ZWICKY TRANSIENT FACILITY

Observing System Update

Richard Dekany 20 May 2016 University of Maryland

Outline

- ZTF Observing System Overview
 - System Capabilities
- ZTF Program Status
- ZTF Technical Status
 - Detectors and Electronics
 - Cryostat
 - Optics
 - Filter Exchanger
 - Exposure Shutter
 - Instrument Software
 - Telescope Modifications
- ZTF Data System Status (Frank Masci's talk)

ZTF SYSTEM OVERVIEW

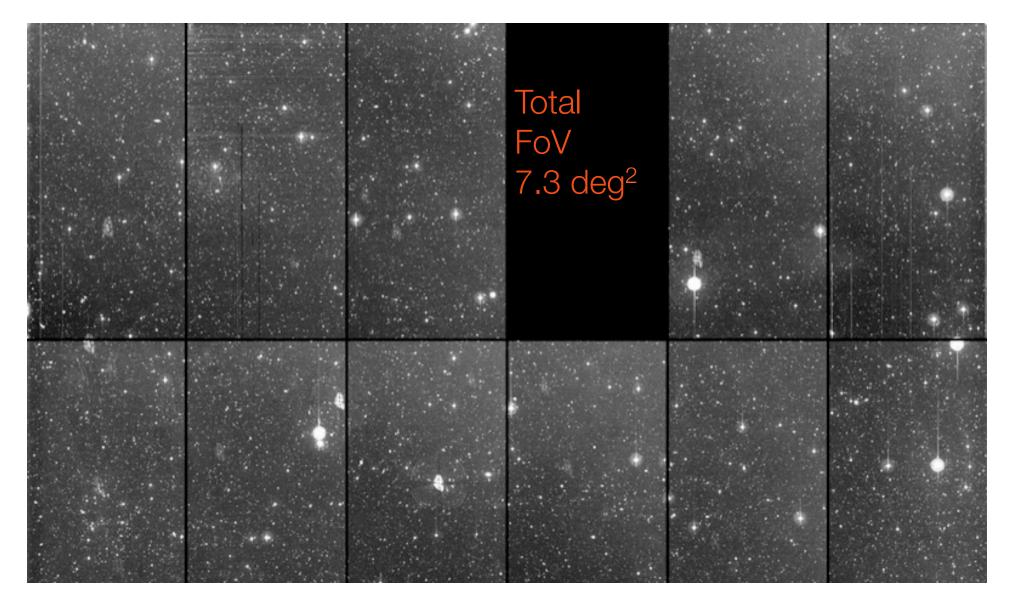
3

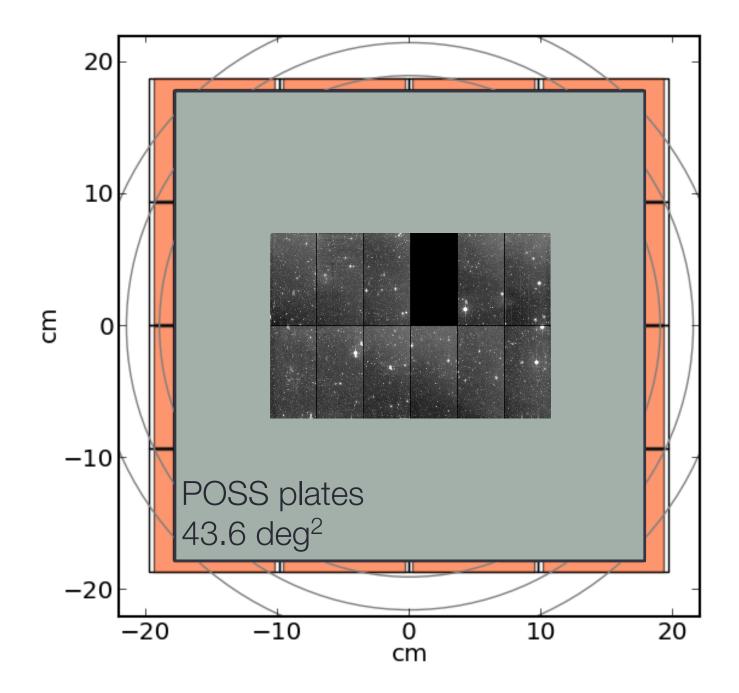
Zwicky Transient Facility

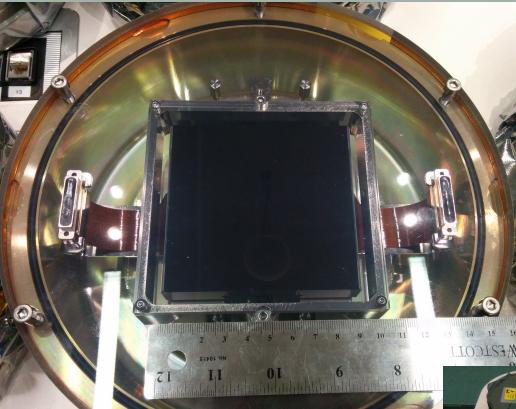
(Palomar Mountain)

P60: Follow-up

P200: Classify


ZTF builds on success of PTF / iPTF


- Retain PTF strategy of a wide-field survey:
 - Limited filter set
 - High cadence
 - Sophisticated data pipelines
 - Deep follow-up capabilities
- Enable new parameter spaces
 - Increase volumetric survey speed
 - Spatial volume within which a transient of fixed absolute magnitude (-19) can be detected, divided by (exposure + overhead time) – E. Bellm
 - Roughly proportional to transient detection rate


ZTF builds on success of PTF / iPTF

- Increase volumetric survey speed
- To do this:
 - Increase field of view
 - Maintain spatial sampling
 - Maintain transient magnitude limit m_{apparent} = 20.5 suited to follow-up
 - Aperture, delivered image quality, sky background, detector QE and noise, optical transmission
 - Increase observing efficiency
 - Readout overhead, telescope slew, dome slew, windscreen
 - Increase productivity
 - Transient pipeline and data archive, *much* larger data processing and storage, flat-field screen

For all its success, PTF is small!

e2v CCD231-C6

dimension	9.2 x 9.2 cm
pixels	6.1k x 6.1k
pixel size	15 micron
pixel scale	1"/pixel
outputs	4

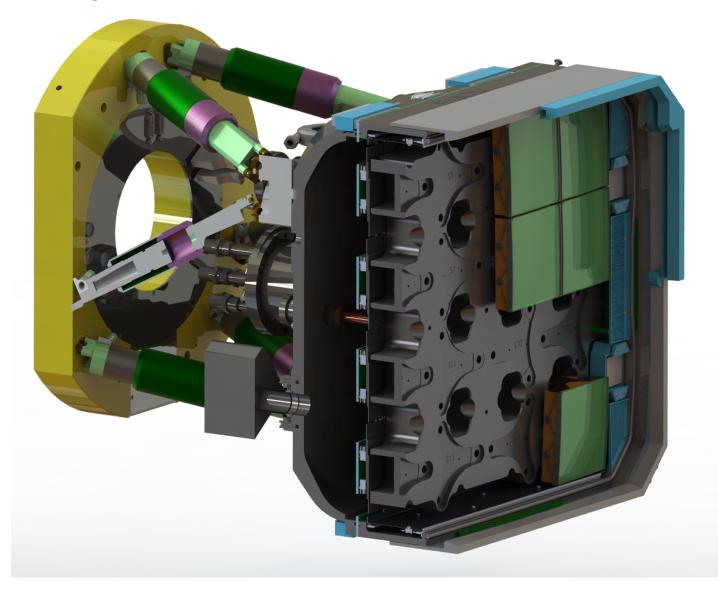
16 ZTF CCDs delivered (plus one more for P200 WaSP camera)



ZTF will reduce readout overhead compared to PTF

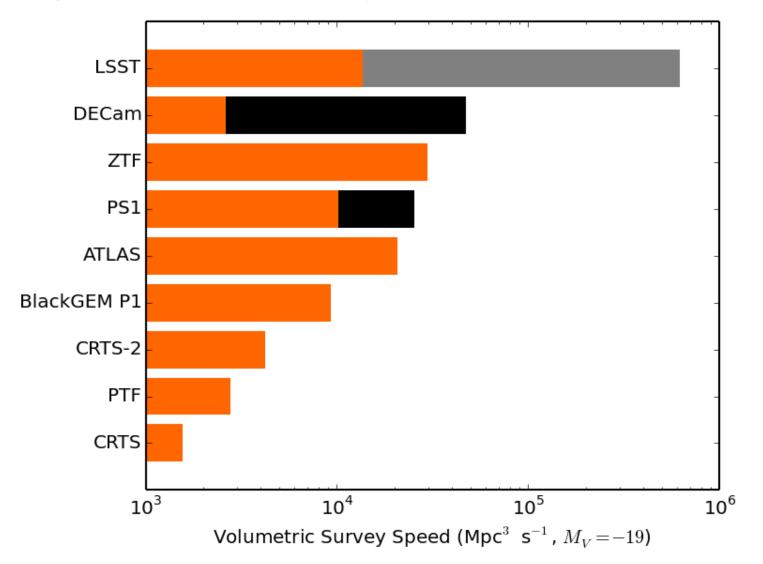
2000-era Leach Gen-II controller 36 second readout of 96 Mpx

ZTF


2014-era STA Archon 10 second readout of 576 Mpx (tested so far @ ~20 sec read)

