SEDM Overview & Operations

Don Neill

Instrument Scientist

neill@caltech.edu

Outline of SEDM Session

- 1. Overview of status and operations Don Neill
- 2. Hardware status and plans Michael Feeney
- 3. Pipeline upgrade Mickael Rigault
- 4. SEDM database and website Nadia Blagorodnova
- 5. Partnership time allocation Ariel Goobar

SEDM Overview/Status

- P60 robotically controlled
- micro-lens array (MLA) IFU spectrograph with 28" FOV
- 4-filter (ugri) imager (4 x 6.5') for acquisition, guiding, photometry
- Time allocation: 65% Partnership, 35% Caltech TAC
- Currently ~10 science objects/night
 - 45 60 min per target + overhead
- Scheduler receives requests from GROWTH marshal
- Data reduced and available at Caltech (pharos.caltech.edu)
- Auto upload spectra to marshal next day
- Paper out: Blagorodnova, Neill, Walters, et al. 2018, PASP, 130, 035003

SED Machine	Welcome
Status	documen
P60: UP SEDM: UP IFU: UP RCAM: UP Obstruction cleared	The SED Machine is (30"x"30") spectrogra are partitioned into u signed for rapid classi strument was designed
Navigation 1. Introduction 2. Observer's Reference	Low resolution (<i>l</i>High "Slit to dete0.1 mag precision
 SEDM Pipeline Efficiency Hardware 	The hardware project Current members of
6. Components	• Michael Feeney (
7. Historical Documents	Richard Walters
Quick search	 Don Neill (Com Nadejda Blagoro Chris Cannella (Jamey Eriksen (C
Go	• Jeff Zolkower (O

Also: pharos.caltech.edu (Nadia's talk)

Welcome to SED Machine's documentation!

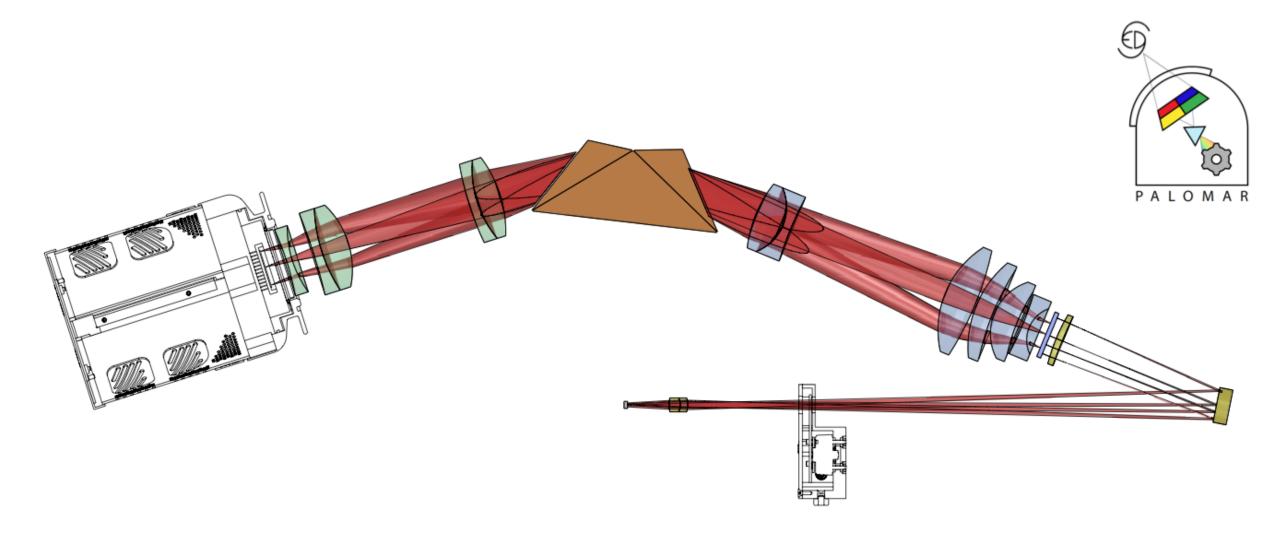
The SED Machine is very low resolution $(\frac{\lambda}{\Delta\lambda} \sim 100)$ optical (365 - 1,000 nm) integral field (30"x"30") spectrograph and a rainbow imager with a 13' x 13' field. The rainbow camera images are partitioned into u, g, r, and i bands, each with a 6' x 6' field of view. The instrument was designed for rapid classification of supernovae from transient surveys. To achieve this goal, the instrument was designed to have:

- Low resolution ($R = \frac{\lambda}{\Delta \lambda} \sim 100$), sufficient for classification.
- High "Slit to detector" photon throughput.
- 0.1 mag precision spectrophotometry.

