ZTF QA meeting, 29 January 2021

CCD thickness investigation

Philippe Rosnet Laboratoire de Physique de Clermont Université Clermont Auvergne – CNRS/IN2P3

with

Roger Smith, Michael Coughlin and Michael Medford

1

Initial idea: use CCD fringing pattern from PCA analysis of I-band images (M. Medford) to deduce CCD thickness profile

CCD 01 fringing map

Point grid used by Michael Coughlin to count fringing from the CCD centre (CCD 01)

From fringing map to thickness profile

- Thickness variation : $\delta d = \pm n_{\text{Fringes}} \frac{\lambda}{2n_{Si}}$ with $\lambda = 800 \text{ nm}$ and $n_{Si} = 3.6$
- Interpolated 2D-map using 2D-spline technique to get the relative thickness profile

Comparison with e2v thickness variation measurements with local correction on corners (bottom left and right and top left)

Forward modelling: from thickness profile to fringing map

Transmitted intensity:
$$I = I_0 \frac{(1-r)^2}{1+r^2 - 2r \cos \Delta \phi}$$

with I_0 = incident light intensity r = interface reflexion coefficient $\Delta \phi = 2 \frac{2\pi}{\lambda} n_{Si} d \cos \beta$ d = thickness n_{Si} = Silcon refractive index β = angle of refraction

Default input values

• $d = 30 \, \mu m$

•
$$n_{\rm Si} = 3.6$$

•
$$\beta = 0$$

Forward modelling with profile from fringing pattern

Mean fringing maps with

- $\lambda = 800 \text{ nm}$
- $d = 30 \, \mu m$
- *r* = 0.5

- $730 < \lambda < 880 \text{ nm by}$ steps of 0.1 nm
- $d = 30 \, \mu m$
- *r* = 0.5

Forward modelling with e2v surface profile

From e2v data points to 2D-spline relative profile

Forward modelling with e2v surface profile

CCD 01 fringing map

- $730 < \lambda < 880 \text{ nm by}$ steps of 0.1 nm
- $d = 30 \, \mu m$
- *r* = 0.5

Forward modelling with profile deduce from LED ratio image = LED10 (653 nm) / LED13 (865 nm)

CCD 01 fringing map

- $730 < \lambda < 880 \text{ nm by}$ steps of 0.1 nm
- $d = 30 \, \mu m$
- *r* = 0.5

Mean fringing maps with

- $730 < \lambda < 880 \text{ nm by}$ steps of 1 nm
- $d = 30 \, \mu m$
- *r* = 0.5

- $\lambda = 800 \text{ nm}$
- $d = 30 \, \mu m$
- *r* = 0.1

Mean fringing maps with

- $730 < \lambda < 880 \text{ nm by}$ steps of 10 nm
- $d = 30 \, \mu m$
- *r* = 0.5

- $730 < \lambda < 880 \text{ nm by}$ steps of 0.01 nm
- $d = 30 \, \mu m$
- *r* = 0.5

Mean fringing maps with

- $730 < \lambda < 880 \text{ nm by}$ steps of 0.1 nm
- $d = 20 \, \mu m$
- *r* = 0.5

- $730 < \lambda < 880 \text{ nm by}$ steps of 0.1 nm
- $d = 30 \, \mu m$
- *r* = 0.1

0,4