WICKY TRANSIENT FACILITY

Reference-Image Coverage

Russ Laher, IPAC Caltech On behalf of Frank Masci and the ZTF collaboration

Zwicky Transient Facility Team Meeting AlbaNova University Center Stockholm, Sweden

August 6-10, 2018

		P48		
Realtime		Ingest	Raw Images	
	Bias, flats, PS1, Gaia	Instrumental Calibration	Epochal Science Images, Catalogs, PSF	
	Reference Images, RealBogus	Image Differencing & Event Extraction	Difference Images, Alerts, Streaks	ZTF Alerts
Daily		Moving Objects	Tracks	Minor Planet Center
		Reference Image Generation	Reference Images & Catalogs	
Monthly		Source Matching	Matchfiles, Lightcurves	(Created by Ben Rusholme)

Overview

- Issue: Missing reference images
- Current input selection criteria
 - Astrometric
 - Photometric
 - Image quality
- Proposed looser selection criteria
- Current sky coverage

Number of Remaining Fields and CCD Quadrants after applying Selection Criteria

Seeing of Good Science Images for Available Filters

Background Level of Good Science Images for Available Filters

Data Dispersion of Good Science Images for Available Filters

PS1 Zero Point of Good Science Images for Available Filters

PS1 Color Term of Good Science Images for Available Filters

Limiting Magnitude of Good Science Images for Available Filters

Proposed Loosened Selection Criteria: R-Band

- Observation date >= 2018-02-05 (same)
- $15 \le N_{\text{stack}} \le 40$
- 1.75 <= FWHM <= 4.5 arcseconds (was 2-3.5)
- 25 <= Zero Point <= 27 (was tighter)
- 0.02 <= Color Term <= 0.15 (was narrower)
- Magnitude limit >= 19 mag (was fainter)
- Global median <= 1000 DN (was 500)
- Robust spatial RMS < 80 DN (same)

Sky Coverage of Ref. Images: g band

Sky Coverage of Ref. Images: R band

Sky Coverage of Ref. Images: i band

Summary

- We have recently realized that the selection criteria for reference-image inputs is too tight, and the sky coverage of the reference images could be increased
- We are experimenting with new looser selection criteria for reference-image generation (g, R, and i bands)
- A new set of reference images could be generated soon after this meeting (40 images deep), depending on both the test results from our experimentation and a policy decision to do so
- This would raise the total number of reference images from ~31K to ~51K field/quadrants (a 65% increase in number for all bands)
- It would require 15-30 hours on 66 machines (4 field/quadrants per machine)
- Also: Need new observations of fields with insufficient coverage!

BACKUP

Number of Reference Images versus Readout Channel

Runtimes for Survey-Ready Reference-Image Pipelines (7/30/18)

A Day in the Life of ZTF (assuming good-observing weather)

Method of Estimating Magnitude Limit From Frank Masci

A good semi-empirical estimate of the point-source magnitude limit can be obtained from:

```
mlim = zp - 2.5 * log10[ snr * sigmapix * sqrt(Np) ],
```

where:

zp = photometric zeropoint

snr = desired signal-to-noise limit, e.g., 5.

sigmapix = a _robust_ estimate of the background RMS per pixel (tricky in confused regions and/or with large background gradients but possible if computed over a grid).

Np = the "number of noise pixels" defining the observed PSF, i.e., the "effective footprint" of a point source. For a Gaussian-like profile with FWHM in pixels, Np = 2.226*FWHM^2.

The above assumes that close to mlim you're background dominated (i.e., not source-photon dominated) and that the pixel noise is not significantly correlated.

Processed-Image Infobits

```
BIT00 =
                 0 / MEDIAN BACKGROUND LEVEL is > 4000.0 DN
BIT01 =
                 1 / ROBUST PIXEL NOISE (RMS) is > 100.0 DN
                 2 / PERCENT OF SATURATED PIXELS is > 50.0%
BIT02 =
                 3 / IMAGE SEEING (FWHM) is > 5.0"
BIT03 =
BIT04 =
                 4 / MAGLIM FROM PSF CATALOG UNCERTS is < 17.5 mag
BIT05 =
                 5 / MAGLIM FROM EMPIRICAL FORMULA is < 17.5 mag
BIT06 =
                 6 / NUMBER OF PSF CATALOG SOURCES is < 10
                 7 / NUMBER OF SEXTRACTOR CAT SOURCES is < 20
BIT07 =
BIT08 =
                 8 / PHOTOMETRIC CALIBRATION NOT POSSIBLE
BIT09 =
                 9 / NUMBER OF PHOTOMETRIC CALIBRATORS is < 30
BIT10 =
                 10 / NUMBER OF MATCHES FOR PHOTOMETRIC CAL < 5
                 11 / RMS in PHOTCAL RESIDUALS (ZPs) is > 0.2 mag
BIT11 =
BIT12 =
                12 / ASTROMETRIC CALIBRATION NOT POSSIBLE
                13 / PCT OF REF-CAT MATCHES FOR ASTROM is < 20%
BIT13 =
BIT14 =
                14 / NUMBER OF MATCHES FOR ASTROM CAL is < 100
BIT15 =
                15 / MIN NUM OF IN-GRID MATCHES FOR ASTROM is < 5
BIT16 =
                 16 / REL-PIXEL SCALE OUT OF RANGE: -0.20% - 2.00%
BIT17 =
                17 / PCT CHANGE IN SCAMP CHI-SQUARE is > 0.0%
BIT18 =
                18 / CHI-SQUARE FROM SECOND PASS SCAMP is > 30
                 19 / MAX IN-GRID MEDIAN ASTROM RESID is > 0.7"
BIT19 =
BIT20 =
                20 / PSF CREATION (HENCE PSF-FIT PHOT) NOT POSSIBLE
                 21 / PCT OF DETECTED MATCHES FOR ASTROM is < 50%
BIT21 =
```

Astrometric Calibration

- Scamp is run twice:
 - Pattern-matching with assumed prior distortion and allowed 6.5 arcminutes of positional uncertainty
 - 2. Distortion refinement of 4th-order polynomial with pattern-matching shut off
- Astrometry is declared good when:
 - Chi^2 after second pass is lower than after first pass
 - Chi² <= 30 after second pass</p>
 - At least 50% of the SExtractor detections are matched
 - At least 0.2% of the Gaia-catalog sources are matched
 - Minimum number of matches = 100
 - At least 5 matches in each of 9 sub-images
 - Median radial RMS <= 0.7 arcseconds in all 9 sub-images
 - Delta pixel scale in [-0.2%, 2%] range