ZTF Science Data System Update

Frank Masci & the Caltech-IPAC ZTF Team

Presented by David A. Imel

ZTF Team Meeting, Stockholm, August 2018

Contents

- Schedule
- Recent Accomplishments
- Pipeline Development Status
- Alerts

- Coverage and Data Holdings
- Pipeline Performance
- On-Sky Performance
- Issues / To-Do

ZTF Data System Timeline

- Although ZTF Survey Operations started March 17, the Data System is currently in the "DS Verification" stage:
 - Pipeline tuning based on on-sky data
 - Accumulation of epochal images for reference images.
- DS Verification will complete in September 2018.
- Major additional task injected to the Verification phase: Alert Production.

Recent Accomplishments

(Since Last ZTF Team Meeting, March 2018)

Pipeline

- ALERTS: Implemented—described later in this talk.
- Ghost prediction and masking (both co-moving and counter-moving types)
- Automated reference-image generation: addressing issues described in this talk.
- ZSTREAK: Optimized Fast-Moving Object (streak) detection pipeline
- ZMODE:
 - Optimized Moving Object detection pipeline that links events to create tracklets
 - More accurate reporting of known asteroids and comets to associate with alert streams and *ZMODE* output

QA & Data Products

- Better real-time reporting of QA metrics, pipeline status and failures for Observing System team
- All ancillary file products now downloadable through GUI
- Lightcurves (Matchfiles):
 - Products from linking epochal image extractions now routinely made
 - Products containing only partnership data now also made
 - Query GUI and Time Series Visualization Tool now ready for partnership
- Data System documentation up to date; paper submitted to PASP

Lightcurve retrieval GUI / Time Series Tool

Now available through IRSA (https://irsa.ipac.caltech.edu/Missions/ztf.html). See talk by Emmanuel Joliet on Tuesday.

Development Status

Architecture

Data Flow

DS Development Status

Component Group	DS Component	Status 2017-05	Status 2018-08	Notes
Transfer	Data Transfer Software Protocols from P48 to IPAC	100%	100%	
	Ingest, CCD quadrant-splitting, floating bias correction	100%	100%	
	Calibration generation: biases, high & low-v flats	100%	100%	
	Insrumental calibration (astrometric & photometric)	100%	100%	
	Reference image generation (co-addition)	100%	100%	
Pipeline	Source-matching & photometric corrections for lightcurves	100%	100%	
	Transient event discovery	100%	100%	
	Machine-learned vetting of transient events	0%	100%	ML Module integrated. Parameters being tuned.
	Pipeline executive: job scheduling/task orchestration	30%	100%	Completed by start of commissioning
	Throughput testing: algorithm & cluster optimization	5%	100%	Completed by end of commissioning
	Image and catalog file product server	30%	100%	Completed by start of survey operations
Archive	Lightcurve retrieval service w/metadata	5%	100%	Completed July 2018
	Event metadata	100%	100%	
	Stamp-image cutouts	100%	100%	
Depot	Pipeline QA metrics	100%	100%	
	User access/server setup	0%	100%	Completed by start of commisioning.
Alerts	Transient alert distribution infrastructure & interfaces	2%	100%	Alerts generated and available for brokers starting June 4, 2018.

Baseline Deliverables (1/2)

- 1. Instrumentally calibrated, <u>readout-quadrant based</u> epochal image products:
 - images with photometric zero-points from PSF-fit photometry; bit-mask images; PSF templates
 - two source catalogs per image: PSF-fitting and aperture photometry
 - difference images, accompanying PSFs and QA metadata
 - Archived at IPAC. Accessible via GUI or API; can interface with Moving-Object Search Tool
- 2. Raw image data (CCD-based files with metadata) and image calibration products used in pipelines
 - > Archived at IPAC. Accessible via GUI or API.
- **3.** Reference images (co-adds), coverage, unc maps, and two source catalogs per image: PSF-fitting and aperture
 - > Archived at IPAC. Accessible via GUI or API.
- **4. Alert (point-source event) stream** from real-time image-differencing pipeline: packetized with metadata, 30 day photometric histories, upper limits, ML-scores, provisional names, cutouts on new, reference and diff images, ...
 - Mirrored at UW using Kafka; access is through specific program ID channel
- 5. Products to support Solar System / NEO discovery and characterization:
 - streaks (fast moving objects) from difference images: metrics, ML-scores, and cutouts
 - moving object tracks from linking point-source events; known objects are tagged
 - Available at ZTF-depot webserver (restricted audience)
 - Moving object metadata (ephemeral astrometry & photometry) delivered to IAU MPC

