
AMPEL
Alert Management, Photometry and Evaluation of Light curves.

AMPEL DESIGN GOALS
SELECTION

Flexible framework for selecting potentially interesting transients
from stream

The same transient can be selected via different channels, with
different data rights and science goals

Selection can be made based on cross-correlation with
external data 
 

AMPEL DESIGN GOALS
TRACKING

Selected transients are followed

New observations are appended to tracked objects

Potentially include updated zero-points, updated subtraction
or extraction

Incorporation of observations not yielding alerts 
 

AMPEL DESIGN GOALS
SCIENCE

Computation of additional information
photo-z
photometric type probabilities
Light curve fit
AGN proximity
…

Custom science modules submittable 

AMPEL DESIGN GOALS
TASKS

User specified automatic candidate ranking and action

“Send circular for any transient with z < 0.03 host galaxy”

“Export and push a list of all transients visible from Palomar
tonight, brighter than 18.5 and ranked inversely by their predicted
brightness in one week” 
 
 

AMPEL DESIGN GOALS
REPLAYABLE

Available as re-executable container

Convenient detection replay: “how would the transient sample have changed
with different parameter settings”

"Rerun ZTF 2019 and provide photometric types of all transients in galaxy
cores“

“Rerun ZTF 2020 based on the full set of low significance LIGO alerts – which
transients would have been associated with these and what are their
photometric types” 
 

AMPEL
OVERVIEW

νe

Tier 0: Input layer

T1

Tier 1: Tracking layer

...SN Ia

LC fit

Tier 2: Science layer

Online pipeline

UW alerts

Ext. alertsZTF Alerts

UWUW

Daily

External
Photometric
Resources

External
Photometric
Resources

Photopoints

Daily

Feeders

Ranking collection

Tier 3: Utils layer

Marshall
Push

PurgeRanking

IPACIPAC

PastTransients SN

PastTransients ve

PastTransients ...

PhotoZ Photo Type AGN ...

External
Spectroscopic

Resources

External
Spectroscopic

Resources

Feeder 4

Daily

CurrentTransients

Jupyter

IPACIPAC

CurrentTransients

PhotoPoints

SN Ia

Ext alerts

Feeders

CurrentTransients

PhotoPoints

AMPEL
OVERVIEW

νe

Tier 0: Input layer

T1

Tier 1: Tracking layer

...SN Ia

LC fit

Tier 2: Science layer

Online pipeline

UW alerts

Ext. alertsZTF Alerts

UWUW

Daily

External
Photometric
Resources

External
Photometric
Resources

Photopoints

Daily

Feeders

Ranking collection

Tier 3: Utils layer

Marshall
Push

PurgeRanking

IPAC

PastTransients SN

PastTransients ve

PastTransients ...

PhotoZ Photo Type AGN ...

External
Spectroscopic

Resources

Feeder 4

Daily

CurrentTransients

Jupyter

IPACIPAC

CurrentTransients

PhotoPoints

SN Ia

Ext alerts

Feeders

CurrentTransients

PhotoPoints

AMPEL
OVERVIEW

νe

Tier 0: Insertion layer

T1

Tier 1: Tracking layer

...SN Ia ...

LC fit

Tier 2: Science layer

Online pipeline

UW alerts

Ext. alertsZTF Alerts

UW

Daily

External
Photometric
Resources

Photopoints

Daily

Feeders

Ranking collection

Tier 3: Utils layer

Marshall
Push

PurgeRanking

IPACIPAC

PastTransients SN

PastTransients ve

PastTransients ...

PhotoZ Photo Type AGN ...

External
Spectroscopic

Resources

External
Spectroscopic

Resources

Feeder 4

Daily

CurrentTransients

Jupyter

IPAC

CurrentTransients

PhotoPoints

SN Ia

Ext alerts

Feeders

CurrentTransients

PhotoPoints

T0 FILTERING

• T0 is not the place for heavy computing (that’s what T2 is for)  

• Example: filter alerts based on:

• rb value

• magpsf value

• number of photopoints in given bands

• Coordinates of the transient

• Any combination of the previous points

USER SCENARIO
(BASIC)

• Implement your T0 filter  

• Provide a:

• list of T2 modules to run

• list of T3 modules to run

USER SCENARIO
(INTERMEDIATE)

• Implement your T0 filter  

• Define a list of T2 modules for your channel  

• Define custom parameters for your selected T2 modules  

• Implement a T2 module tailored for your science goals  

• Provide custom parameters for the T3 ranking module

USER SCENARIO
(ADVANCED)

• Implement your T0 filter  

• Define a list of T2 modules for your channel  

• Define custom parameters for your selected T2 modules  

• Implement a T2 module tailored for your science goals  

• Provide your own T3 modules (ranking, alternative subtraction, push to external systems)  