ZTF surveys order-of-magnitude faster than PTF

	PTF	ZTF	3800 deg²/hour \Rightarrow 3π survey in 8
Active Area	7.26 deg ²	47 deg ²	> 250 obs/field/year for uniform
Overhead Time	46 sec	<15 sec	
Optimal Exposure Time	60 sec	30 sec	
Relative Areal Survey Rate	1x	14.7x	
Relative Volumetric Survey Rate	1x	12.3x	
	PT 11	F 2k x 4k S	TTE CCDs


 π survey in 8 hours, for uniform survey

ZTF cryostat and hexapod model

ZTF will lead

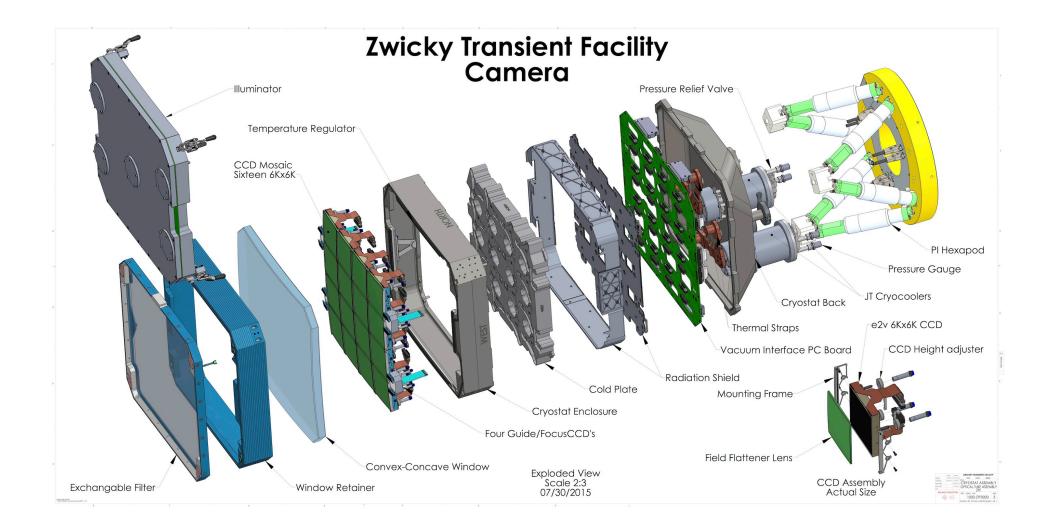
finding spectroscopically-accessible transients

ZTF STATUS

14

ZTF Program Status

- Technical progress
 - ZTF development is ~58% complete (by work-effort)
 - Observing System is 67% complete
 - All subsystems except filter exchanger are in I&T phase
 - Data System is ~35% complete



- Total project budget \$18.1M (including 30% contingency goal)
 - Expenditure through Mar '16 is \$8.2M
 - Revenue to date is \$14.4M (\$8.9 NSF + \$5.5M partner funding)
 - In-hand cash balance ~\$6.0M
 - Carried management contingency on remaining technical effort is 17% (up from 12% in Jan '16)
- ~ 22 full-time equivalent staffing (COO, IPAC, DESY)
- Current schedule
 - Expected decommissioning of iPTF Mar '17
 - Metrology tests of ZTF cryostat focal plane Apr '17
 - "First Light" of ZTF cryostat Jun '17
 - Beginning of survey operations (e.g. end of dev team activities) ~ Aug '17

ZTF Observing System Development Status

- Science CCDs not yet installed or operated; WaSP operational
 - Guide/focus CCDs expected Jun '16; CCD I&T fixturing complete
- Electronics
 - CCD electronics tested; vacuum I/F board tested
- Cryostat mechanically assembled, vac & thermally tested

Exploded view of camera

17

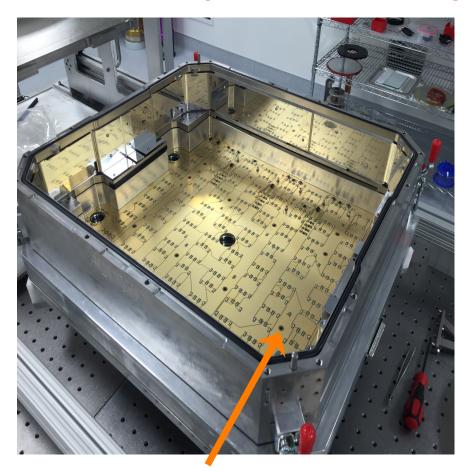
ZTF cryostat coolers and thermal links

Backplate with installed cryo-coolers, charcoal getters, thermal links (and installation posts)

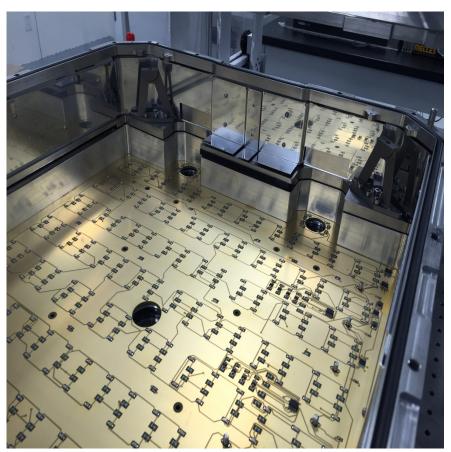
ZTF cryostat thermal links

Backplate with installed cryo-coolers, charcoal getters, thermal links (and installation posts). Thermal links pass through thermal shield and G10 science VIB successfully.

ZTF cryostat ass'ly – CCD cold plate

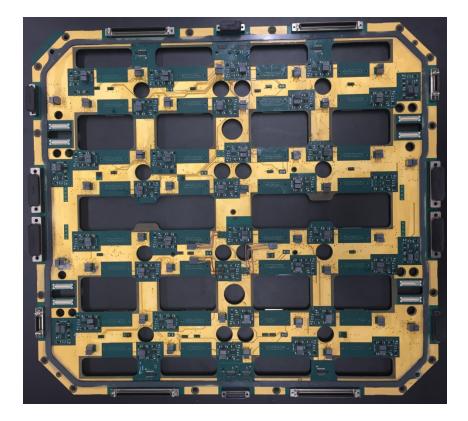

Coldplate installed with clearance around side thermal shield

ZTF cryostat ass'ly – cold plate shield



Heater resistor wiring harness installed and bottom thermal shield installed

ZTF cryostat ass'ly – thermal shields



In-vacuum illuminator

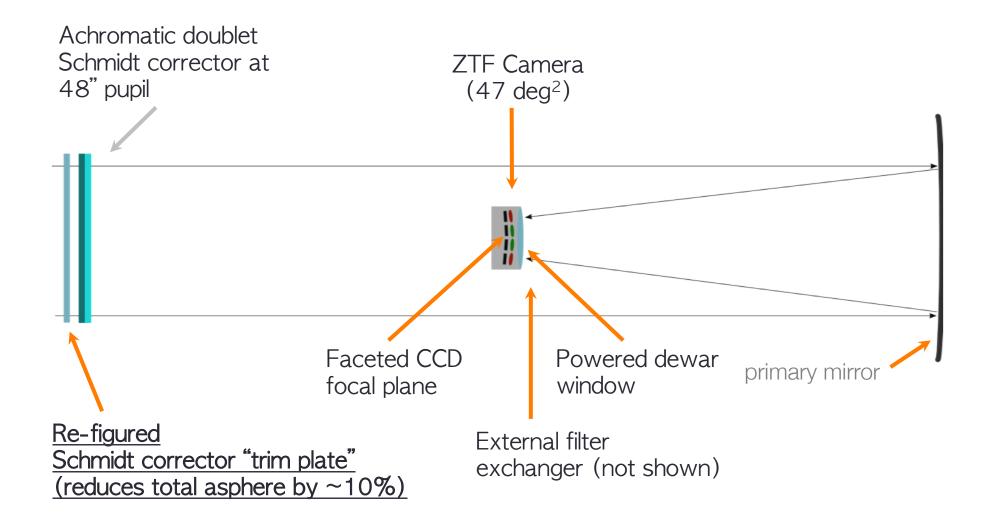
Side thermal shields installed with coldplate bipods.

