Early-time light curves of Type lb/c supernovae from the SDSS-II Supernova Survey

(Taddia et al. 2014, A&A, resubmitted)

Francesco Taddia

The Oskar Klein Centre, Stockholm University, Astronomy department

Outline

1) The SDSS-II SN lb/c sample

2) Early light-curve shape of SNe Ib/c (rise time, Δm_{15})

3) Bolometric properties (L, T_{BB} , R_{ph}) and explosion parameters (E_{κ} , M_{ei} , ${}^{56}Ni$ mass, R)

4) ⁵⁶Ni mixing and early-time plateau

5) Future iPTF/ZTF observations of SNe lb/c

SDSS-II sample of SNe lb/c

- 20 SNe: 9 SNe Ib, 6 SNe Ic, 5 SNe Ic-BL
- Light curves and spectra released by Sako et al. (2014)
- Data are well-suited to study the early phase of SNe lb/c:
- 1) multi-band observations: ugriz filters
- 2) High cadence: ~4 days
- 3) Availability of pre-explosion images
- 4) Average follow-up duration: ~2 months

ugriz Light curves of SDSS-II SNe Ib/c

Light curve fit

Light curve properties derived from fit: Epoch of maximum light, rise time, Δm_{10} , Δm_{15}

Early light-curve shape of SNe lb/c

Peak epoch for different filters

Given the epoch of maximum light in one filter it is possible to establish the epoch of maximum of other filters with little uncertainty _____

Rise time

Helium-poor (Ic, Ic-BL) SNe rise faster than helium-rich (Ib, IIb) SNe

Well-constrained R/r band light-curve rise-times and Δm_{-10} for SNe IIb, Ib, Ic and Ic-BL in the literature.

SN	Туре	t _{rise}	Δm_{-10}	Ref.
		(days)	(mag)	
1993J	IIb	22.53(3.24)	0.77(0.15)	Kumar et al. (2013); Richmond et al. (1994)
2008ax	IIb	21.50(0.40)	0.63(0.15)	Taubenberger et al. (2011)
2011dh	IIb	21.86(0.23)	0.61(0.10)	Ergon et al. (2014)
2011fu	IIb	26.40(2.90)	0.42(0.15)	Kumar et al. (2013)
1998dt	Ib	17.60(3.00)	1.00(0.10)	Matheson et al. (2001)
1999ex	Ib	20.49(0.52)	0.38(0.10)	Stritzinger et al. (2002);
2004dk	Ib	23.75(1.55)	0.50(0.10)	Drout et al. (2011)
2005hm	Ib	21.06(1.17)	0.76(0.03)	This paper
2006fo	Ib		0.38(0.01)	This paper
2006lc	Ib	26.41(5.18)	1.08(0.02)	This paper
2007Y	Ib	21.00(0.50)	0.67(0.10)	Stritzinger et al. (2009)
2007nc	Ib		0.80(0.15)	This paper
2007uy	Ib	21.72(2.50)		Roy et al. (2013), explosion date from modelling of radio data
2008D	Ib	20.75(1.00)	0.31(0.10)	Soderberg et al. (2008); Malesani et al. (2009)
2009jf	Ib	24.50(1.00)	0.34(0.10)	Valenti et al. (2011), good pre-explosion limit
2011ei	Ib	19.50(2.50)	0.69(0.20)	Milisavljevic et al. (2013)
iPTF 13bvn	Ib	18.55(0.70)	0.57(0.10)	(Fremling et al. 2014)
1994I	Ic	10.01(1.02)	2.50(0.50)	Richmond et al. (1996)
2004aw	Ic		0.27(0.05)	Taubenberger et al. (2006)
2004dn	Ic		0.60(0.15)	Drout et al. (2011)
2004fe	Ic		1.20(0.10)	Drout et al. (2011)
2007gr	Ic	15.50(3.02)	0.73(0.04)	Hunter et al. (2009)
2007ms	Ic		0.56(0.08)	This paper
2007qv	Ic	8.72(3.08)		This paper
2007qx	Ic		0.62(0.17)	This paper
PTF 10vgv	Ic	11.91(0.85)	2.63(0.50)	Corsi et al. (2012)
2013dk	Ic		1.33(0.20)	Elias-Rosa et al. (2013), Δm_{-10} scaled to r from V
1998bw	Ic-BL	17.50(0.50)	0.68(0.15)	Clocchiatti et al. (2011)
2003jd	Ic-BL	16.20(1.00)		Valenti et al. (2008), only error on max epoch
2005kr	Ic-BL	15.40(1.45)	1.18(0.16)	This paper
14475	Ic-BL	14.36(2.58)	1.15(0.31)	This paper
2006aj	Ic-BL	12.30(0.50)	2.40(0.50)	Ferrero et al. (2007), Δm_{-10} is extrapolated
2006nx	Ic-BL	14.99(1.41)	1.10(0.12)	This paper
2009bb	Ic-BL	14.65(1.25)	1.37(0.20)	Pignata et al. (2011)
2010bh	Ic-BL	8.00(1.00)	2.00(0.50)	Bufano et al. (2012), Δm_{-8}
PTF 12gzk	Ic-BL	20.74(0.62)	0.45(0.10)	Ben-Ami et al. (2012)

Bolometric properties and explosion parameters

Bolometric light curves

Explosion parameters: E_{κ} , M_{ei} , $M(^{56}Ni)$

1) Arnett fit to the bolometric light curves to obtain E_{κ} , M_{ei} , $M(^{56}Ni)$

2) SNe Ic-BL produce more ⁵⁶Ni and are more energetic than SNe Ib and Ic.