Baseline Deliverables (2/2)

- 6. Quality assurance metrics, summary statistics, and coverage maps for performance monitoring
 - Available via ZTF-depot webserver (restricted audience)
- **7. Matchfiles: all lightcurves per readout-quadrant:** from source-matching of epochal PSF-fit extractions
 - Available, but restricted (galactic marshal)
- 8. Service to query lightcurves & metrics using "object-based" position searches, extracted from matchfiles
 - ➤ Archived at IPAC. Accessible via GUI or API; can interface with time-series viewer/analyzer with period estimation
- Data System Documentation: pipeline descriptions, recipes, and tutorials on data-retrieval
 - > Progressively updated; paper submitted to PASP.
- 10. ZTF Public Website:
 - > http://www.ztf.caltech.edu
 - Designed by IPAC Communications and Education (ICE) team
 - Updated by project team members with privileges

Alerts

Alert Packet Distribution

• The ZTF Data System at IPAC generates alerts, which are available via its Kafka Node, and are also archived at IPAC.

Alert filtering and RB-score distributions

Below are distributions of *RB* score for difference-image-detected events from only the **public survey** from three recent nights (more on this in next presentation).

Alerts: Activities and Accomplishments

- Infrastructure and software for distributing Alert Packets: includes Kafka; hardware; UW interfacing.
 - ➤ Interface tuning drastically improved event-writing speed to Kafka.
- Alert packet schema and contents stabilized following feedback from science working groups.
- R&D on filtering of difference-image events for alert packets to mitigate obvious false-positives.
- Improved quality of differential photometry in alert packets with meaningful uncertainties.
- Solved depth-issue for alerts generated from deeper (300 sec) exposures to support ToOs.
- Refinements to PS1 Star/Galaxy scores for associating with alerts.
- Long-term archiving of alert packets at IRSA now subject to same user/programID access policies

Coverage and Data Holdings

Sky coverage: all programs Mar 17 (science ops start) – Jul 11, 2018

Sky coverage: public only Mar 17 (science ops start) – Jul 11, 2018

Accumulated data volumes and statistics Mar 17 (science ops start) – Jul 11, 2018

Exposure Metric	g	r	i
Raw on-sky	25,149	27,403	2,126
Survey-ready quadrant- based reference images	10,205	17,675	1,001
Lightcurve matchfiles	5,708	13,848	233
Epochal science image products archived (all CCD quadrants)	3.2M (238 TB)		

Extraction Metric	Number
Epochal science image PSF-fit extractions	45 B
Epochal science image aperture-based extractions	27 B
Reference image PSF-fit extractions ("seeds" for lightcurves)	1.3 B
Reference image aperture-based extractions	0.4 B

Event Metric	Number
Raw candidate events from all difference images	+ 46M – 22M
Alert packets generated from difference images	+ 11M - 7.8M
Alert packets associated with known solar system objects (≤3 arcsec)	447K
Streaking objects not associated with known objects	13
Streaking objects associated with known objects	>5K
Moving object tracklets not associated with known objects, delivered to the MPC	1,724
Moving object tracklets associated with known objects, delivered to the MPC	>300K

Pipeline Performance

ZTF real-time pipeline runtime processing unit = one readout-quadrant image

Most exposures in this night were at high Galactic latitude

- 66 machines × 8 jobs each
- Based on fields processed on night of March 9, 2018 (UT)
- High tail: with image-diff pipeline, alert generation etc. since ref images were available: <~ 4 minutes
- Low tail: science image processing only (no ref images available): <~ 2 minutes

11

ZTF real-time pipeline runtime processing unit = one readout-quadrant image

~ 40% of exposures in this night were in dense galactic plane fields

- Based on fields processed on night of July 13, 2018 (UT)
- Reference images were available **for all** quadrants
- 95th percentile in runtime for entire night is ~14 min per quad
- A few % of exposures in deep-drilling fields exceed 20 min.

