The SNIa U

spectrum

The transient universe as seen by iPTF and ZTF Jakob Nordin

Nearby Supernova Factory I & II

I BI

- G. Alderina S. Bailev*
- K. Boone
- M. Childress* H. Fakhouri
- P. Fragrelius
- B. Hayden
- A. Kim
- I. Nordin
- S. Perlmutter P. Nugent
- D. Rubin*
- R. Scalzo*
- C. Saunders
- C. Sofiatti N. Suzuki*
- R. Thomas
- K. Runge

- C. Baltay D. Rabinowitz

IPNL

- N. Chotard Y. Copin
- G. Smadja
- R. Pereira*

I PNHF

- P. Antiloaus C. Balland
- S. Bongard
- F. Cellier-Holzem M. Kowalski
- A. Canto
- M. Fleury
 - I. Guy
 - R. Pain

E. Gangler P-F. Leget

- E. Pecontal
- E. Hadjyska
- E. Walker

CPPM/THCA

- D. Baugh I. Chen
- D. Fouchez
- C. Tao
- A. Tilquin

Bonn

- C. Buton*
- U. Feindt
- S. Lombardo
 - M. Rigault

MPA

- S. Benitez
- M. Sasdelli
- A. Sternberg
- S. Taubenberger

- W. Hillebrandt
- M. Kromer*

Outline

- The nU region
- Clues to a physical cause
- Remarks regarding lightcurve shape, litterature SNe and cosmology
- SNFactory results (if time permitting)
- Summary

Multi-wavelength?

Focus on narrow part of U-band (nU): ~3200-3600 Outline: nU Cause? X1 Litterature Cosmology SNFactory Summary

Multi-wavelength?

Focus on narrow part of U-band (nU): ~3200-3600 Outline: nU Cause? X1 Litterature Cosmology SNFactory Summary

Compilation of pre-peak spectra + rms

A closer look at two SNe

Physical cause - SYNAPPS

SYNAPPS (SYNOW) explanation in terms of Co (decayed Ni)

Physical cause - TARDIS

• TARDIS: Changing Ni fraction in W7 produce similar change Outline: nU Cause? X1 Litterature Cosmology SNFactory Summary

Physical cause - SYNAPPS II

Compatible SYNAPPS results

Quantifying nU as slope

• Weighted average of pre-peak obs. Outline: nU Cause? X1 Litterature Cosmology SNFactory Summary

nU parameterization

- Lightcurve width correlation
- Skinny SNe are never nU faint

nU in the litterature: SN2004dt

- Ground based spectra rarely go <3700 A.
- Space UV obserations have trigger delays (phase>0)
- Until resently, best case was SN2004dt
 - low ACS grism resolution

Outline: nU Cause? X1 Litterature Cosmology SNFactory Summary

Wang etal 2011

nU in the litterature: PS1-10afx

- PS1-10afx turns have all characteristics of nU-bright SNela
- One reason for the initial classification as non-la

Chornock etal 2013

Cosmology

- U variations independent of e.g. X1 and C
- SALT bias when relying on U-band
- Quantified in Saunders et al (in prep)

SNIFS @ UH 88

— INTEGRAL FIELD SPECTROSCOPY —

CCM extinction law works

- After accounting for Si, Ca variations
- For moderately reddened SNe
- In B,V,R

A local SFR magnitude bias

- Hα at the SN site related to *corrected* magnitude
- Cosmology bias if related to mass step

VARIATION IN THE SNE IA STANDARDIZED MAGNITUDE - THE STAR FORMING BIAS -

STAR FORMATION OF ITS LOCAL ENVIRONMENT

Outline: nU Cause? X1 Litterature Cosmology SNFactory Summary

Rigault etal 2013

Summary

- Variations in the ~3200 to 3600 region of SNela are systematic and caused by explosion differences (rather than e.g.extinction).
- SYNAPPS/TARDIS studies of SN pairs imply that nU probes the amount of unstable Fe elements
- Fast declining SNe are never U faint (~ never Co rich)
- No appropriate models for high-z cosmology using U-band

Stay tuned for iPTF13asv tomorrow!

Backup

nU parameterization

nU = evolution of flux(3300-3400) / flux(3400-3500)

Backup

ENVIRONMENTAL PERSPECTIVES

Host-SN2005L

- GLOBAL VS. LOCAL -

GLOBALLY

LOCALLY

Star-forming environment

Passive Environment Older Stars

THE SF-BIAS AND GLOBAL ANALYSES - ON THE ORIGIN OF THE MASS-STEP -

GALAXIES

More massives = Greater Fraction of old stars

Older Environment = Brighter (SF-bias)

SUPERNOVAE

More Massive Galaxies should host Brighter Standardized Type Ia Supernovae

Extinction law construction

Ist step: Decompose the Hubble residuals into intrinsic variabilities and relative

absorptions δA_{λ}

$$\delta A_{\lambda} = \Delta \mu_{\lambda} - \frac{\delta I}{\delta I}$$

Two intrinsic corrections

 2^{nd} step: Use the relation between the δA_{λ} to construct the law

Covariance matrix

Why?

- Using the measured covariance matrix only: X²>>1
- Extra dispersion matrix needed to set the X² to 1 (as in all cosmological fits with SNe Ia)

How?

- Using the residual $r_{\lambda}(i)$ to the γ_{λ} fit to construct the additionnal covariance matrix
- + Introduction of a color dispersion, not usually used

Results

- Anti-correlation mostly increases with the wavelength differences
- + Same pattern for broad filters and narrow band (spectral) correlations

New analyses

Twins analysis

Concept — SN la Twins enable an extremely accurate distance measurement.

FAKHOURI IN PREP.

Gaussian Process lightcurve fitting

Concept – Gaussian process to reconstruct lightcurves at any redshift. GP trained on SNfactory's spectra.

KIM ET AL. 2013

Twin SNe Are Even Better

SNF20080623-001 & SNF20070810-004*Warp

SNF20070725-001 & SNF20080522-011*Warp

- Compare SNe that are spectroscopic "twins"
- Used blind analysis methods
- Dispersion is 0.08 mag
- 2x better than SALT!
- As good as infrared!

Fakhouri (SNfactory)