iPTF13ajg: a hydrogen-poor superluminous supernova at z=0.74

Paul Vreeswijk (Weizmann), Sandra Savaglio (MPE), Avishay Gal-Yam (Weizmann), Annalisa De Cia (Weizmann), Robert Quimby (Kavli IPMU), Mark Sullivan (Southhampton), Brad Cenko (GSFC), Dan Perley (Caltech), Adam Rubin (Weizmann), Iair Arcavi (LCOGT/KITP) + iPTF collaboration

Hydrogen-poor SLSNe

- discovered thanks to non-targeted SN surveys probing a large volume: PTF, CRTS, PANSTARRS
- typical redshift: z~0.3, up to z~4 (e.g. Cooke et al. 2012)
- > rare: ~ 10^{-8} Mpc⁻³ yr⁻¹ vs. ~ 10^{-5} Mpc⁻³ yr⁻¹ CCSNe
- extremely bright transients, with L_{peak}~10⁴⁴ erg/s and E_{rad}~10⁵¹ erg (see Gal-Yam et al. 2012)
- Iow luminosity, low stellar-mass host galaxies, with high specific SFR (see Lunnan et al. 2013)
- energy source debated: interaction with circumstellar shell? magnetar?

Lightcurves of iPTF13ajg

Absolute lightcurves of type I SLSNe

adapted from Quimby et al. (2011)

Keck/VLT spectra of iPTF13ajg

iPTF13ajg: broad UV absorption lines

Keck/LRIS imaging of the host galaxy (April 201)

Rs=24.84 ± 0.09

Rest-frame wavelength (μm)

Rest-frame wavelength (μ m)

Rest-frame wavelength (μ m)

Rest-frame wavelength (μm) 1 8 cm^{-2} Å⁻¹) 6 °' erg 4 $Flux (10^{-19})$ 2 0 1 Observed wavelength (μm)

Rest-frame wavelength (μm)

iPTF13ajg: comparison with Lunnan et al.

iPTF13ajg: narrow UV absorption lines

- single narrow component
- log N (Mg I) = 11.9
- log N (Mg II) =14.7
- log N (Fe II) = 14.3

Mg I and Mg II strength in GRBs and iPTF SLSNe

iPTF13ajg: narrow UV absorption lines

no Fe II or Ni II fine-structure lines detected

iPTF 13ajg summary

- ▶ a hydrogen-poor SLSN at redshift z=0.74
- M_u =-22.5, $L_{bol,peak}$ =3x10⁴⁴ erg s⁻¹, E_{rad} =1.3x10⁵¹ erg
- ▶ host galaxy: $M_B = -18.4$, with a stellar mass of ~ $10^9 M_{\odot}$, but with a low star formation rate (SFR_[OII] < 0.05 M_☉ yr⁻¹)
- X-shooter reveals narrow Mg I, Mg II and Fe II absorption lines, whose strength is low compared to GRB host galaxies
- fine-structure modelling: absorbing gas at least 50pc away from SN
- on-going X-shooter program to observe single iPTF SLSN this semester: 14aon!

iPTF 14aon: X-shooter triggered

r = 19.4 (18.0 d) Upload New Photometry

z = 0.49 Upload New Spectroscopy DM (approximate) = 42.22

iPTF 14aon: yesterday's observations

Fe II column density in different environments

adapted from Savaglio et al. (2004)

normalized flux