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Overview Solid inculcated work
Various individual projects
Ongoing challenges

Future challenges




Solid inculcated work

Real-Bogus continues to work well
ZStreaks also stable
Comet finding working

ACAI filters (e.g. nuclear-ness of transients) working

Retraining/updating will still be useful



ZTF DeepStreaks
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Figure 2. Decision logic used by DeepStreaks to identify plausi-
ble streaks. The problem is split into three simpler sub-problems,
each solved by a dedicated group of classifiers assigning real vs.
bogus (“rb”), short vs. long (“sl”), and keep vs. ditch (“kd”) scores.
At least one member of each group must output a score that
passes a pre-defined threshold. See Section 2.1 for details.

CNNs

(a) Bad subtraction

(b) Cosmic ray

(c) “Dementor” (d) “Ghost” (e) Masked star

(f) Satellite trail

Duev, Mahabal, ... arXiv:1904.05920



Filling the gap between ZMODE and ZStreak
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Various other projects

Extra-Galactic
Supernova la (Fremling++)
Supernova non-la (Sharma++)
SNGuess (Miranda++ - AMPEL)
AGN (Graham++)

Solar System
Atiras/Vatiras (Bolin++)

Rotation Periods

Galactic
SCoPe 20 fields (Van Roestel et al.)
Tools/general
ZARTH
GPRs (Sravan)
Anomaly detection (DBSCAN, IsoF)
Classification (Dist. metrics, transformers)

Interpretability



From Photons to TNS
SEDM Spectral Classifier

Fremling++
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Yashvi Sharma++

Unbalanced non-la classes
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SNGuess

Magnitude of last detection
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Uses public alert data
Feature based
XGBoost

Allows few data points

Incorporated into AMPEL

Nicolas Miranda et al.



Rapid automatic spectral modelling of Type la Supernovae
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Identifying outliers in thermonuclear supernova samples

Pilot novelty detection in absolute
magnitude vs light-curve width (SALT2
X1 parameter) - led by Nathan
Simoncini (TCD)

Methods - Robust covariance, SVM,
Isolation Forest

Next steps: include host galaxy
environment parameters, colour

Adapt to work on full light curves

Nathan Simoncini (Trinity College Dublin)
via Kate Maguire
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Technical infrastructure - and challenges

Gloria Caltech machines
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Labeling systems etc.
Retraining and inferencing


https://www.xsede.org/

ZARTH (ZTF Augmented Reality Transient Hunter)
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Prof. Arnav Bhavsar (IIT Mandi), Manhas, Shrikha, Adithya



Summary

More partnership wide collaborations will add strength

ZTF-lll - archives/stats - hence ML

Tool-box

Over to Michael Coughlin and Niharika Sravan



