> > | Papers citing ZTF
Papers using ZTF data:
- de la Fuente Marcos, C., & de la Fuente Marcos, R. (2020), On the orbital evolution of 2020 AV<SUB>2</SUB>, the first asteroid ever observed to go around the Sun inside the orbit of Venus. MNRAS, 494, L6.
- Wolf, M., et al. (2020), DX Cygni: A triple system with mass transfer. New Astronomy, 76, 101336.
- Srivastav, S., et al. (2020), The Lowest of the Low: Discovery of SN 2019gsc and the Nature of Faint Iax Supernovae. ApJL, 892, L24.
- Prentice, S. J., et al. (2020), The rise and fall of an extraordinary Ca-rich transient. The discovery of ATLAS19dqr/SN 2019bkc. A&A, 635, A186.
- Veras, D., et al. (2020), Constraining the origin of the planetary debris surrounding ZTF J0139+5245 through rotational fission of a triaxial asteroid. MNRAS, 492, 5291.
- Antier, S., et al. (2020), The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. MNRAS, 492, 3904.
- Giannini, T., et al. (2020), Do subsequent outbursts of the same EXor source present similar features?. arXiv e-prints, arXiv:2003.13383.
- Schwope, A. D., et al. (2020), Identification of 3XMM J000511.8+634018 as a new polar at P(orb)=133.5 min -- is it inside or outside the period gap?. arXiv e-prints, arXiv:2003.13647.
- Paillassa, M., et al. (2020), MAXIMASK and MAXITRACK: Two new tools for identifying contaminants in astronomical images using convolutional neural networks. A&A, 634, A48.
- Byrne, C. M., & Jeffery, C. S. (2020), Pulsation in faint blue stars. MNRAS, 492, 232.
- Lee, C.-H., et al. (2020), ZTF18abhjrcf: The First R Coronae Borealis Star from the Zwicky Transient Facility Public Survey. AJ, 159, 61.
- Lü, G., et al. (2020), Possible Formation Scenarios of ZTF J153932.16+502738.8—A Gravitational Source Close to the Peak of LISA's Sensitivity. ApJ, 890, 69.
- Ackley, K., et al. (2020), Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger S190814bv. arXiv e-prints, arXiv:2002.01950.
- Ni, Q., et al. (2020), An Extreme X-Ray Variability Event of a Weak-line Quasar. ApJL, 889, L37.
- Tomasella, L., et al. (2020), Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha?. arXiv e-prints, arXiv:2002.00393.
- Konyves-Toth, R., et al. (2020), Comparative Spectral Analysis of the Superluminous Supernova 2019neq. arXiv e-prints, arXiv:2002.08728.
- Lam, M. C., et al. (2020), First discovery of an ultra-cool white dwarf benchmark in common proper motion with an M dwarf. MNRAS, 493, 6001.
- Barbieri, C., et al. (2020), The kilonova of GW190425-like events. arXiv e-prints, arXiv:2002.09395.
- Chen, P., et al. (2020), The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr. ApJL, 889, L6.
- Williams, S. C., et al. (2020), AT 2019abn: multi-wavelength observations of the first 200 days. arXiv e-prints, arXiv:2001.08782.
- Stachie, C., et al. (2019), Differentiating the signal from the noise: towards optimal choices of wide field-of-view telescope transient follow-up. arXiv e-prints, arXiv:1912.06383.
- Liu, X.-L., et al. (2019), The UV/optical peak and X-ray brightening in TDE candidate AT2019azh: A case of stream-stream collision and delayed accretion. arXiv e-prints, arXiv:1912.06081.
- Skowron, D. M., et al. (2019), Mapping the Northern Galactic Disk Warp with Classical Cepheids. Acta Astron., 69, 305.
- Cai, Y.-Z., et al. (2019), The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon. A&A, 632, L6.
- Yang, Q., et al. (2019), An Unusual Mid-infrared Flare in a Type 2 AGN: An Obscured Turning-on AGN or Tidal Disruption Event?. ApJ, 885, 110.
- McBrien, O. R., et al. (2019), SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. ApJL, 885, L23.
- Muthukrishna, D., et al. (2019), RAPID: Early Classification of Explosive Transients Using Deep Learning. PASP, 131, 118002.
- Hu, B. X., et al. (2019), Spikey: A Search for Lensing Flares from SMBH Binaries. arXiv e-prints, arXiv:1910.05348.
- Bostroem, K. A., et al. (2019), Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. arXiv e-prints, arXiv:1909.07304.