Galactic-plane deep-drilling fields

On-Sky Performance

Absolute Astrometric Performance

Astrometric precision of bright stars with r, g < 18 mag at airmass < 1.2 is <~ 30 milliarcsec (RMS per axis).

astrometric RMS versus g-filter magnitude

Accuracy for sources with S/N > 10 (g, r < 20 mag) at airmass < 2 is $<^{\sim} 65$ millarcsec. astrometric RMS along Dec, g-filter

Photometric Precision (Repeatability)

- From matching epochal PSF-fit source catalogs: typical range is ~8–20 millimag; depends on airmass.
- 5- σ limiting depths are consistent with expectations and photometric uncertainties in PSF-fit catalogs.

Photometric calibration check

Following calibration, magnitude dependent biases of < 0.03 mag are still seen in PSF-fit and aperture-based catalogs with respect to Pan STARRS1. This is variable across fields.

These are from quadrant-based PSF-fit catalogs; all in the galactic plane ($|b| < \sim 8^{\circ}$)

Issue: Image Subtraction Quality

- Some survey fields in the Galactic plane present a challenge for automated image subtraction.
- Usually occurs when large variations in background/sourcedensity are present – related to gain-matching.
- 30 fields have been identified where several quadrants therein repeatedly give bad subtractions.
- Currently, as a stop-gap, we do not plan to generate alerts from these quadrants if the number of raw events is > 500.
- The per-event (single-epoch-based) RB scores are not effective here; these events are all PSF-like.
 - > We advise examining the lightcurves from merged alert packets (or histories therein) to weed out false events.

Example of "reasonable" (usable) subtraction from a Quadrant in field 331 that yielded a few **real** events.

Example of a "bad" subtraction from another quadrant in the same field that yielded thousands of false events.

Issue: Reference Image Coverage

Quadrants with N ≥ 15 archived science images	22,366 (g)	29,869 (r)	7521 (i)
Current Reference Images (2018-07-16)	10,610 (g)	17,876 (r)	1006 (i)
Reference Images with new provisional cuts	16,815 (g)	26,083 (r)	5242 (i)

- **Problem diagnosed:** the criteria used to select good quality science images for reference-image generation were too tight.
- We will regenerate all references to a higher uniform depth following this meeting (40 images deep).
- Issue will be discussed further by Russ Laher on Wednesday.

```
obsdate \geq 2018-02-05

1.75 \leq FWHM \leq 4.5

25 \leq ZP \leq 27

0.02 \leq color\_coeff \leq 0.15

maglim \geq 19 mag

global_median \leq 1000 DN

robust_spatial_rms \leq 80 DN
```

Example (r-filter) of new provisional cuts for generating reference image.

To-Do

In progress, for end Sep'18:

- Improve subtractions in challenging fields in the Galactic plane
- Regenerate reference images to higher (uniform) depth to support LIGO / Virgo runs in October 2018
- Automated generation of all-sky coverage maps for reference images
- Synopsis of reference image holdings
- Enable image-cutouts on archived (compressed) difference images – IRSA service (now available for

other images)

Ongoing / as-needed:

- Continued refinements to point-source and streak real-bogus classifiers
- Improved Star/Galaxy classification scores for PS1 to associate with alert streams
- Transition to Gaia DR2
 (for both astrometric calibration and alert association)

Approved, not yet scheduled:

- Correct dome flats for edge / scattering / CCDetching effects prior to stacking
- Star-flat assessment and application (pending DESY group input)
- Exposure-time correction map (flat augmentation, ~0.2% at edges)
- *i*-filter fringe correction (pending DESY group input)

Real-Time ZTF DS Dashboard In-Prep

Requests We've Received

These are subject to review and approval by the ZTF Data System Change Control Board, Matthew Graham, Chair

- Forced photometry service using image archive: would implicitly include more accurate estimation of upper-limits for non-detections. (Prohibitive in production.)
- Simulated transient injection pipeline and infrastructure
- Sentinel service (for monitoring targets of interest using archived products)
- Set-up of "sandbox" environment for analysis, testing, and prototyping; pending MOU on usage/data-access

Reference Material

In Closing ...

- A number of limitations and deficiencies have been identified and are well understood
- Please continue reporting possible issues to the Project Scientist. We will explore if it is a "feature" or a bug
- It is in our best interest to document these as "cautionary notes" for the community
- The Data System staff value your feedback!

ZTF Pipelines and run frequency

Overall, there are 9 interdependent pipelines, grouped into four categories.

