
Zwicky Transient Filter Language:
Specification and Explanation

Chris Cannella

October 16, 2017

Introduction

The Zwicky Transient Filter Language (ZTFL) is a Domain Specific Lan-
guage (DSL) created to provide users of the GROWTH Transient Marshal to
define their own programable filters to determine the relevance of astrophysi-
cal observations for their particular scientific interests. In creating ZTFL, we
have attempted to balance the convenience of the language for its users with
our limits of what features we can implement and maintain. These limita-
tions have driven most of ZTFL’s design. The language itself is a blend of C
like syntax, for ease of parsing, and Python like syntax, where we could easily
retain Python’s expressive features. A ZTFL compiler is intended to be em-
bedded within a Python program to produce a function within the program
that is provided by a user created string containing a valid ZTFL program
and had not been defined within the program itself. This document serves
to specificy ZTFL itself, explain aspects of ZTFL’s design, provide details of
how we currently implement ZTFL in the GROWTH Marshal, and provide
some context for how ZTFL serves the current needs of the GROWTH mar-
shal and perhaps the needs of similar tools in the future. We hope that this
guide can introduce new users of ZTFL to the language and also describe
our implementation of ZTFL for others looking to tackle similar problems.

Lexical Elements of ZTFL

We will first begin with an explanation of the superficial details of what
goes into a ZTFL program. In ZTFL, whitespace is ignored aside from sep-
arating distinct lexical tokens in the language. Thus, the fragments “word

1

word”, “word\tword”, and “word\nword” are identical within a ZTFL pro-
gram, but are not identical to the fragment “wordword”. This is in contrast
to Python, wherein whitespace also carries semantic information about scope.
In ZTFL, scope information is provided by curly brackets, “{” and “}”, and
individual statements are separated by semicolons, “;”. These C like ele-
ments are used to simplify the task of parsing ZTFL programs, as copying
Python’s indentation dependent scoping would have required a bit more work
to parse properly. ZTFL is also case insensitive for all tokens not contained
within a string, so the fragments “word”, “WORD”, “wOrD”, etc. are identical
within a ZTFL program, though “"word"” and "WORD"” are not identical to
each other.

Case insensitivity was introduced to simplify the parsing of reserved key-
words in ZTFL. Currently there are 12 reserved keywords in ZTFL:

“observation”, ”“filteron”, “annotate”, “test”,
“while”, “for”, “if”, “else”,

“and”, “or”, “not”, “in”

ZTFL variable identifiers may not be chosen from the set of reserved key-
words, but are otherwise determined by the regular expression
“[a-zA-Z][a-zA-Z0-9]*”, in keeping with Python’s rules for identifier names.
Thus, identifiers must start with either a letter or an underscore, which can
then be followed by any combination of letters, numbers, and underscores.

ZTFL has three fundamental data types: booleans, numbers, and strings.
The ZTFL booleans are simply “true” and “false”. ZTFL numbers are
determined by the regular expression “\d+\.?\d*”, so all numbers must be
preceded by a sequence of one or more numeric digits, followed optionally
by a decimal point, which may be followed by futher numeric digits. So the
fragments “ 3 ”, “ 3. ”, and “ 3.14 ” represent numbers in a ZTFL pro-
gram, while “ 3.1.4 ” and “ .14 ” do not. ZTFL strings are any symbols
contained within the scope of two quotation marks, as defined by the regular
expression “\”.*?\””. As stated above, ZTFL strings are exempted from the
case insensitivity of the language as a whole and will retain their original
casing.

2

Numerous symbolic operators are defined within ZTFL. In no particular
order, these operators are:

“==”, “!=”, “>=”, “<=”, “>”, “<”,
“+”, “-”, “*”, “/”, “**”,

“=”, “+=”, “-=”, “*=”, “/=”

Finally, a few grouping and punctuating symbols are used in ZTFL:

“{”, “}”, “(”, “)”, “[”, “]”, “:”, “;”

These represent all of the rules related to the formation of valid lexical
elements in ZTFL.

