Part I: Correcting for the Nonlinearity in ZTF

Nonlinearity: Intro Methods Analysis Results

Background:

Photons in should be proportional to electrons out

ZTF: ~6 e-/ADU

Become nonlinear when saturating - at ~60,000 ADU

Can lead to inaccurate photometry

http://www.astro.caltech.edu/palomar/media/oschinmedia.html

Experiment Description:

- 1. Take flats of increasing exposure time (1, 3, 5, 10, 15, 20, 30, and 35s)
- 2. Between each step take a 10 sec exposure to normalize
- 3. Measure the flux of the light source at low signals (far from saturation)
- 4. Use this flux to find the expected number of counts, as if perfectly linear
- 5. Find the measured / expected counts for each exposure time

Step 1: Take flats of increasing exposure time

Step 2: Normalize counts with stability flats

Step 3-5: Find ratio of measured to expected counts

Nonlinearity: Intro Methods Analysis Results Shutter Correction by Matteo Giomi:

Must account for lost counts due to non-instantaneous shutter movement.

After incorporating shutter timing correction:

Repeat for all 64 Quadrants:

Nonlinearity: Intro Methods Analysis Results

Measured / Expected

Counts [ADU]

Summary of Results:

- ZTF is linear to 1-2% level with traditional method But analysis is still ongoing
- Single exposure method shows nonlinearity is marginal
- We are not reproducing the results we expected unclear why there are deviations at low signal level
- Shutter timing error is significant
- Single exposure method is already implemented into pipeline

Future Work:

• Comparison between the traditional and single exposure methods still needs work, they should agree

Part II: Hunting for Ghosts in ZTF

Ghosts Come in Two Flavors:

Locations:

🛞 : Intro Methods Analysis Results

Co-moving (halos):

Caused by: Saturation of pixel full-well capacity

Approx. symmetric around parent star

Distortions: Vignetting, central obscurations

Counter-moving (reflections):

Internal reflections between optics

Reflected across center of focal plane

Sagging trim plate, obscurations

Why are ghosts a problem? They are bad:

- for high-precision photometry in crowded fields
- for long exposures where stars saturate
- if stars fall inside a ghost, may find inaccurate magnitude
- and most importantly at the moment, may be mistaken for real transients

Goal:

To identify pixel locations of ghosts so that they can be masked in image processing and will not be mistaken for a real transient. We choose an empirical approach as distortions in the CCDs can inhibit an analytical model of ghost predictions

Experiment Description:

Image bright parent star with each of the 64 quadrants (and outside of focal plane too, for counter-moving ghosts)

2nd Magnitude Parent (Beta Peg)

30 s exposures (single)

61	60	57	5 6	53	52	49 1	48
62	63	58	5 59	54 I	4 55	50	5 51
45	44	41	40 1	37	36	33	32
46	47	42	43	38	39	34	35
29	28	25	24	21	20	17	16
29 0 30	28 8 31	25 0 26	24 7 27	21 0 22	20 6 23	17 0 18	16 5
29 30 q2 13	28 8 31 q1 12	25 0 26	24 7 27 08	21 22 05	20 6 23 04	17 0 18 01	16 5- 19 00

Co-moving Ghosts:

Uniform:

- Independent of parent brightness
- Independent of parent location on focal plane

Two components

- Outer halo: 350 pixel radius
- Inner halo: 130 pixel radius

Exists for parent stars up to 6th magnitude

There are some deviations but we use a conservative value for halo radius to account for this.

Ghosts: Intro Methods Analysis Results

Counter-moving Ghosts:

Multiple Components

- Primary ghost
- Diffuse halo
- Secondary ghost

Less Uniform

- Some dependence on parent brightness
- Some dependence of parent location

Harder to predict ghost locations

Also exists for up to 6th magnitude parent stars

Ignoring secondary ghosts for now

Summary of Results:

- Ne came up with conservative predictions to identify both co- and countermoving ghosts from a parent star catalog
- Ghosts in general are fairly uniform and independent of parent star's magnitude
- These results will be implemented into the image processing pipeline and any affected pixels will be masked
- $\textcircled{\mbox{\sc only}}$ ~0.3% of pixels masked in all images by counter-moving ghosts, ~0.4% for comoving ghosts

Future work:

- May need to perform experiment again because this was done before ZTF was taken off the mountain in January
- Euture second-order predictions would also mask the secondary ghosts

Adding Constant Offset to Results before Shutter Correction:

Bright vs. Faint Ghosts:

Bright

Co-Moving

Counter-Moving

Backup Slides

Secondary Counter-Moving Ghosts:

	61	60	57	5 6	53	52	49 1	48
	62	63	58	59	54	4 55	50	5 51
	45	44	41	40 1	37	36	33	32
,	46	2 47	42	43	38	39	34	35
	29	28	25	24	21	20	17	_16
	30	8 31	26	27	22	23	18	5 19
)	q2	q1	09	08	05	04	01	00
	14 q3	15 q4	10	11	06	2 07	02	03