- All implemented and tested on simulated camera-image data; some pipelines also tested using real camera data.
- All baseline archival products, formats, and methods for access are finalized.

Raw data ingestion and initial processing:

- 1. Raw data ingest, archival of raw images and storage of metadata in database [realtime]
- 2. Raw-image decompression, splitting into readout-quadrant images, floating bias correction, QA metrics [realtime]

Calibration-image generation:

- 3. Bias-image derivation from stacking calibration images acquired in afternoon [before/after on-sky operations]
- 4. High-v flat (pixel-to-pixel responsivity) from stacking illum. flat-screen exposures [before/after on-sky operations]

Real-time science-level processing:

- 5. Instrumental calibration of readout-quadrant images: includes astrometric and photometric calibration [realtime]
- 6. Image-subtraction with transient-event extraction (point sources & streaks), alert packets & distribution [realtime]

Ensemble-based (collective-image/catalog) processing:

- 7. Reference-image generation (co-addition of epochal images from 5) [when sufficient good quality data available]
- 8. Source-matching/lightcurves with relative photometric refinement; inputs from 5 & 7 [every month, TBD]
- 9. Moving object tracks, orbit-fitting, QA; from linking point-source events from 6 [end of night, 3-4 day window]

ZTF Lightcurve Pipeline (matchfile creation)

- All sources detected in epochal images are matched against the reference-image source catalog for a given field, CCD quadrant, and filter
- The "cleanest" least variable sources are used as anchors for the relative photometric calibration
- Individual image gain-correction factors are computed using a global least-squares fit across all epochs
- These gain-corrections are applied the image photometric zero-points
- The refined zero-points are expected to improve relative photometry to a few millimag for bright sources
- This pipeline will be triggered on timescales of typically one month (TBD), contingent on data accumulated
- All lightcurves for a single CCD quadrant and filter are stored in a "matchfile" (hdf5 pytable format)
- Accompanying each lightcurve is a set of >100 metrics: RMSs, Skews, Stetson indices ...
- All lightcurves and metrics are seeded by an object ID; these objects are loaded into a database to support spatial searches; associated lightcurve is retrieved from the "matchfile" containing that object position
- Expect of order 1.3 billion objects (individual lightcurves) for ZTF
 - There will be multiple (disjoint) lightcurves per object due to the two overlapping science grids
 - > There is no plan at present to splice lightcurves belonging to the same object

Data Access / visibility policy

- Observing time during science operations will be split between three categories:
 - ➤ **Public** (NSF-funded MSIP survey: 40%)
 - > Private collaboration (40%)
 - **Caltech TAC** (20%)
- Managed per exposure (epoch) using a *programID* propagated from scheduler to raw-image metadata
- Private/Caltech observers can access their data in near-realtime, soon after archive ingestion. This includes all calibration products and lightcurves from epochs tagged by their respective *programID*s queried via archive GUI.
- Public data will only be available at the public release times for general access by all.
 - raw images, processed epochal images, accompanying source-catalog files, difference images
 - > reference images and catalog files
 - > lightcurves constructed from public epochal data only
 - > calibration data products
- Public alert packets (triggered from events detected in public exposures) will only contain public data. This includes their 30 day event histories.
- Private alert packets (triggered from events detected in private exposures) will contain public data in their 30 day event histories.
- Caltech alert packets (triggered from events detected in Caltech exposures) will contain data from all three programs in their 30 day event histories.
- No restriction on input data used to generate products for Solar System science: streaks & moving-object tracks; selected (human-vetted) products will be delivered to MPC.
- No restriction on input data used to generate reference image (co-add) products.
- No restriction on input data used to generate source match-files (lightcurve files):
 - MOU in place with the only customer of these products: Galactic Marshal
 - 20/18-0 only privately-tagged and already_released_public_data_therein_to_be ingested by Marshal

Reminder on documentation

• **Primary document:** design, deliverables, product usage and access, cautionary notes, performance;

Linked from ZTF public website under:

https://www.ztf.caltech.edu/page/technical#science-data-system

- **Science Data System paper** (high-level overview); submitted to PASP: http://noir.caltech.edu/twiki_ptf/bin/viewfile/ZTF/ZtfPapers?rev=8;filename=zsds.pdf
- Archive access and services:

https://irsa.ipac.caltech.edu/Missions/ztf.html

• Public alert archive and usage:

https://ztf.uw.edu/alerts/public/