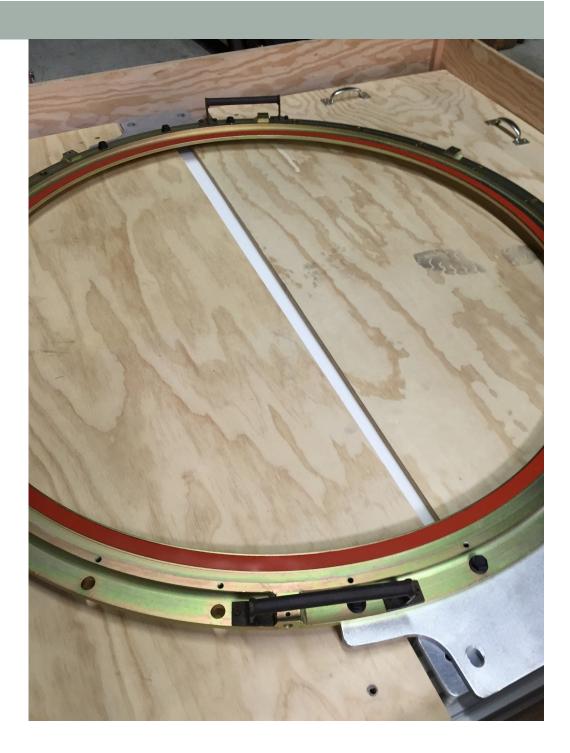
Vacuum Interface Board

- The VIB is an enabling technology for our compact Schmidt camera design
- It carries all the high speed detector data (differential, amplified) through the cryostat vacuum boundary & other key functions
- VIB currently undergoing signal checks prior to CCD installation

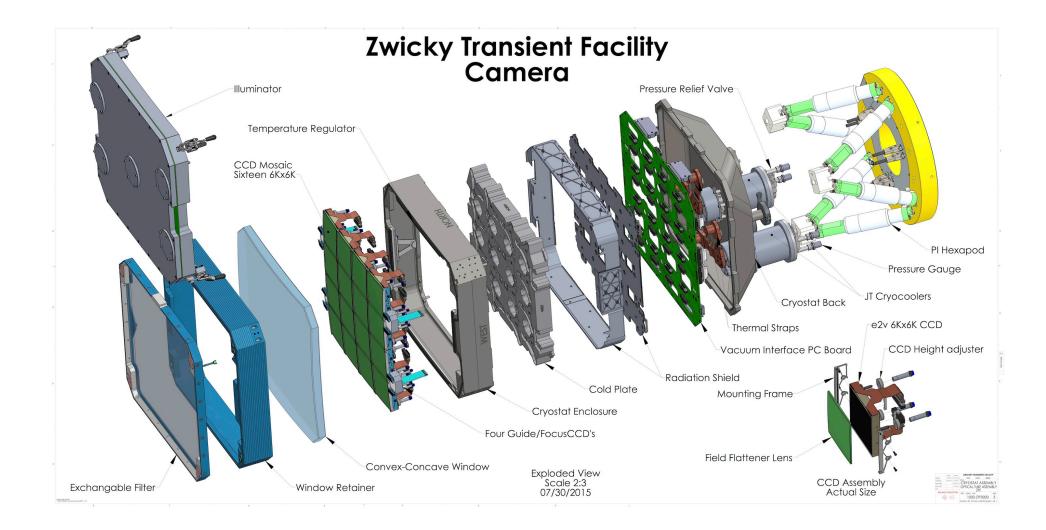
ZTF cryostat backplate ass'ly

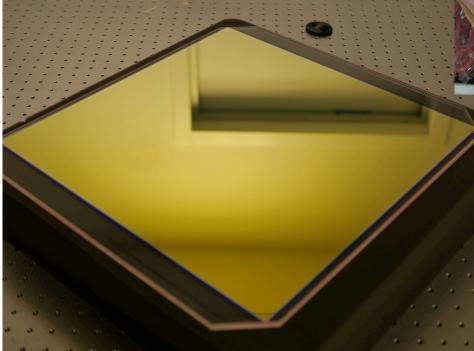
Sliding rig for backplate and lifting fixture for enclosure.


ZTF cryostat today

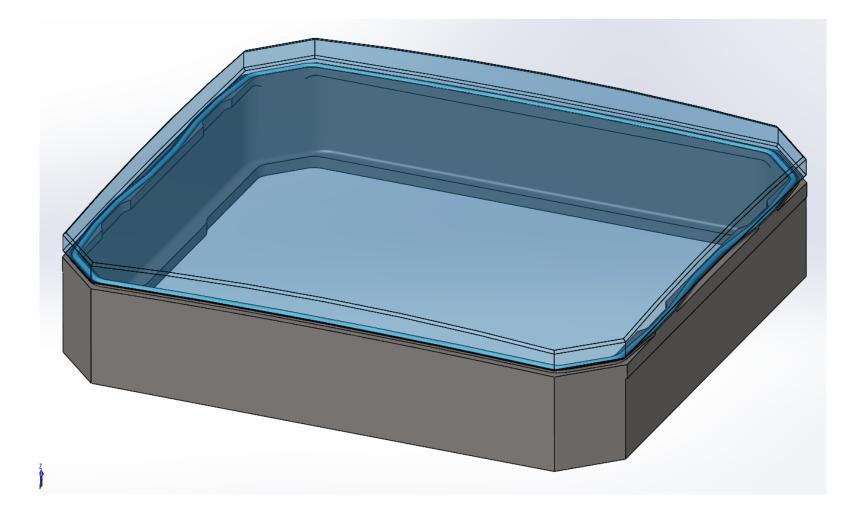

ZTF Observing System Development Status

- Science CCDs not yet installed or operated; WaSP operational
 - Guide/focus CCDs expected Jul '16; CCD I&T fixturing complete
- Electronics
 - CCD electronics tested; vacuum I/F board tested
- Cryostat mechanically assembled, vac & thermally tested
- Optics
 - CCD field flatteners & mounts complete, coated
 - Cryostat window polished, but uncoated, not yet vac tested
 - Filters: R and g' filters complete
 - Schmidt trim plate: Blank delivered to vendor, fabrication delayed

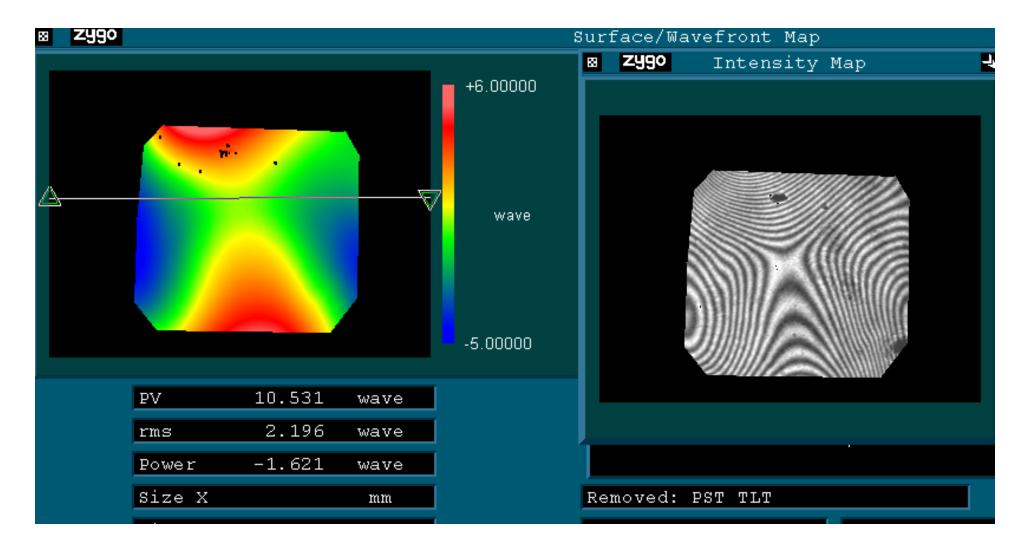

ZTF's large field of view requires new optics for best image quality over full FoV


ZTF trim plate at Rayleigh Optical

Exploded view of camera

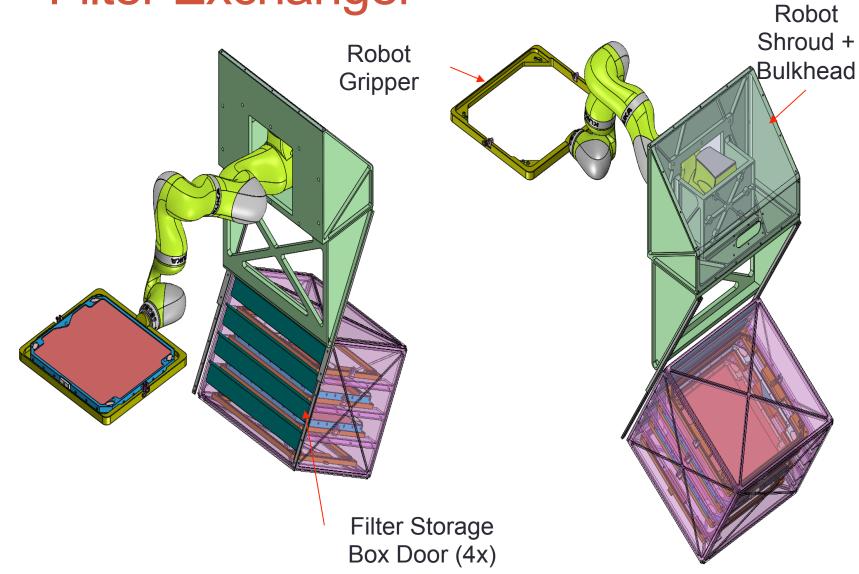


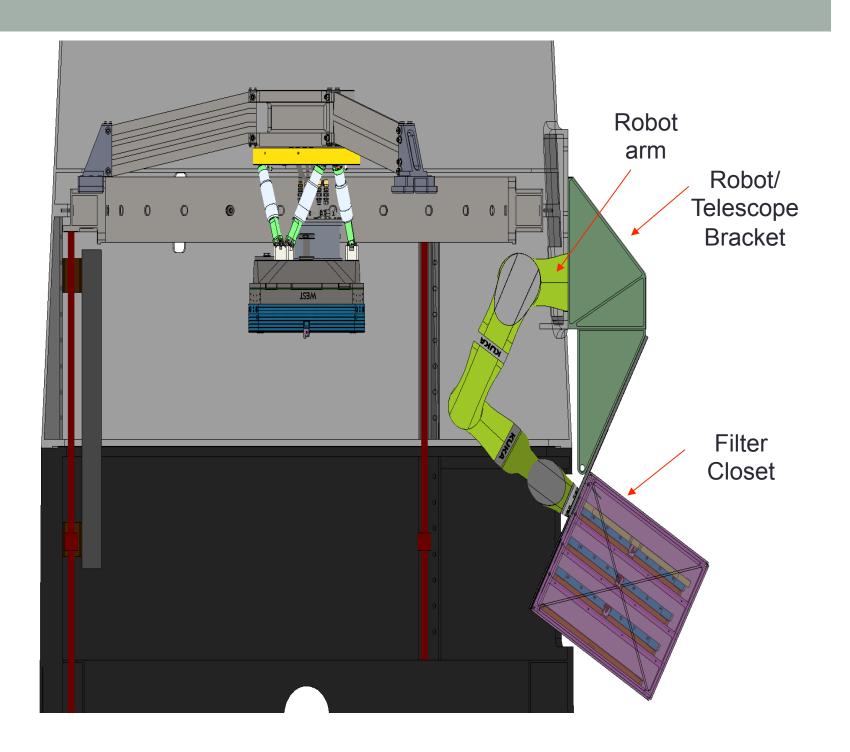
ZTF R and g' band filters have been received

