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- SHOCK WAVES IN WHITE DWARFS
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In more recent years, the possibility of He shell detonations in systems with dynamically stable mass
transfer from a He WD donor was considered (Bildsten et al. 2007; Shen & Bildsten 2009; Shen et al.
2010; Kaplan et al. 2012). Because the resulting accretion rates are higher, the accumulated He shells

at the onset of He-burning are 10-100 times less massive than in the non-degenerate He donor

scenario. While subsequent work on double detonations predicted that even these small He shells
would adversely affect observations (Fink et al. 2007, 2010; Kromer et al. 2010; Sim et al. 2010;
Woosley & Kasen 2011), more recent multi-dimensional work allowing for post-shock radial

expansion in the He layer suggests that He-burning will be truncated before significant production of
IGEs (Townsley et al. 2012; Holcomb et al. 2013; Moll & Woosley 2013; Moore et al. 2013). A large
amount of C/O pollution in the He layer, either dredged up from the core or produced during a phase
of convective He-burning, may also prevent overproduction of IGEs (Kromer et al. 2010; Waldman
etal. 2011).




Numerical Methods — Castro
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Double Detonation - 0.76 M., WD w/ 0.15 M. He
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‘Spectra at Early Excess
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A Massive Helium-shell Double Detonation on a
Sub-Chandrasekhar Mass White Dwarf De etal. 2019
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K10 0.81 M, 0.13 M, P18 0.76 M, 0.15 M, 0.2 M,
K10 0.92 Mg, 0.08 M, —— P18 0.7 Mg, 0.15 My, NM

P18 0.80 M, 0.15 My, NM —— P18 0.8 M, 0.08 M, NM

P18 0.76 M, 0.15 M, NM @ ZTF18aageasu
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SN2018byg (ZTF18aageasu)

0.76 M WD w/ 0.15 M. Shell
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Light Curves - (g-band)
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Thin Shells - Peak Spectra - 0.01 M- He
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Subluminous (91bg-like) SNe la
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Thin Shells — 0.01 M¢ He
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Thin Shells — 0.01 M¢ He
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Carbon |l in SNe la

Polin et al. (2019) - Carbon burns really well:
1991bg-like models yield 0.001 M o

Normals: 1t 1s 10A-5 M, or lower.
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A greater frequency of C 11 A6580 absorption features appears in the LVG subtypes compared to HVG
events. This is in line with the interpretation of Maeda et al. (2010b), supporting the idea that part of

SN Ia diversity can be accounted for by viewing angle and off-center ignition effects.

Parrent et al. 2011
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Using a new sample of 24 SNe Ia obtained by PTF with at least one spectrum before -10d with respect to

maximum, we find that ~40 per cent of SNe Ia at these early phases have a clear detection of C11 65804 in

their spectra. If we include ‘absorption?’ detections and ‘flat’ profiles, we find that as much as ~55 per cent
may have C present. However, ~25 per cent of SNe Ia show no clear detection of C11 in their spectra when
observed at these early phases.

Maguire et al. 2014
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Just starting the work with the
PTF dataset...

rates could be done with ZTF
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