cosmology, Neutrino, TDE groups
● Catalog matching

○ Wise
○ Pan Starrs
○ The Million Quasar Catalog
○ Gaia

● T2
○ Polynomial lightcurve fit
○ SNcosmo template fitting, Gaussian Process lightcurve, parametric

rise/decline
○ Host galaxy identification and photometric redshift

● T3
○ TNS submission
○ Slack notification
○ GROWTH marshal save and annotation
○ “Dropbox” file transfer
○ UH88 / LCO telescope ranking & trigger

Relation to the brokers and the
GROWTH marshal?

● A broker is a service that can add contextual information and then divert
the alert flow (e.g. there is no notion of the set of currently live
transients). AMPEL can, in principle, do this but it would not be very
efficient and not use core AMPEL features.

● The GROWTH marshal is designed primarily for visualization and
commenting of data of various kinds of individual transients. Information
can be pushed from AMPEL to the marshal (annotating), including saving
transients and information (comments) can be pulled back to AMPEL
from the GROWTH DB.
○ Keeping track will be easier if one AMPEL channel corresponds

one-to-one to a GROWTH science program (not technically
necessary). Keep filtering consistent.

○ Use a machine readable way when making critical comments.

Ampel 222 - optional features

● A primary design goal is to allow for channels where the results are fully
reproducible. This can be achieved as the full Ampel system is stored as a
container that can be mounted later and users *can* define fully automatic
channels. I strongly recommend channels to be as automatic as possible and
restrict human interaction to one “layer”.
○ Requires original alert stream to be available

● A further consequence is the delayed T0 - if you are made aware of an event
that happened a few days ago you can create a new filter for this and
reprocess a certain set of events.

● Straightforward to parallelize. No DB racing conditions.

Allows to investigate the effects of sample selection through changing some of
the channel configuration parameters and rerunning a set of alerts. Sample case:
investigate when observations of an object would have been initiated, and how
many false observations would have been carried out.

Ampel 888 - technical notes for offline reading

● Ampel makes use of Mongo DB. Provides flexibility, but also limitations in
terms of which fields can be quickly searched.

● Each channel needs a purge strategy for when objects leave the DB. At
regular intervals each channel retrieves a DB cutout containing all the events
it selected and their processing history.

● Ampel makes sharing software easy. After wrapping it as a T2 module you can
let other users run it on their selection of alerts (or not).

● We could incorporate and combine different kind of alerts.
● Ampel will run on two dedicated machines in DESY (+ farm).

○ A central computer cluster provides the power to do real-time alert responses,
and multiplex advantage in that many channels can benefit from the same
operations.

○ The AMPEL code is frozen into docker files. We will make sure old alert streams
are available, which guarantees that you can recreate the channel progress, or
rerun previous data with updated search tools or tests.

○ An intermediate step will be to have a copy of the current DB available at a
different machine where users can connect.

Ampel team and current state

Intense development phase including:.
● Valery Brinnel (DB and core software design)
● Jakob von Santen (Hardware, network, storage)
● Matteo Giomi, Robert Stein (alert filtering and catalog

matching)
● Ludwig Rauch, Mickael Rigault (analysis modules like

photometric redshifts)
● Anna Franckowiak, Marek Kowalski

Core AMPEL (framework) software running. Focus now on
modules and interface. Production software versioned and stored
as containers - the candidate processing can be exactly rerun.

Main servers installed at the DESY computer centre in Zeuthen,
but network enclosure to be verified for active deployment.
Wishlist include an external server for interactive database access.

