

Do I care about this thing?

A PS1 star/galaxy catalog for ZTF

AAM+17a

Adam A Miller Yutaro Tachibana

ZTF Team Meeting 20 Mar 2018

Yutaro Tachibana

Tokyo Institute of Technology

Seriously Adam - Do We Need This?!

PTF "holes" in coverage

single filter

large depth variations

credit: PTF

PS1 - full 3pi coverage 5 filter coverage deep, "good" seeing

Chambers+16

"Classic" s/g Method

credit: PS1 website

(Brief) Intro to Machine Learning

HST/PS1

~75k sources

faint sources

small area (1 sq deg)

"unbiased"

morphological classifications

SDSS spec/PS1

~3.5M sources

spec limit ~21 mag

large footprint

target selection bias

spectroscopic classifications

"Simple" Model

Tachibana & Miller 18

"Simple" Model

Tachibana & Miller 18

Creating Features

Shape parameters from PS1 stack images

white feat = $\frac{\sum_{f}^{g,r,i,z,y} \text{feat}_{f} \times \text{SNR}_{f}^{2} \times \delta_{f}}{\sum_{f}^{g,r,i,z,y} \text{SNR}_{f}^{2}}$

Creating Features

11 "white" features

reduce color dependency

no mag measurements

Figure of Merit Maximize TPR @ FPR = 0.005

Kasliwal+16

Results

Results

Blah Blah Frickin Blah

Tell me what I need to know

~1 >> likely star

= 0.5 >> absolutely no idea

~0 >> likely galaxy

Note - all bets are off near Galactic plane

FPR	TPR	s/g score
0.005	0.7	0.76
0.01	0.74	0.65
0.02	0.79	0.53
0.05	0.85	0.36
0.10	0.90	0.24

(imperfect) ML models are superior to low-dimensional cuts Never, ever, ever, ever, ever use hard cuts

PS1 provides ideal dataset for ZTF s/g separation 3π , 5 filters (red coverage very important), deep, high quality

HST training set > SDSS training set Less biased

Model optimized for LIGO follow up FoM = TPR @ FPR = 0.005 (we can provide you with alternate thresholds)

70% of stars removed while rejecting only ~0.5% of galaxies