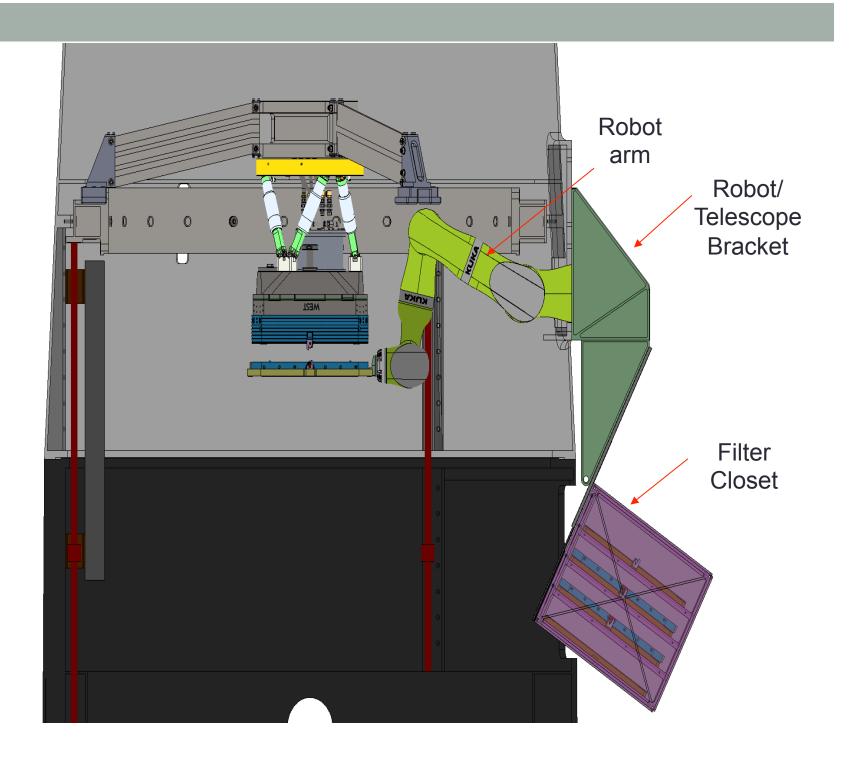


ZTF cryostat window O-ring and support

ZTF cryostat window polishing is complete

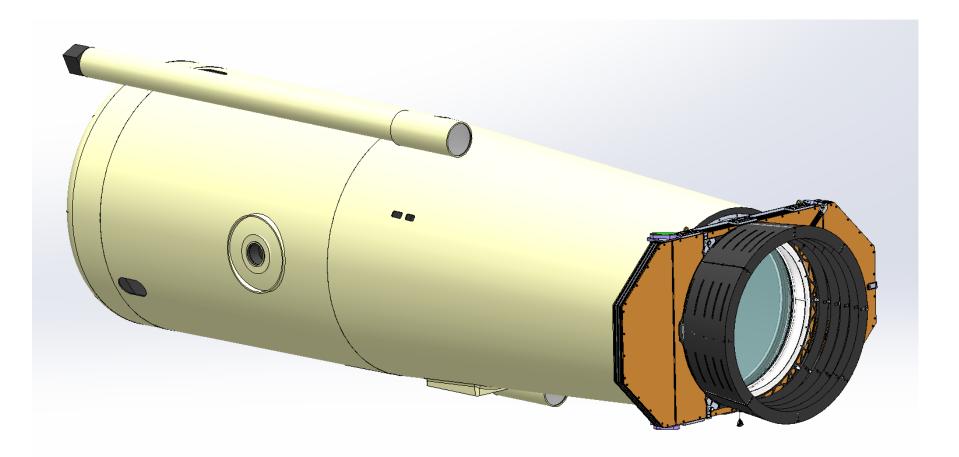


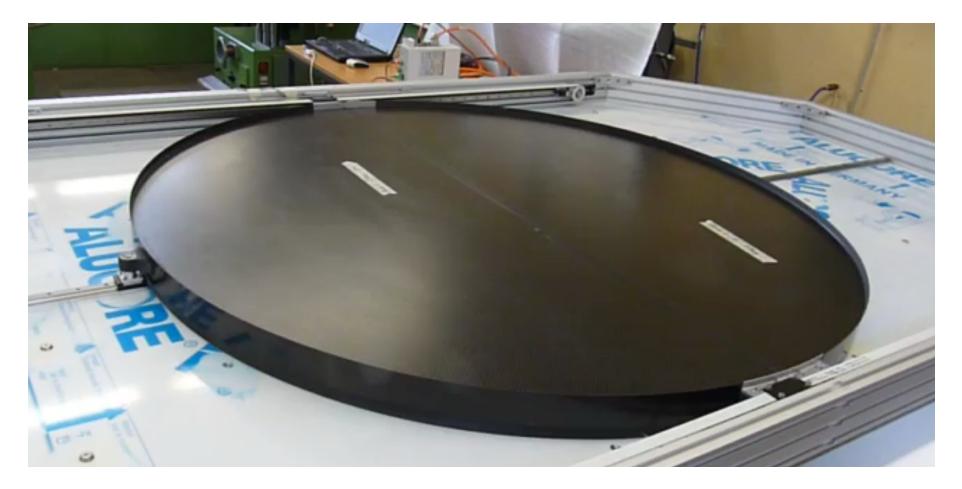

Window figure allocation to DIQ: ~ 0.15" FWHM out of 2"FWHM budget


ZTF Observing System Development Status

- Science CCDs not yet installed or operated; WaSP operational
 - Guide/focus CCDs expected Jul '16; CCD I&T fixturing complete
- Electronics
 - CCD electronics tested; vacuum I/F board tested
- Cryostat mechanically assembled, vac & thermally tested
- Optics
 - CCD field flatteners & mounts complete, coated
 - Cryostat window polished, but uncoated, not yet vac tested
 - Filters: R and g' filters complete
 - Schmidt trim plate: Blank delivered to vendor, fabrication delayed
- Filter Exchanger
 - Added to project scope May '15; PDR held May '16

