

January 19th, 2022

Update on Ubercal

Benjamin Racine & Fabrice Feinstein

	Ins	trument	
--	-----	---------	--

Mirrors etc. : Flux $\alpha\beta$ F

Filters : Flux $\alpha\beta\gamma$ F

Detectors : Flux $\alpha\beta\gamma\delta$ F

Instrument

Mirrors etc. : Flux $\alpha\beta$ F

Dust? Frequency dependence of course Filters : Flux $\alpha\beta\gamma$ F

Edges, dust, coating etc. **Detectors :** Flux $\alpha\beta\gamma\delta$ F

Gain variations etc? Amplifiers : Flux $\alpha\beta\gamma\delta\epsilon$ F

Signal

 $\mathbf{m}_{meas} = -2.5 \log (\mathbf{F}_{meas})$ = $-2.5 \log (F) - 2.5 \log (\alpha \beta \gamma \delta \epsilon)$ ZP

		3		
1	* + 1 2		2	

Ubercal method

- 1	0	0	0	0	0		
0	1	0	0	0	0		
0	0	1	0	1	0		$ [m_1]$
0	0	0	1	1	0		<i>m</i> ₂
1	0	0	0	0	1	•	<i>m</i> ₃
0	1	0	0	0	1		m_4
0	0	1	0	0	1		ΔZP_2
_ 0	0	0	1	0	1 _		ΔZP_3

 A_{8x6}

• X_{6x1}

 $m_{i_{star}} + ZP_{j_{field}} = m_{i_{star}}^{obs}, j_{field}$

$\begin{bmatrix} m_{11}^{obs} \end{bmatrix}$
m_{21}^{obs}
m_{32}^{obs}
m_{42}^{obs}
m_{13}^{obs}
m_{23}^{obs}
m_{33}^{obs}
$\left\lfloor m_{43}^{obs} \right\rfloor$

 B_{8x1}

—

system of 8 equations : A X = B<u>least square fit :</u> $A^{t} C A X = A^{t} C B$

C: diagonal matrix with weights of *m*_{*i*, *j*} measurements **Covariance of parameters given by:** [*A*^t *C A*]⁻¹

Result on all stars

For each exposure, sources are observed at a specific position on the focal plane (uv coordinates)

For each exposure, sources are observed at a specific position on the focal plane (uv coordinates)

For each exposure, sources are observed at a specific position on the focal plane (uv coordinates)

> We can then bin in uv each observation's residual and plot the weighted mean

-10000

-5000

10000

500

Result on all stars

https://me.lsst.eu/bracine/ZTF/20210716 ZTF ubercal first try/

1 zero point per exposure **PSF** photometry

1 zero point per quadrant **PSF** photometry

1 zero point per exposure **Aperture photometry**

1 zero point per quadrant Aperture photometry

weighted_mean

-5000

10000

u

5000

1 zero point per exposure **Aperture photometry**

1 zero point per exposure Aperture photometry with starflat correction

weighted_mean

0

u

10000

-10000

-5000

5000

1 zero point per quadrant Aperture photometry

weighted_mean

-5000

10000

u

5000

1 zero point per quadrant **Aperture photometry**

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

Reduced to 250 million sources by downsampling galactic plane (~100 per square degrees)

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

Reduced to 250 million sources by downsampling galactic plane (~100 per square degrees)

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

Reduced to 250 million sources by downsampling galactic plane (~100 per square degrees)

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

Reduced to 250 million sources by downsampling galactic plane (~100 per square degrees)

1 zero point per exposure PSF photometry

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

Reduced to 250 million sources by downsampling galactic plane (~100 per square degrees)

1 zero point per exposure PSF photometry

Takes ~30 minutes to solve ubercal

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

Reduced to 250 million sources by downsampling galactic plane (~100 per square degrees)

1 zero point per exposure PSF photometry

Takes ~30 minutes to solve ubercal

~30000 square degrees After some filtering: 50 million stars

4 billion « sources »

Reduced to 250 million sources by downsampling galactic plane (~100 per square degrees)

1 zero point per exposure **PSF** photometry

Takes ~30 minutes to solve ubercal

Estelle provided a fits file with starflat correction. Now working in implementing this in our ubercal pipeline

-0.02

mean

0.02

New directions AAPG2-2021—PRC—CE31

Deliveries – A general overview of our deliveries, and how they integrate

Deliveries — A general overview of our deliveries, and how they integrate