Context Free Grammar of ZTFL

We will now describe a context free grammar of ZTFL that defines all
valid ZTFL programs. As a quick summary of how to interpret the context
free grammar, each statement within the grammar outlines a possible pro-
duction from an abstract non-terminal (in English, a non-terminal could be
a noun, a verb, or a sentence) to one or more possible sets of abstract non-
terminals and concrete terminals (in English, ’dog’, ’bark’, or noun verb). A
program that the user writes is entirely composed of terminals and for the
program to be considered valid, it must be attainable by some sequence of
productions within the context free grammar. Here, non-terminals will be
represented in italic font, while terminals will be represented by typewriter

font. Underlined italic font is used to represent lexical elements recognized
by the regular expressions above. Variable idenitifiers, numbers, booleans,
and strings will therefore be represented by name, number , bool , and string ,
respectively. Multiple productions that can result from the same original
non-terminal will be set on new lines.

Each ZTFL program is an instance of the statementlist, which may decom-
pose into a combination of the statementlist and the statementblock.

statementlist := statementlist statementblock

statementblock

3

statementblock := {statementlist}
while (expression) {statementlist}
if (expression) {statementlist}
if (expression) {statementlist} else {statementlist}
for (expression; expression; expression) {statementlist}
for name in expression {statementlist}
statement ;

statement := expression

filteron expression

annotate string expression

expression := (expression)

expression[expression]

not expression

-expression

expression + expression

expression - expression

expression * expression

expression / expression

expression ** expression

expression == expression

expression != expression

expression <= expression

expression >= expression

expression < expression

expression > expression

expression and expression

expression or expression

expression in expression

name = expression

name += expression

name -= expression

name *= expression

name /= expression

name(expression)

name

number

bool

string

observation

4

The Semantic Evaluation of a ZTFL Program

A valid ZTFL program will be transformed by the ZTFL compiler into a
string of Python to be executed by the compiler’s parent program at a later
time. The mathematical operations desired by the user are not evaluated
within ZTFL or by the ZTFL compiler and are instead translated into their
Python equivalents and handed off for the parent progam to eventually sort
out. The ZTFL compiler internally produces a tree representing an input
program’s structure as determined by the grammar described above with
nodes for each non-terminal in the program. The compiler descends the tree
in a depth-first manner, applying a semantic evaluation function, σ, to each
node as it traverses the tree. The semantic evaluation function takes a node of
the trees as an input (I’m running out of convenient bracketing symbols, let’s
use # node# to represent a node in the tree) and outputs a plain text string.
Since Python also requires whitespace indentation, I will use the modifier ∗

to represent a properly indented string (in this case, all lines within indented
by four spaces). String concatenation will be represented by the operator
‖. Following the format of the context free grammar above, the semantic
evalutation function is defined as follows:

σ(#statementlist#) :=σ(#statementlist#) ‖ \n ‖ σ(#statementblock#)

σ(#statementblock#)

σ(#statementblock#) :=σ(#statementlist#)

σ(#while(expression) {statementlist}#)

σ(#if (expression) {statementlist}#)

σ(#if (expression) {statementlist} else {statementlist}#)

σ(#for (expression; expression; expression) {statementlist}#)

σ(#for name in expression {statementlist}#)

σ(#statement#) ‖ \n

σ(#while (expression) {statementlist}#) := while ‖ σ(#expression#) ‖ : \n
‖ σ(#statementlist#)∗

σ(#if (expression) {statementlist}#) := if ‖ σ(#expression#) ‖ : \n
‖ σ(#statementlist#)∗

σ(#if (expression) {statementlist1} else {statementlist2}#) := if ‖ σ(#expression#) ‖ : \n
‖ σ(#statementlist1#)∗

‖ else: \n ‖ σ(#statementlist2#)∗

5

σ(#for (expression1; expression2; expression3) {statementlist}#) := σ(#expression1#) ‖ \n
‖ while ‖ σ(#expression2#) ‖ : \n
‖ σ(#statementlist#)∗