• Provide custom purge strategy

NUGENS SCENARIO
(CUSTOM)

• Implement T0 filter  

• Define a list of T2 modules with custom parameters to run  

• Provide following T3 modules:

• M1: Push transients to NERSC if results from T2 science modules meet given criteria
• M2: Pull results of heavy computations performed at NERSC back to Ampel DB  

CHARACTERISTICS

Python

Uses MongoDB

Jupyter access foreseen

Will run on the DESY grid  
 
 

DESY ARCHITECTURE

• Mongo DB

• Ampel job controller

• Ampel T3

 Ts Ts …

UW

DESY

Jupyter

MongoDB

Firewall

 Ts

Marshall

The arrows show from where to
where connections are established,
not the direction of the data flow

AMPEL DESIGN GOALS

Ampel goals

Pipeline
Multiprocessing capability

Ability to process non-ZTF alerts
Full history

Manually trigger operation
Modular structure

Accommodate different science cases  
(different filters and science modules)

Alerts
Alert order of no consequence

Robust against duplicated alerts
Detect reprocessed photopoints

Photopoints
Optional additional instruments

Manual exclusion
Optional alternative subtraction

Append zeropoint

Ampel goals

Science modules

Mild restrictions on the output of science modules

Allow variable module parameters

Share results between channels  
(put differently: compute science modules only once!)

WHICH DATABASE ?

• Requirement: mild restriction on the output of science modules  
 Flexible DB Schema

• MongoDB was chosen:
• NoSQL database (Stands for Non SQL by means of “non relational”)
• Document-oriented (a subclass of key-value databases)  

• uses JSON documents binary-encoded in the BSON format 

MySQL NoSQL

Table Collection

Row Document

Column Field

{
"_id" : 1000020,
"myDict": {"a": 1, "b": 2},
"myArray": [1, 2, 3]

}

NOSQL DYNAMIC SCHEMA

Flexible data model
database schema

can evolve over time

MONGODB

• Robust Python interface (pymongo)

• Excellent scaling capabilities (that we do not plan on using yet but it is reassuring)

• Geospatial indexing allowing location based queries

• Strong community

• Rich query language MySQL NoSQL

SELECT * FROM users db.users.find()

INSERT INTO users (user_id, age, status)
VALUES ('bcd001', 45, ‘A')

db.users.insert({
 user_id: 'bcd001',
 age: 45,
 status: 'A'
})

STORAGE ENGINE

• MongoDB supports multiple storage engines

• Responsible for managing how data is stored (both in memory and on disk)

• Ampel uses WiredTiger:

• Supports native compression (default: snappy)

• Document-level lock

• Scales on multi-CPU architectures

INDEXING

• Indexes enable efficient execution of queries

• They are special data structures that store the values of selected fields in an easy to
traverse form

• Without indexes, MongoDB scans every document in a collection, to select those
documents that match the query statement  
 
On a laptop with a fast SSD, querying one photopoint out of 10M takes:  
 - more than 3 mins without indexing  
 - less than 1 ms with indexing

• Performances are best if indexes fit in RAM.  
WiredTiger compresses indexes by default  
Practical example: 10M photopoints, 3 indexed fields -> 250 MB RAM usage

DESIGN STRATEGIES

• Modeling Ampel data as documents is challenging  

• Meeting best practice recommendations is difficult since those can conflict with each other  

• Goals while designing the Ampel collections:  

• Limit the number of queries required for tasks

• Avoid I/O bottlenecks

• Optimize RAM usage

• Prevent race conditions

• The schema of the PastTransients collections will differ from the “online" collections  
as fewer constraints apply.

AMPEL SCHEMA

T2

Photopoints

Transients

Core collections

Events (Jobs and Logs)

Utility collection

T0 PROCESSING

Loader

Dispatcher

Policy

Filter
For

each T0
channel

AMPEL STATUS

• Structural work is completed  

• Alpha T0 functionality, lots of coding still required  

• Code pushed to AmpelProject GitHub:

https://github.com/AmpelProject/Ampel

https://github.com/AmpelProject/Ampel

WHAT’S NEXT ?

• T0 channels implementation (should be straightforward)

• T2 modules implementation or integration

• T3 modules (mix of individual and group efforts)

• Setup docker environment

• Setup main Ampel server

• Implement Ampel job scheduler

• Setup external Jupiter server

• Live testing when UW test alert stream is ready

BRAINSTORMING

• Define what fields require indexing  
Put differently: what efficient queries do we need for T2 and T3

• What to do with rejected alerts

THANK YOU