Filter Exchanger

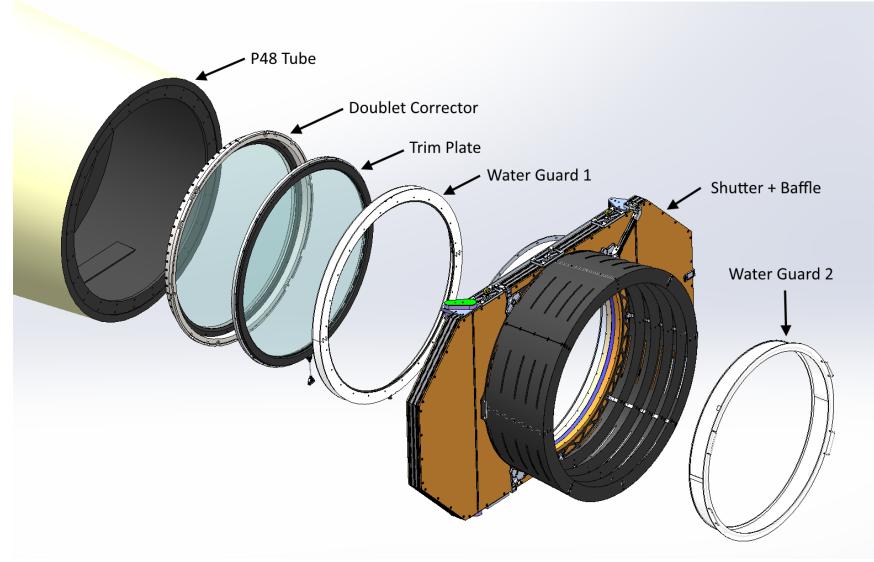

ZTF filter exchanger prototype latch testing at JPL


ZTF Observing System Development Status

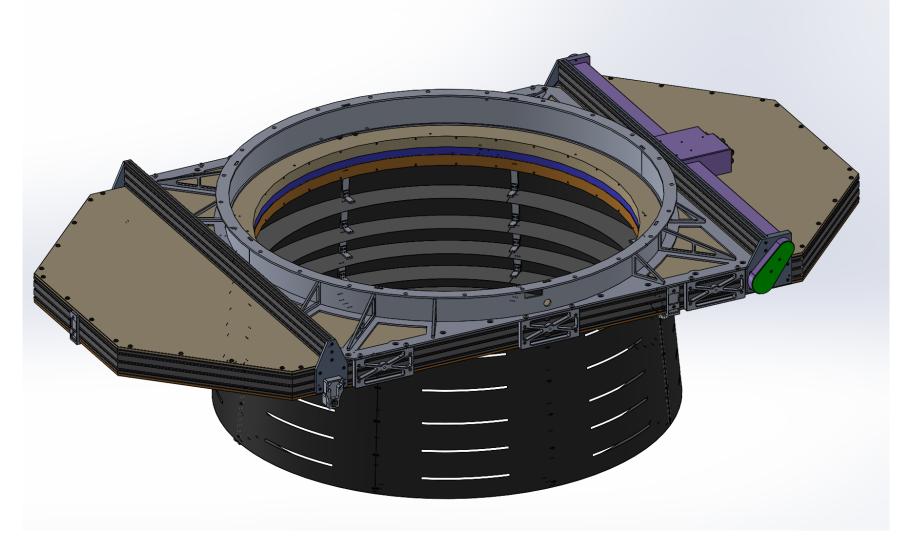
- Science CCDs not yet installed or operated; WaSP operational
 - Guide/focus CCDs expected Jul '16; CCD I&T fixturing complete
- Electronics
 - CCD electronics tested; vacuum I/F board tested
- Cryostat mechanically assembled, vac & thermally tested
- Optics
 - CCD field flatteners & mounts complete, coated
 - Cryostat window polished, but uncoated, not yet vac tested
 - Filters: R and g' filters complete
 - Schmidt trim plate: Blank delivered to vendor, fabrication delayed
- Filter Exchanger
 - Added to project scope May '15; PDR held May '16
- Exposure Shutter in testing at Bonn; expected from DESY Aug '16

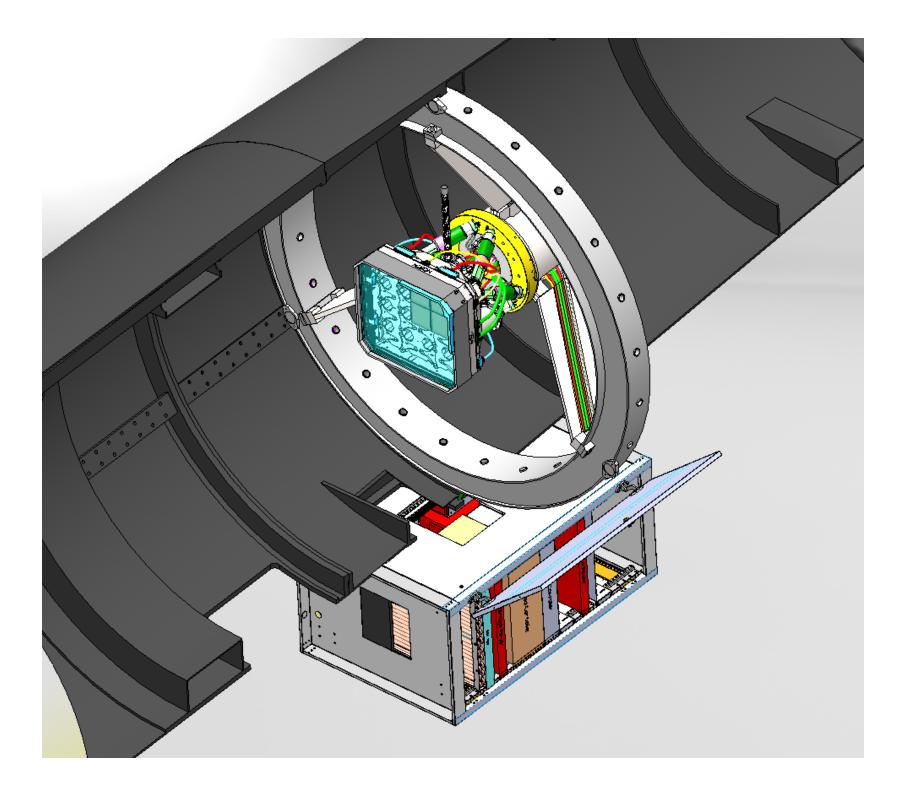
ZTF new top-end: baffle, shutter, trim plate

ZTF exposure shutter under test at Bonn



Expected to be shipped to DESY for quantitative evaluation shortly Delivery to Palomar expected ~ November 2016


ZTF Observing System Development Status


- Science CCDs not yet installed or operated; WaSP operational
 - Guide/focus CCDs expected Jul '16; CCD I&T fixturing complete
- Electronics
 - CCD electronics tested; vacuum I/F board tested
- Cryostat mechanically assembled, vac & thermally tested
- Optics
 - CCD field flatteners & mounts complete, coated
 - Cryostat window polished, but uncoated, not yet vac tested
 - Filters: R and g' filters complete
 - Schmidt trim plate: Blank delivered to vendor, fabrication delayed
- Filter Exchanger
 - Added to project scope May '15; PDR held May '16
- Exposure Shutter in testing at Bonn; expected from DESY Aug '16
- Instrument Software
 - Instrument control robot framework operational; hexapod control tested
- Telescope
 - · Upgrades completed: Windscreen, dome drive, dec drive
 - Upgrades remaining: Electrical Jun '16, TCS Aug '16, shed Oct '16
 - In design: Air handling, shutter I/F, spider, cabling, cooled e-rack,

ZTF top-end / shutter interface

ZTF shutter interface

ZTF hexapod

- Focus, tilt and collimation adjusted during every readout (0.5 mm/s)
- Model updated every exposure using three extra focal CCDs and one in focus, that could be used as guider though probably not required.
- Hexapod fully hidden behind instrument; powered down when not moving
- Does not back drive.

ZTF implementing many telescope upgrades

Refurbished windscreen; new drive; wireless control

New oil pump for Dec drive worm gear

New dome drive motor was installed Feb 2016:

- → More powerful
- → Servo controlled to give flat torque vs. speed
- \rightarrow New gearbox and tire

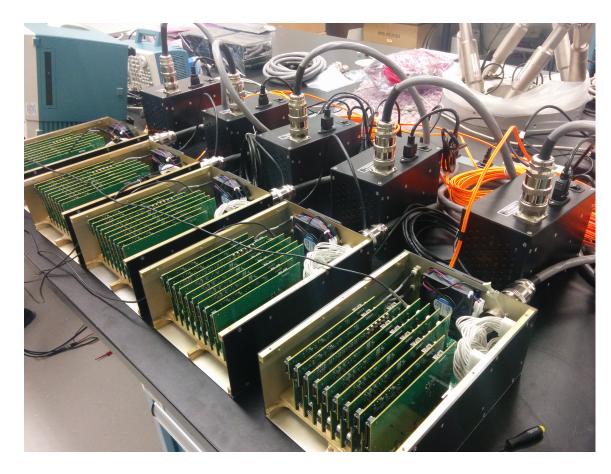
New variable frequency controller

- ightarrow Increased acceleration and top speed
- \rightarrow Only runs as fast as required
- \rightarrow Dynamic braking
- → Optimal settling (no overshoot)

48" Telescope Electrical System Upgrade

- Electrical switch gear, circuit breakers, and transformers are original, 1940's vintage equipment.
- We can no longer acquire replacements in case of failure
 - This creates a significant risk of extended downtime if repair or replacement is required.
- Related work to include lightning protection and grounding survey after electrical upgrade is complete;

Planned installation week of June 20, 2016.


BACKUP SLIDES

ZTF RISK MITIGATION ACTIVITIES

ZTF Observing System Risk Mitigations

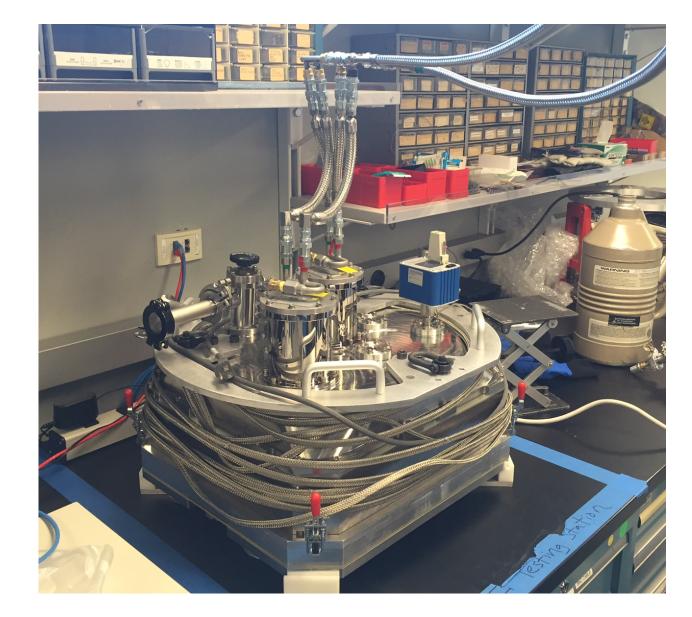
- Detectors
 - WaSP science CCD 1st light Feb '16; guide / focus CCD 1st light Jun '16
- Cryostat
 - Increased window thickness from 28 to 32 mm
 - Implemented 'illuminator cover' for cryostat test, including i-VIB
 - Mitigated Polycold vendor risk
 - Designed and proved new manifold J-T cooling architecture; developed alternative supply chain; established cryocooler test facility and gas analysis channels
 - Demonstrated < 10 micron CCD metrology accuracy using iPTF on-sky
- Exchanger & Shutter
 - Adopted commercial KUKA arm actuator for filter exchange
 - Performed impulse acceleration tests on P48 telescope / confirmed shutter req's
 - Shutter testing at DESY
 - Developed accelerometer sensor capability on P48
- Software
 - Deployed robotic instrument software, basis for ZTF, at KPNO
- Telescope
 - Many reliability and maintainability upgrades
 - Implemented dome seeing measurement capability on P48


