ZTF Solar System Working Group

Bryce T. Bolin, Dennis Bodewits, Chan-Kao Chang, Kunal Deshmukh, George Helou, Wing-Huen Ip, Michael S. Kelly, Emily Kramer, Zhong-Yi Lin, Frank Masci, Tom Prince, Quanzhi Ye

Berlin ZTF Group Meeting March 2020

NEO Discovery (Bolin, Helou, Kramer, Masci, Prince)

156 NEOs discovered to date

- ZMODE: detection of point-like moving object
 - Main-belt asteroids; distant NEAs; comets

Masci et al. 2019

- ZSTREAK: detection of fast-moving objects (streaks)
 - Asteroids less than 0.01 au (~5 lunar distances) from the Earth
 - Also detect a lot of artificial satellites (a few dozens a night)
 - The new DeepStreaks algorithm reduced the false positive rate by 100x (thank you Dima Duev and Ashish Mahabal!)

Ye et al. 2019, <u>Duev</u> et al. 2019

ZSTREAK Objects

ZTF in Numbers

- Discoverer of Small NEOs/ small miss distances
 - A. Mean H 24.5 28.0
 - B. Miss distance 0.001 0.01 au

NEO follow-up with GROWTH-India Telescope (Kunal)

Operated by IIT Bombay and IIA

0.7m fully robotic telescope with 0.5 deg² field of view

Reaches magnitude 20 in 500 seconds

Capable of detecting main-belt asteroids as well as NEOs

Non-sidereal tracking tested successfully and in place to assist in NEO discovery

Detection of main-belt asteroid 354030 in a 500 sec exposure

ZTF Observations of interstellar Comet 2I/Borisov

pre-discovery/post-discovery observations indicate activity driven by H₂O and CO (Bolin et al. 2020, Ye et a. 2020)

Discoverv of the first Interior to Venus Object (IVO)

First known IVO discovered by ZTF on January 4, 2020. Entirely located within the orbit of Venus with aphelion = 0.65 au Found in evening twilight during the Twilight survey

ZMODE completeness

Peak completeness is ~87%, comparable to the fill factor of the ZTF camera.

Lightcurve analysis of comet 240P/NEAT

Published: Kelley et al. 2019, ApJL.

The comet has had a repeated brightening event after it's perihelion distance decreased in 2007 from 2.5 to 2.1 au.

The comet brightens by a factor of ~6 about 180 days after perihelion.

An independent event ~270 days before perihelion in 2018 may be related.

Rubin Observatory/LSST should observe the pre-perihelion event in the next orbit, if it repeats.

Possible fragment swarm at comet 29P?

Announced: Kelley et al. 2019, ATel #13164.

Most outbursts of this comet show a propagating arc (right).

In Sep. 2019, temporal differencing of ZTF images showed a small condensation moving ≤1"/day, suggesting a fragment cloud such as seen at comet 73P.

An initial examination of follow-up imaging with *Hubble* did not reveal any fragments. A final analysis is pending.

Possible fragment swarm at comet 29P?

Announced: Kelley et al. 2019, ATel #13164.

Most outbursts of this comet show a propagating arc.

In Sep. 2019, temporal differencing of ZTF images showed a small condensation moving ≤1"/day (upper right), suggesting a fragment swarm such as seen at comet 73P (lower right).

An initial examination of follow-up imaging with *Hubble* did not reveal any fragments. A final analysis is pending.

Credit: NASA, ESA, Weaver, Mutchler and Levay