‖ σ(#expression3#)∗ ‖ \n

σ(#for name in expression {statementlist}#) := for ‖ σ(#name#) ‖ in ‖ σ(#expression#) ‖ : \n
‖ σ(#statementlist#)∗

σ(#statement#) :=σ(#expression#) ‖ \n
σ(#filteron expression#)

σ(#annotate string expression#)

σ(#filteron expression#) := filteron = ‖ σ(#expression#) ‖ \n

σ(#annotate string expression#) := annotations[‖ σ(#string#) ‖] = ‖ σ(#expression#) ‖ \n

σ(#expression#) :=expression

σ(#name(expression)#)

σ(#observation#)

σ(#name(expression)#) := namespace(name) ‖ name ‖ (‖ σ(#expression#) ‖)

Where namespace(name) returns math. for all input values of name with a single exception. namespace(len)
returns an empty string.

σ(#observation#) := current observation

After the ZTFL compiler produces a translation of the original ZTFL pro-
gram, it finally appends prefixing and suffixing strings to the program to
produce a Python executable string. This final operation acts as follows:

σ(program) := prefix ‖ σ(#statementlisthead#)∗ ‖ suffix

The prefixing string is simply:

def compiledFunction(current observation):\n ‖
filteron = False\n ‖
annotations={}\n

6

The suffixing string is simply:

return filteron,annotations\n

These relations fully specify the current behavior of the ZTFL compiler.

An Example Program

We will now provide an example ZTFL program and its resulting Python
translation to illustrate the general behavior of the ZTFL compiler. The
scientific content of the program itself is quite meaningless. We suppose that
a completely arbitrary example is somewhat well suited for demonstrating
the ability of ZTFL in handling all of the possible unknown physically mean-
ingful calculations desired by its users (“Well, if it can work with all of that
nonsense, it surely will work for my uses...”).

7

Original ZTFL program:

grueBleen = False;

hasGrue = False;

hasBleen = False;

transitionDate = 2458022;

maxGrue = 0.0;

maxBleen = 0.0;

prevCandidates = observation["prv candidates"];

m now = observation["candidate"]["magpsf"];

t now = observation["candidate"]["jd"];

b now = observation["candidate"]["fid"];

if (b now == 1){
if (t now < transitionDate){

hasGrue = True;

maxGrue = m now;

}
else {

hasBleen = True;

maxBleen = m now;

}
}
for candidate in prevCandidates {

maxBleen = candidate["magpsf"];

if (candidate["fid"] == 1){
if (candidate["jd"] < transitionDate) {

if (hasGrue){
if (candidate["magpsf"] < maxGrue) {

maxGrue = candidate["magpsf"];

}
}
else {

hasGrue = True;

maxGrue = candidate["magpsf"];

}
}
else {

if (hasBleen){
if (candidate["magpsf"] < maxBleen) {

maxBleen = candidate["magpsf"];

}
}
else {

hasBleen = True;

maxBleen = candidate["magpsf"];

}
}

}
}
grueBleen = hasGrue and hasBleen;

annotate "grue" maxGrue;

annotate "bleen" maxBleen;

filteron grueBleen;

8

Python translated output:

def compiledFunction(current observation):

filteron = False

annotations={}
gruebleen = False

hasgrue = False

hasbleen = False

transitiondate = 2458022

maxgrue = 0.0

maxbleen = 0.0

prevcandidates = current observation[’prv candidates’]

m now = current observation[’candidate’][’magpsf’]

t now = current observation[’candidate’][’jd’]

b now = current observation[’candidate’][’fid’]

if (b now == 1):

if (t now < transitiondate):

hasgrue = True

maxgrue = m now

else:

hasbleen = True

maxbleen = m now

for candidate in prevcandidates:

maxbleen = candidate[’magpsf’]

if (candidate[’fid’] == 1):

if (candidate[’jd’] < transitiondate):

if (hasgrue):

if (candidate[’magpsf’] < maxgrue):

maxgrue = candidate[’magpsf’]

else:

hasgrue = True

maxgrue = candidate[’magpsf’]