3) Average E_{κ} , M_{ej} , $M(^{56}Ni)$ values are similar to those found by similar studies (Drout et al. 2011, Cano 2013)

Temperature

1) We obtain the temperature evolution from blackbody fits on the spectral energy distributions.

2) Typical T=8000 K at maximum light.

Photospheric radius

1) Typical $R_{ph} = 10^{15}$ cm at maximum light. 2) The evolution of R_{ph} is crucial to establish the explosion date.

Constraining the explosion date

R_{ph} evolution shows that most of our targets were discovered soon after explosion

Early-time plateau and ⁵⁶Ni mixing

1) Dessart et al. (2011) predict a dark phase of several days after explosion if the ⁵⁶Ni is not mixed to the outer layers

2) **Dessart et al. (2012):** "The lack of He I lines in SNe Ic may result from a variety of causes: A genuine helium deficiency; strongly-asymmetric mixing; **weak mixing**; or a more massive, perhaps single, progenitor characterized by a larger oxygenrich core. **Helium deficiency is not a prerequisite for SNe Ic.**"

1) We do NOT detect any plateau for SNe Ic and Ic-BL

2) We infer strong ⁵⁶Ni mixing for our helium-poor events, based on the limits of the plateau duration. Therefore, the spectral appearance of SNe Ic must be due to a real lack of their helium envelope.

3) By fitting the rising part of the light curve with a power-law, we obtain $\alpha < 2$ for the majority of the targets, again implying strong mixing (Piro & Nakar 2013).

4) For a single SN Ib (2006lc) we detect a faint plateau, suggesting that in this SN the ⁵⁶Ni is weakly mixed

Outlook for iPTF/ZTF

1) With higher cadence we will be able to detect the shock break-out cooling tail, crucial to determine the progenitor radius with good precision (see e.g., Bersten et al. 2011, 2013). In our work we have two possible detections of this phase for SNe 2005hm and 2007qx.

2) It is important to constrain the temperature to construct bolometric light curves that can be compared to theoretical models. This is why **multi-band** (at least *g* and *r*) observations and/or spectral observations at early times (SED machine) will be important to study the upcoming SE-SNe discovered by iPTF/ZTF.

3) The **detection of a possible dark plateau phase** requires that the observations are deep enough to detect luminosities of 10⁴¹erg s⁻¹ (or M~-13 mag). This means limiting apparent magnitudes of ~22 mag for objects at distances of ~100 Mpc. For iPTF and ZTF the best strategy might be to **increase the cadence** rather than the individual exposure times **to reach a combined limiting magnitude of r~23 mag**, required to discover (or rule out) more dark plateaus of SNe lb/c.

4) High-cadence spectral observations will be important to make a **proper sub-classification of SE-SNe**, e.g., to differentiate between Ib and IIb and to clarify the amount of He I in the spectra as a function of time.

A few examples in the PTF archive

415 419 405 400 395 390 385 380 375 370

Days Ago

20.5

Thanks!

Light-curve templates

Conclusions on the bolometric properties

1) ⁵⁶Ni mass estimates of SNe Ib/Ic/Ic-BL give typical values of 0.3, 0.3, 0.6 M_{sun} , respectively. Energies are on the order 1.4-1.7 foe for SNe Ib and Ic and about one order of magnitude larger for SNe Ic-BL. Typical ejecta masses for SNe Ib/Ic/Ic-BL are 3.4, 5.7, 6.1 M_{sun}).

2) Limits on the early-plateau duration, light curve shape on the rise and early temperature evolution imply strong ⁵⁶Ni mixing for most SNe Ic and Ic-BL. Therefore, the cause of the spectral difference between SNe Ic and Ib sub-types is not well explained by nickel mixing, but is better understood in the context of a real lack of helium in SN Ic progenitors.

3) We detect an early plateau in the case of SN Ib 2006lc, and radiation from the shock cooling tail in the early light curves of SNe 2005hm and 2007qx.

4) The best limits from PN13 model on the progenitor radii suggest that SNe Ib/c arise from compact objects.

Summary of the light curve shape properties:

1) Both SNe Ib and SNe Ic/Ic-BL peak first in the bluer and then successively in the redder bands.

2) SNe Ic and Ic-BL rise to maximum in a shorter time than SNe Ib and IIb, a result that is statistically significant in the *r* band.

3) The steepness of the light curves after maximum (Δm_{15}) is similar for the different SE SN types.

4) The steepness of the light curves on the rise $(\Delta m_{_{10}})$ is larger for SNe Ic-BL and Ic than for SNe Ib and IIb. $\Delta m_{_{15}}$ and $\Delta m_{_{-10}}$ are larger in the bluer bands.

Bolometric light curve shape

