CCD thickness investigation

Philippe Rosnet
Laboratoire de Physique de Clermont
Université Clermont Auvergne - CNRS/IN2P3
with

Roger Smith, Michael Coughlin and Michael Medford

Initial idea: use CCD fringing pattern from PCA analysis of I-band images (M. Medford) to deduce CCD thickness profile

CCD 01 fringing map

Point grid used by Michael Coughlin to count fringing from the CCD centre (CCD 01)

From fringing map to thickness profile

- Thickness variation : $\delta d= \pm n_{\text {Fringes }} \frac{\lambda}{2 n_{S i}}$ with $\lambda=800 \mathrm{~nm}$ and $n_{S i}=3.6$
- Interpolated 2D-map using 2D-spline technique to get the relative thickness profile

Comparison with e2v thickness variation measurements with local correction on corners (bottom left and right and top left)

Forward modelling: from thickness profile to fringing map
Transmitted intensity: $\quad I=I_{0} \frac{(1-r)^{2}}{1+r^{2}-2 r \cos \Delta \phi}$
with $\quad I_{0}=$ incident light intensity
$r=$ interface reflexion coefficient
$\Delta \phi=2 \frac{2 \pi}{\lambda} n_{\mathrm{Si}} d \cos \beta$
$d=$ thickness
$n_{\mathrm{Si}}=$ Silcon refractive index
$\beta=$ angle of refraction
Default input values

- $r=0.5$
- $d=30 \mu \mathrm{~m}$
- $n_{\mathrm{Si}}=3.6$
- $\beta=0$

```
\alpha= angle of incidence
```

$2 \mathrm{nd} \cos \beta=\left(\mathrm{m}-\frac{1}{2}\right) \lambda_{\mathrm{r}}$
Maximum reflection

2nd $\cos \beta=m \lambda_{t}$
Maximum transmission

Forward modelling with profile from fringing pattern

Mean fringing maps with

- $\lambda=800 \mathrm{~nm}$
- $d=30 \mu \mathrm{~m}$
- $r=0.5$

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 0.1 nm
- $d=30 \mu \mathrm{~m}$
- $r=0.5$

Forward modelling with e2v surface profile

From e2v data points to 2D-spline relative profile

Forward modelling with e2v surface profile

CCD 01 fringing map

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 0.1 nm
- $d=30 \mu \mathrm{~m}$
- $r=0.5$

Forward modelling with profile deduce from LED ratio image $=$ LED10 $(653 \mathrm{~nm})$ / LED13 (865 nm)

Forward modelling with profile from LED ratio image

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 0.1 nm
- $d=30 \mu \mathrm{~m}$
- $r=0.5$

Forward modelling with profile from LED ratio image

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 1 nm
- $d=30 \mu \mathrm{~m}$
- $r=0.5$

Mean fringing maps with

- $\lambda=800 \mathrm{~nm}$
- $d=30 \mu \mathrm{~m}$
- $r=0.1$

Forward modelling with profile from LED ratio image

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 10 nm
- $d=30 \mu \mathrm{~m}$
- $r=0.5$

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 0.01 nm
- $d=30 \mu \mathrm{~m}$
- $r=0.5$

Forward modelling with profile from LED ratio image

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 0.1 nm
- $d=20 \mu \mathrm{~m}$
- $r=0.5$

Mean fringing maps with

- $730<\lambda<880 \mathrm{~nm}$ by steps of 0.1 nm
- $d=30 \mu \mathrm{~m}$
- $r=0.1$

What next: try to take into account

- Sky spectrum
- CCD quantum efficiency