CCD controller automated testing

- Semiconductor Technology Associates, "Archon".
- 5 controllers are fully independent.
- 80 ch at 1 Mpix/s each
- Common master clock: synchronized, low timing jitter.
- Data compression in real time prior to first disk write.
- Measuring excellent performance and reliability (no crashes)
- COO developing custom electronics and software to automate 80-channel controller validation and performance testing

CCD handling fixtures

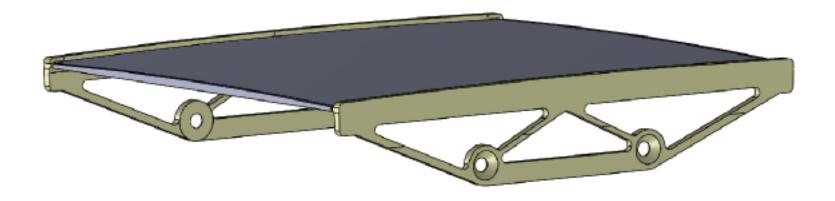
ZTF CCDs be removed and reinstalled to change shims, after through focus imaging on telescope, so great care has been taken to make process easy and safe.


- Story board developed; parts design and procured.
- Assembly and testing in progress.

ZTF cryostat ass'ly fixturing



Sliding rig for backplate and lifting fixture for enclosure.


ZTF cryocooler test facility at COO

ZTF cryocooler exceed required performance

Filter frame detail

Prototype frame has been 3D printed in stainless, now under cryogenic evaluation

COO large vacuum oven

Telescope resonances studied

Programmable input produced by reaction force from Aerotech linear motor (direct drive with high resolution encoder)

Charge shifting on PTF CCDs (8 lines every ~ 15ms) turns each star into series of spots to allow centroid motions on both axes to be measured at 67 Hz for ~7 s.

DIQ ERROR BUDGET

Flow-down of DIQ allocation to optomech spec's

Seeing for other zeniths 45 degrees 1.24 arcsec

> 0.39 arcsec 0.40 arcsec 0.39 arcsec 0.04 arcsec 0.10 arcsec 0.10 arcsec 0.19 arcsec 0.28 arcsec 0.21 arcsec