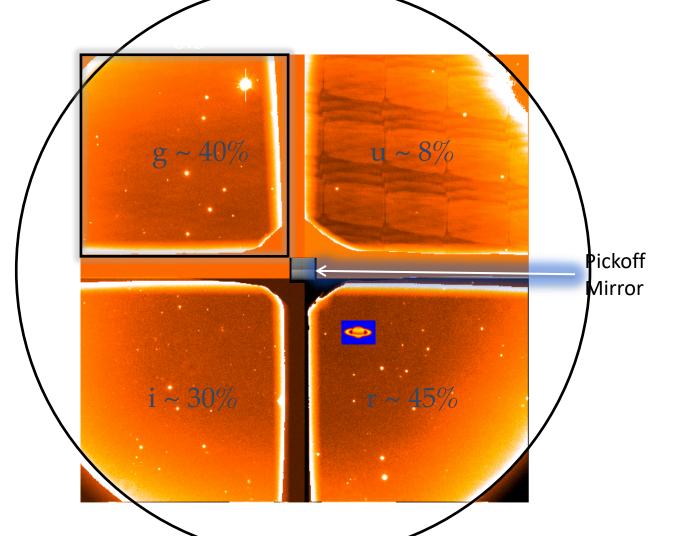
The hardware project was funded by the NSF with a grant to Caltech. Many people were involved. Current members of the team are:

- Michael Feeney (Instrument Master)
- Richard Walters (Telescope/Instrument Operations and Scheduling)
- Don Neill (Commissioning Scientist, IFU pipeline)
- Nadejda Blagorodnova (Science results, RCam photometry pipeline)
- Chris Cannella (Marshal interface, ATels)
- Jamey Eriksen (Operations Support at Palomar)
- Jeff Zolkower (Operations Support at Palomar)

Former members, some of whom are still consulted for advice are:


- Nick Konidaris (Principle Investigator)
- Robert Quimby (Project Scientist)
- Jack Davis, and Sagi Ben-Ami (Weizmann institute grad students)
- Karl Vyhmeister (SEDM Database)

Here we document the instrument for observers and developers. Observers will want to refer to


Facility instrument on P60

Hyperspectral Imaging Spectrograph

Rainbow camera (RCam) imager: acquisition + guiding + photometry

Plans

- Hardware upgrade (see M. Feeney talk)
 - New micro-lens array
 - Improved environment control
- Improved DRP (see M. Rigault talk)
 - Automated
 - New shutter on Rainbow cam (installed and tested!)
 - Astrometry from sum of guide images
 - Forced PSF spectrophotometry at automatically placed position

SEDM as Resource

- Small operations software team: 3 people (all part-time)
- Small hardware team: 1 Caltech + Palomar staff (all part-time)
- Cannot provide optimized facility
- All inputs/discussion of updates through instrument scientist (DN)
- Partnership / Caltech must take lead in management of their share

SEDM Team Responsibilities

- Manage instrument hardware (see M. Feeney talk)
 - In spite of hardware issues, SEDM has been on sky throughout commissioning
- Provide operational framework (Richard Walters)
 - Basic automated scheduling (discussed here)
 - TOO facility
 - Accounting of time used (see N. Blagorodnova talk)
- Data reduction (see M. Rigault talk)
- Access to reduced data (see N. Blagorodnova talk)

Partnership / COO Responsibilities

- Manage observation priorities
- Manage distribution among sub-programs
- Final disbursement of data
- Final classifications

SEDM Scheduling (part 1)

- Partnership & COO supply targets on a nightly basis with their own assigned priorities, program name (SWG)
 - expect partnership & COO to provide backup/bad weather/heap programs
- The requests are automatically scheduled, using 15 minute block schedule methodology (discussed in Goobar committee, see his talk)
- The SEDM Robot executes the schedule according to:
 - 1. Time block (Partnership or COO)
 - 2. Priority
 - 3. First setting (HA, and < 2.5 airmass and end, and > 30 deg. from moon)
- TOOs interrupt schedule

SEDM Scheduling (part 2)

- Partnership & COO each will appoint "SEDM Czar"
- Czar will view object visibility/schedule on SEDM web page.
- Czar can shuffle objects within the time block through marshal by updating priorities
- SEDM team will provide a usage summary on nightly / weekly / monthly / semester cadence
- SWGs will have access to these reports
- SEDM Czars are expected to mediate within each community

Looking forward to...

- Improved throughput
 - new MLA in April
- Automated pipeline
 - I get to sleep late
- Forced PSF photometry and better scattered light subtraction
 - No more A/B -> reduced overhead
 - Possibly shorter exposure times (trade with PSF star obs: Std Stars)
- Smooth scheduling and operations
- Better weather!!!