else:

if (hasbleen):

if (candidate[’magpsf’] < maxbleen):

maxbleen = candidate[’magpsf’]

else:

hasbleen = True

maxbleen = candidate[’magpsf’]

gruebleen = hasgrue and hasbleen

annotations[’grue’] = maxgrue

annotations[’bleen’] = maxbleen

filteron = gruebleen

return filteron,annotations

9

Implementation of the ZTFL Compiler

The ZTFL compiler is curretly built using the Python Lex-Yacc module
(PLY). For the GROWTH marshal, we embed the compiler as a method
of a FilterInterpreter object. After the FilterInterpreter compiles a ZTFL
program, the Python translated output string is saved as a property of the
FilterInterpreter instance. To render the Python translated output as an ex-
ecutable function within the parent program, another method within the Fil-
terInterpreter instance is called. This final method simply appends the suffix
self.compiledFunction = compiledFunction\n to the Python translated
string and calls Python’s built-in exec() function on the compiler’s out-
put. exec creates a local defined function called compiledFunction within
the scope of the method, as specified by the original ZTFL program, and
set’s the FilterInterpreter’s compiledFunction property to the newly de-
fined function. This effectively sets up compiledFunction as a method of
the FilterInterpreter object, which can then be easily called by the FilterIn-
terpreter’s parent program.

The general use is as follows. A set of user defined ZTFL programs are
created to define each user’s broad criteria for what they would find inter-
esting to look into. A FilterInterpreter object is created for each ZTFL
program and compiles its corresponding program. A list of candidate data
is brought in with elements whose data is accessible using either Python’s
list or dictionary syntax (they do not need to strictly be dictionaries or lists,
but simply accessible using the same syntax as with a dictionary or a list).
For each candidate within the candidate list, the candidate is used as the
current observation argument for the newly created compiledFunction

method of each FilterInterpreter instance. Each compiledFunction returns
two outputs, filteron and annotations. filteron just gives a yea or
nea response about whether the user is interested in the input candidate.
annotations is a dictionary that can contain the user’s intermediate scratch
work used in deciding whether they are interested in the candidate. If a user
is not interested in a given candidate, the returned annotations are simply
discarded and the user is never notified of the existence of the rejected can-
didate. If the user is interested in a candidate, we then pass the candidate
over to the user along with their filter’s computed annotations. These an-
notations can then be used as the basis for sorting and prioritizing a given
user’s list of interesting candidates (perhaps not necessary when a user can

10

personally review all of their interesting candidates, but certainly very useful
if the influx of candidates is particularly overwhelming).

The General Problem

The iPTF, GROWTH, and (eventual) ZTF marshals exist as tools for their
users to view, retreive, and contribute data on astrophysical objects according
to the users’ own interests and desires. With improved instruments, the rate
of objects being added to these marshals has increased and is expected to
continue increasing. In the iPTF marshal, all users had the ability to interact
with every object added to the marshal. As the rate of object detections
increases, it is expected that users would need to devote more time to simply
finding their given objects of interest within a growing pile of irrelevant junk
(from their perspective), leaving less time to study those objects of interest.
It is clear that some method of filtering incoming objects is needed to limit
the clutter of the marshal and maintain the productivity of the marshal’s
users.

In addition to the increased rate of object input to the marshal, the mar-
shal’s user base has expanded and diversified. The iPTF transient marshal
was intended to be used by a relatively unified group of researchers and there-
fore has some in-built bias to be especially useful to those researchers (there
is a notable emphasis on optical observations and, of course, time domain
astronomy specific parameters and terminology). We expect that the user
base will expand to include users who are interested in a variety of different
types of objects and rely on their own unique sets of physical parameters and
terminology. One set of the marshal’s users might find no use or interest in
the objects studied by another set of users. They might also find no reason to
use the parameters or terminology of any other set of users on the marshal.
So it is also clear that a method of providing user specific filtering is needed.