 0.13
 arcsec

 0.11
 arcsec

 0.12
 arcsec

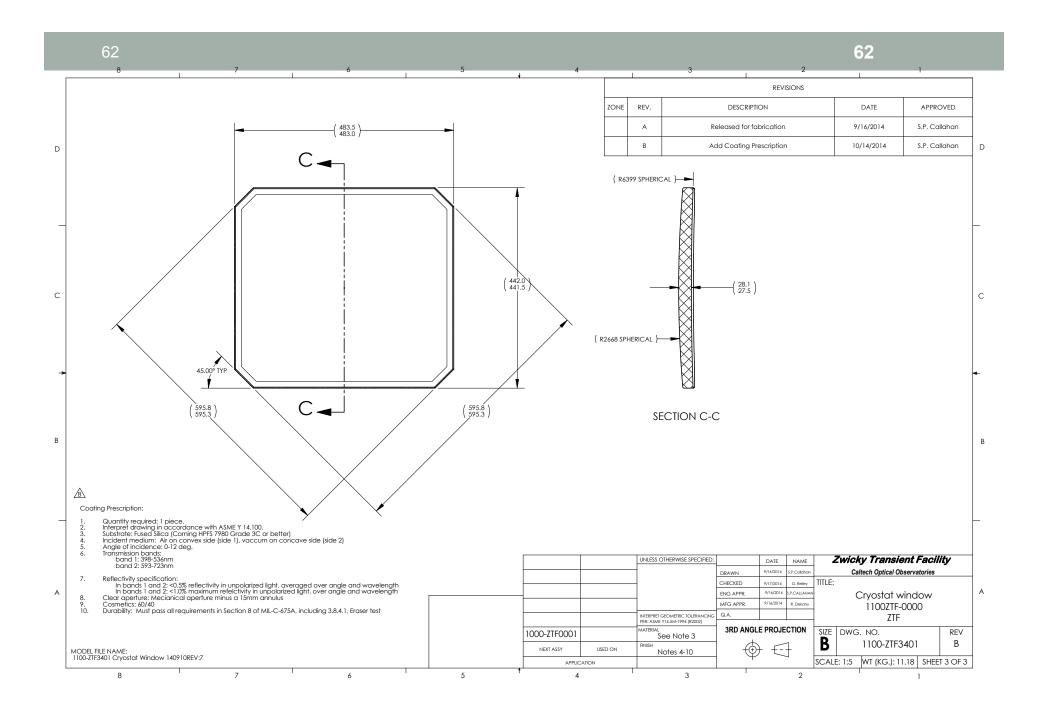
 0.13
 arcsec

 0.14
 arcsec

 0.15
 arcsec

 0.10
 arcsec

 0.10
 arcsec


 0.10
 arcsec

 0.10
 arcsec

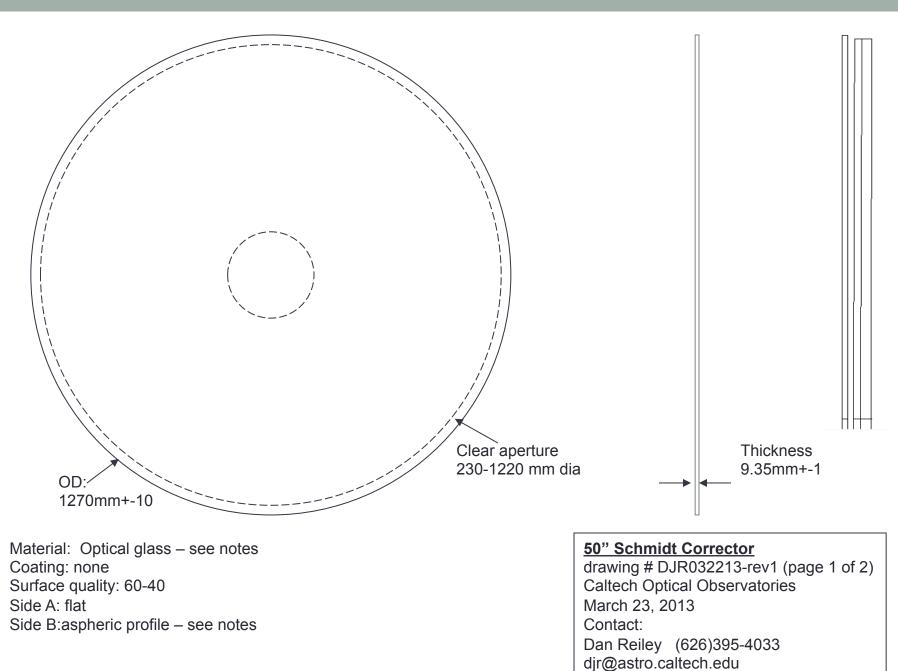
 0.10
 arcsec

	Wavelength QE	u' filter 3250-3550-3850 TBD Est. only	g' filter 3980-4670-5360 TBD	R filter 5930-6580-7230 TBD	i' filter 7195-8220-9245 TBD Est. only	given assumptionspresently unmodeled/unverified potential for improvement? dewar design constraints		
DIQ Goal (ID FV	WHM, arcsec)	N/A	2.20	2.00	N/A	Area-weighted average across focal plane. On	ly r' and g' drive design.	
Error Term	Allocation							
Atmospheric Effe	ects (z = 30 deg)	1.30	1.25	1.16	1.11			RS
	Free Atmospheric Seeing	1.24	1.18	1.10	1.05	Based on 1.1" FWHM average (30 degees zenit Palomar	h angle) from 2006/07 P18 MASS/DIM	M measurement for
	Dome and Mirror Seeing	0.35	0.35	0.35	0.35	uncertain		
	Atmospheric Refraction	0.13	0.23	0.07	0.04	refraction from Fillipenko 82		
Telescope		0.99	0.97	1.02	1.02		ALLOCATED	
	MI Figure	0.40	0.40	0.40	0.40	uncertain	TOLERANCES	
	Tracking Errors*	0.50	0.50	0.50	0.50	PTF Measured 0.92? TBC]
	Vibration	0.39	0.39	0.39		RMS temporal (high frequency) error =	10 microns	implies at F/2.45 and
	Hub Tilt Rel to Optical Axis	0.40	0.40	0.40	0.40	PTF Measured: 0.27	17.7 microns	implies "
	MI (Optical Axis) Tilt Rel to Cell	0.39	0.39	0.39	0.39		10 microns	implies "
	Schmidt Plate Axial Position	0.04	0.04	0.04	0.04		10000 microns	implies "
	Schmidt Plate Decenter	0.10	0.10	0.10	0.10	(TBC feasibility w/ P. Gardner)	1000 microns	implies "
	Schmidt Plate Tilt Schmidt Plate Aspheric Coeff	0.10	0.03	0.10	0.10		34.9 milliradians	implies "
	Schmidt Plate Index of Refraction	0.17	0.03	0.19	0.19		5% 0.05 index uncertainty	implies "
	Schmidt Plate Abbe Number	0.13	0.13	0.28	0.28		1.00 Abbe V uncertainty	results in
Instrument	Schinice Hate Abbe Hadilber	1.84	1.57	1.14	1.6		1.00 Abbe V uncertainty	
	Optical Design IQ (full field avg)	1.60	1.29	0.83		based on ZTF spot size .zpl macro		
	Cryostat Decenter	0.18	0.18	0.16	0.18		150 microns (1-D)	results in
	Deviation from Best Focus (Hub motion)*	0.31	0.28	0.31	0.31		10 microns	implies "
	Cryostat Window Rel to FPA	0.10	0.10	0.03	0.10		290 microns (1-D)	results in
	Cryostat Window Opt v. Mech Axis	0.19	0.19	0.05	0.19		500 microns (1-D)	results in
	Cryostat Window Center Thickness	0.12	0.12	0.07	0.12	assume telescope refocus	100/-500 microns	
	Cryostat Window Glass Melt Index, n	0.12	0.12	0.08	0.12		0.002 index	results in
	Cryostat Window Thermal Variation in n	0.06	0.06	0.06	0.06		30 K radial gradient	results in
	Optics Manufacturing Surface Errors	0.23	0.23	0.23	0.23	Amplitude (1/2 P-V) error =	10 microns	implies "
	Mosiac Tilt Rel to Cryostat	0.21	0.21	0.21	0.21	Amplitude (1/2 P-V) tilt over 373 mm at	0.05 milliradian error	implies "
	CCD Surface Relative to Plate	0.27	0.27	0.27	0.27	Amplitude (1/2 P-V) flatness =	12 microns	implies "
	FPA Plate Height Relative to Hub Field Flattener Tilt	0.11	0.11	0.11	0.11	Amplitude (1/2 P-V) flatness =	5 microns	implies "
	Field Flattener Lilt Field Flattener Decenter	0.10	0.10	0.05	0.10		9.4 milliradian error	results in
	Field Flattener Decenter Field Flattener Opt v. Mech Axis	0.10	0.07	0.10	0.10		310 microns (1-D)	results in
	Field Flattener Opt V. Mech Axis	0.10	0.12	0.10	0.10		500 microns (1-D) 10% error	results in
	Field Flattener Final Temperature	0.02	0.02	0.02	0.02		10% error 10 K uncertainty	results in
	CCD Lateral Diffusion	0.63	0.63	0.48		uncertain (esp. vs. wavelength)	to it directantly	
								-
Margin (Unmodel	lled / Implimentation Errors)	0.25	0.25	0.56	0.25	Allocation		
DMCT I DIC		0.47		2.00	2.00			
RMS Total DIQ		2.47	2.24	2.00	2.22	arcsec FWHM a	assuming all terms are Gaussian	

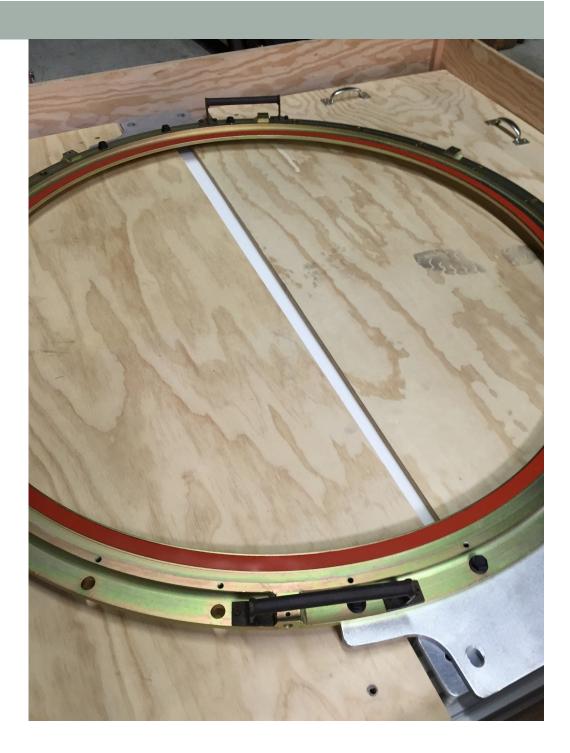
ZTF CRYOSTAT WINDOW

ZTF SCHMIDT CORRECTOR TRIM PLATE

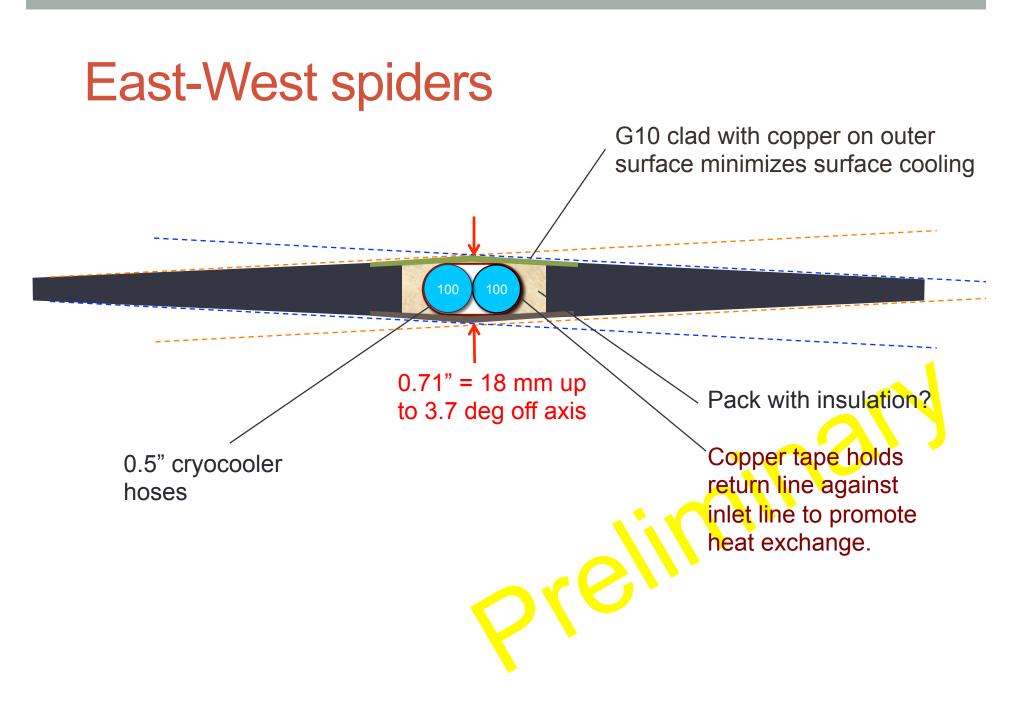
Trim plate found in 200" basement

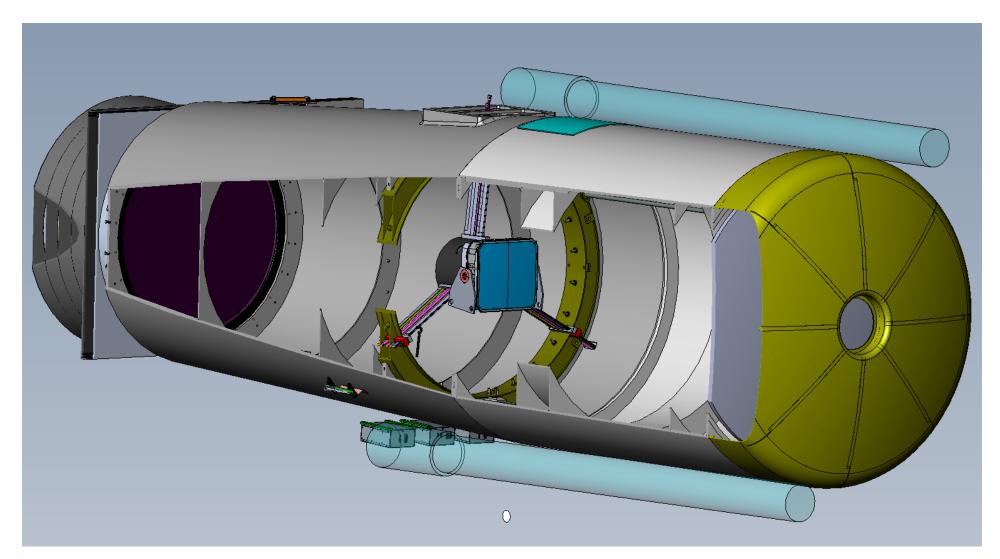


Discovery Image!


Recent optomech progress (Aug - Oct '13)

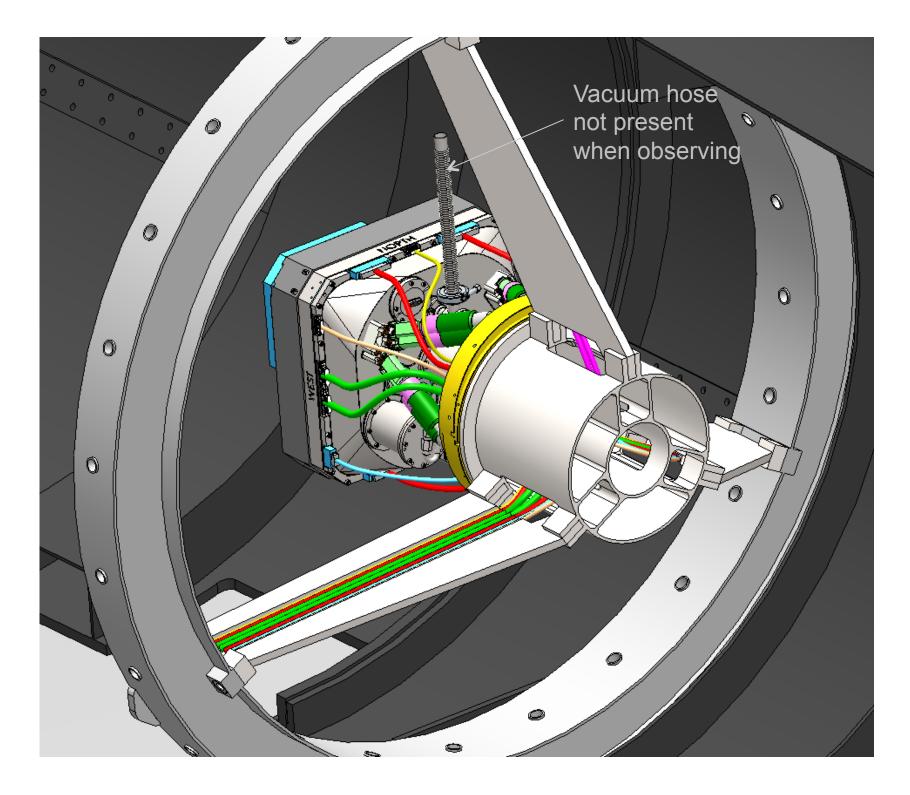
- Caltech measured index of refraction of Schmidt blank at Palomar
 - Two techniques yield index n=1.501 and n=1.555
 - Next step: Final optical design optimization, incl. exact CCD locations





ZTF trim plate at Rayleigh Optical

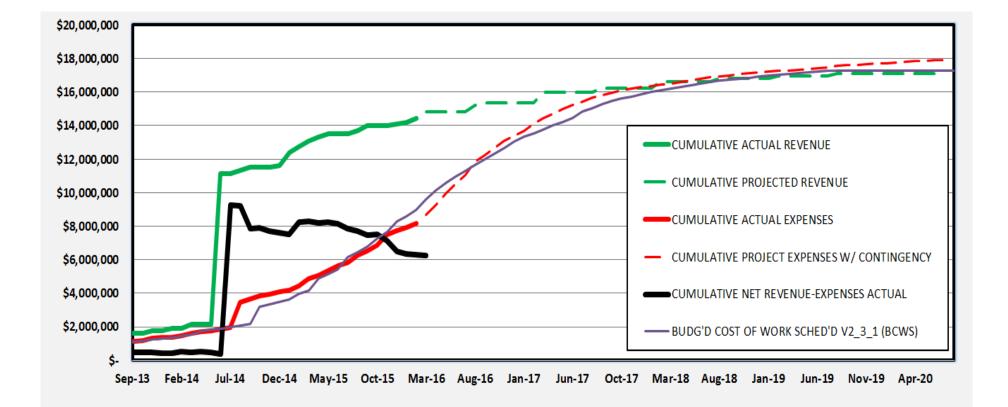
ZTF CAMERA CABLE ROUTING: SPIDERS



The Caltech engineers have been developing

New spiders, incl. ring New articulated ZTF camera mount New access hatches Bonn shutter interface

Schmidt trim plate mount New baffles Cable routing Tube balance



ZTF BUDGET

ZTF Full Lifecycle Cost from 2014 MSIP Proposal ZTF Management Plan

					Estimated ZTF Project Totals		Pre-Award Period (inception to 8/31/14)			Award Period+ (9/1/14 - 12/31/19)				Contingency contribution on		
	o. WBS Element				ZTF Plan		Expended	Expended Estimated		Estimated	MSIP		Estimated	Estimated	remaining wor	
WBS No.				l % Total		Plan	Labor	Cost	Labor	bor Costs 1/14 - 8/31/14)	Labor (wk-hrs)	MSIP Cost	Partner Labor	Partner Cost	(no MSIP request	
		WBS Element	Labor	Cost	(wk-hrs)	Cost	t (through :	1/31/2014) (2/1	(2/1/14							
1		Management	16%	9%	14758	\$1,414,632	644	\$88,186	1711	\$277,653	12058	\$1,016,794	346	\$32,000	5%	\$66,7
	L.1	Project Management	20/0	0,0	5878	\$852,489	644	\$88,186	1711	\$277,653	3523	\$486,651	0	\$0	6%	\$45,8
	1.2	Undergraduate Summer Programs			7495	\$438,707	0	\$0	0	\$0	7495	\$438,707	0	\$0	3%	\$13,:
	1.3	Community Workshops			1039	\$91,436	0	\$0	0	\$0	1039	\$91,436	0	\$0	7%	\$6,
1	L.4	Palomar E/PO			346	\$32,000	0	\$0	0	\$0	0	\$0	346	\$32,000	4%	\$1,
2		Systems Engineering	12%	6%	11256	\$990,314	1804	\$207,425	900	\$127,574	8553	\$655,315	0	\$0	15%	\$118,
2	2.1	Systems Engineering and Documen	ntation		3580	\$521,290	1804	\$207,425	900	\$127,574	877	\$186,291	0	\$0	14%	\$43,
2	2.2	Commissioning			7676	\$469,024	0	\$0	0	\$0	7676	\$469,024	0	\$0	16%	\$75,
3		ZTF Observing System	45%	49%	40956	\$7,791,052	3088	\$1,065,573	7977	\$1,992,426	27285	\$4,069,070	2605	\$663,983	14%	\$913,
3	3.1	Camera			33553	\$6,219,665	3088	\$1,065,573	7281	\$1,816,056	23183	\$3,012,178	0	\$325,858	10%	\$511,
	3.1.1	Cryostat			4765	\$716,368	1880	\$298,790	2569	\$267,868	316	\$36,753	0	\$112,957	24%	\$100
	3.1.2	Camera Optics			1630	\$605,736	934	\$88,186	661	\$157,415	34	\$147,235	0	\$212,901	18%	\$93,
	3.1.3	Science CCDs			1124	\$2,268,689	120	\$663,900	411	\$776,233	593	\$828,555	0	\$0	4%	\$64
	3.1.4	Autoguider/focusser			565	\$159,685	0	\$0	315	\$96,353	250	\$63,333	0	\$0	12%	\$19
	3.1.5	CCD Readout Electronics			1978	\$699,540	155	\$14,698	358	\$158,441	1465	\$526,401	0	\$0	10%	\$68
	3.1.6	Non-CCD Electronics			3375	\$403,893	0	\$0	1482	\$202,431	1893	\$201,461	0	\$0	14%	\$56
3	3.1.7	Camera Software			4110	\$391,473	0	\$0	1410	\$134,554	2700	\$256,919	0	\$0	28%	\$109
	3.1.8	Ass'ly, Integration & Test (AIV)			16007	\$974,282	0	\$0	75	\$22,761	15932	\$951,521	0	\$0	30%	\$292
	3.2	Oschin Telescope			7403	\$1,571,388	0	\$0	696	\$176,370	4103	\$1,056,893	2605	\$338,125	26%	\$402
	3.2.1	Schmidt Trim Corrector			365	\$369,670	0	\$0	265	\$110,170	100	\$259,500	0	\$0	18%	\$66
	3.2.2	Exposure Shutter			2985	\$376,175	0	\$0	381	\$38,050	0	\$0	2605	\$338,125	28%	\$105
		Telescope Software Upgrades			300	\$24,300	0	\$0	50	\$8,000	250	\$16,300	0	\$0	26%	\$6
	3.2.4	Telescope Hardware Upgrades			3753	\$801,243	0	\$0	0	\$20,150	3753	\$781,093	0	\$0	28%	\$224
4		Data System	16%	30%	14922	\$4,719,582	0	\$0	0	\$0	9849	\$3,112,019	5073	\$1,607,562	8%	\$387
	4.1	DS Architecture			3234	\$1,426,687	0	\$0	0	\$0	2134	\$1,088,344	1099	\$338,344	6%	\$85
	1.2	Pipeline Development			3159	\$1,380,610	0	\$0	0	\$0	2085	\$1,067,534	1074	\$313,077	10%	\$138
	1.3	Archive Development			5281	\$1,231,767	0	\$0	0	\$0	3485	\$615,883	1795	\$615,883	10%	\$123
	1.4	Pipeline Operations			3248	\$680,517	0	\$0	0	\$0	2144	\$340,259	1104	\$340,259	6%	\$40
5		Survey Operations	10%	6%	8900	\$890,481	0	\$0	0	\$0	1559	\$126,822	7341	\$763,659	9%	\$80
	5.1	Data Link			0	\$45,000	0	\$0	0	\$0	0	\$0	0	\$45,000	6%	\$2
	5.2	Observation Planning Software			3560	\$338,192	0	\$0	0	\$0	0	\$0	3560	\$338,192	14%	\$47
5	5.3	Survey Execution			5340	\$507,289	0	\$0	0	\$0	1559	\$126,822	3781	\$380,466	6%	\$30
		ZTF Baseline Program Cost	100%	100%		\$15,806,061		\$1,361,184		\$2,397,652		\$8,980,020		\$3,067,204	11%	\$1,567,
		Contingency on future work; non-fixed-price it	ems (see §5	5.1)		\$1,567,748										\$1,567,

ZTF Financial Summary as of 2/29/16