The problem faced by the current marshal is straightforward. We have a
single input stream of objects and some set of users who have different needs
and we need to hand off objects to the users who will find them interesting.
It appears that ZTFL can effectively resolve this problem.

11

Alternative Solutions

There are a few possible alternatives to using ZTFL. I will briefly run
through these and (perhaps a bit unfairly) state why the ZTFL set up is
superior. All of these alternatives can, in principle, pass off the right objects
to the right people, but their implementations carry some undesirable risks
or obligations for the maintenance of the marshal as a whole.

A very simple alternative is to create a pre-defined set of filters and allow
our users to use some combination of those in-built filters. A weak objection
to this set up is that the pre-defined filter set will dictate some aspect of the
user’s behavior (in the extreme, if we only give a filter on object brightness,
our users will be forced into inheriting some emphasis on object brightness).
A stronger objection to this set up is that the marshal would be obligated
to maintain a useful filter set. If the user’s needs change or if a new obser-
vational parameter becomes included with our input data, we would need to
update the pre-defined filters. ZTFL leaves the filter design entirely up to
the users (with some limit on filter complexity). With ZTFL, the responsi-
bility of useful filter design falls entirely on our users. If our input stream
has additional parameters added later, our users will simply need to add ref-
erences to the added parameters to their filters, if they want to check that
parameter. While we would be obligated to update our users about changes
to the structure of our input data, we would not be obligated to modify the
marshal’s code base. With ZTFL, the code we use to implement filtering on
the day we roll out a marshal can be identical to the code used on the day
the marshal is retired.

Another alternative would be to allow user’s to define their filters using raw
Python. This would allow users to build whatever filter they could possibly
need. This would also allow our users to build filters that have free reign
within the marshal’s backend. It’s simply too risky to implement. With
ZTFL, the language is intentionally limited to prevent a user defined filter
from affecting anything other than the decision to show an object to the user.

We could also attempt to render raw Python safe to execute. Perhaps we
would allow our users to submit Python code, and then attempt to parse the
submitted code to detect and/or replace risky fragments. This is similar to

12

the approach taken with ZTFL, though from the opposite direction. This
alternative begins with the set of all valid Python programs and then begins
to carve out all of the programs that we would not want executed. ZTFL
essentially starts from the bottom and defines all of the programs that we
would allow to be executed. Using a small DSL like ZTFL allows us to define
a language wherein the only valid programs that will be passed through
the ZTFL compiler without error are those that we would be comfortable
executing for our users. If we were to attempt to parse or modify arbitrary
Python code, we would need to be sure that no risky program could be passed
on undetected. With ZTFL, it can be more easily proven that only acceptable
programs are passed through the compiler. ZTFL’s approach allows us to
make sure that we, in some sense, understand everything written within a
filter and only execute the filters that we understand.

The Drawbacks of ZTFL

ZTFL does come with a potential downside that I feel should be high-
lighted. Because the use of this sort of DSL is not particularly common for
tools in astrophysics and is also not a standard part of astrophysics educa-
tion, it is potentially less maintainable than other aspects of the marshal
codebase. ZTFL could become a black box system. This guide is perhaps a
bit too specific for the users of ZTFL. Hopefully it provides enough explana-
tion and details about how ZTFL is built to allow future maintenance and
modification of ZTFL for use on the marshal. The reading list below might
also help where this guide fails.

Reading List

Theories of Programming Languages, John Reynolds. This book was par-
ticularly helpful and provides some excellent examples of specifying and
defining aspects of programming languages. ZTFL is an extension of the
imperative language described in Chapter 2.

Compilers Principles, Techniques, and Tools, Aho et al.. This book con-
tains some handy explanations about compilers in general. Although it more
describes how PLY works, rather than ZTFL, it is less formal and more
approachable than Reynolds.

13

The PLY documentation, http://www.dabeaz.com/ply/ply.html. The
PLY documentation is, obviously, quite handy when starting to use PLY.
ZTFL also started out as one of the calculator examples and gradually ex-
panded to become a ZTFL to Python transpiler.

14

http://www.dabeaz.com/ply/ply.html