- Singh, A., et al. (2019), SN 2018hna: 1987A-like Supernova with a Signature of Shock Breakout. ApJL, 882, L15.
- Marsset, M., et al. (2019), Active Asteroid (6478) Gault: A Blue Q-type Surface below the Dust?. ApJL, 882, L2.
- Vanderbosch, Z., et al. (2019), A White Dwarf with Transiting Circumstellar Material Far Outside Its Tidal Disruption Radius. arXiv e-prints, arXiv:1908.09839.
- Kawabata, M., et al. (2019), Type Ia SN 2019ein: New Insights into the Similarities and diversities among High-Velocity SNe Ia. arXiv e-prints, arXiv:1908.03001.
- Pasham, D. R., & Wevers, T. (2019), Gaia19bsj/AT2019evq: A “Changing-look” Quasar at a Redshift of 1.3. Research Notes of the American Astronomical Society, 3, 92.
- de la Fuente Marcos, C., & de la Fuente Marcos, R. (2019), Hot and Eccentric: The Discovery of 2019 LF6 as a New Step in the Quest for the Vatira Population. Research Notes of the American Astronomical Society, 3, 106.
- Godines, D., et al. (2019), A machine learning classifier for microlensing in wide-field surveys. Astronomy and Computing, 28, 100298.
- Hosseinzadeh, G., et al. (2019), Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. ApJL, 880, L4.
Papers which use ZTF for project planning:
- Zenati, Y., et al. (2020), Faint rapid red transients from neutron star-CO white dwarf mergers. MNRAS, 493, 3956.
- Almualla, M., et al. (2020), Dynamic Scheduling: Target of Opportunity Observations of Gravitational Wave Events. arXiv e-prints, arXiv:2003.09718.
- Howitt, G., et al. (2020), Luminous Red Novae: population models and future prospects. MNRAS, 492, 3229.
- Salmon, L., et al. (2020), Web application for galaxy-targeted follow-up of electromagnetic counterparts to gravitational wave sources. A&A, 634, A32.
- Guetta, D., et al. (2020), Constraining the fraction of core-collapse supernovae harbouring choked jets with high-energy neutrinos. MNRAS, 492, 843.
- Tu, Z.-L., et al. (2020), Superflares on Solar-type Stars from the First Year Observation of TESS. ApJ, 890, 46.
- Kawaguchi, K., et al. (2020), Constraint on the ejecta mass for a black hole-neutron star merger event candidate S190814bv. arXiv e-prints, arXiv:2002.01662.
- Cen, R. (2020), On Post-starburst Galaxies Dominating Tidal Disruption Events. ApJL, 888, L14.
- Carbone, D., & Corsi, A. (2020), An Optimized Radio Follow-up Strategy for Stripped-envelope Core-collapse Supernovae. ApJ, 889, 36.
- Graziani, R., et al. (2020), Peculiar velocity cosmology with type Ia supernovae. arXiv e-prints, arXiv:2001.09095.
- Kim, A. G., & Linder, E. V. (2020), Complementarity of peculiar velocity surveys and redshift space distortions for testing gravity. PRD, 101, 023516.
- Wyatt, S. D., et al. (2020), The Gravitational Wave Treasure Map: A Tool to Coordinate, Visualize, and Assess the Electromagnetic Follow-Up of Gravitational Wave Events. arXiv e-prints, arXiv:2001.00588.
- Boian, I., & Groh, J. H. (2020), Progenitors of early-time interacting supernovae. arXiv e-prints, arXiv:2001.07651.
- Danielski, C., et al. (2019), Circumbinary exoplanets and brown dwarfs with the Laser Interferometer Space Antenna. A&A, 632, A113.
- Coughlin, M. W., et al. (2019), Optimizing multitelescope observations of gravitational-wave counterparts. MNRAS, 489, 5775.
- Piro, A. L. (2019), Inferring the Presence of Tides in Detached White Dwarf Binaries. ApJl, 885, L2.
- Bell, K. J. (2019), The Search for Planet and Planetesimal Transits of White Dwarfs with the Zwicky Transient Facility. arXiv e-prints, arXiv:1911.07889.
- Greene, J. E., et al. (2019), Intermediate-Mass Black Holes. arXiv e-prints, arXiv:1911.09678.
- Levi, M., et al. (2019), The Dark Energy Spectroscopic Instrument (DESI). BAAS, 51, 57.
- Hijikawa, K., et al. (2019), The Rate of iPTF 14gqr like Ultra-stripped Supernovae and Binary Evolution Leading to Double Neutron Star Formation. ApJ, 882, 93.
- Agrawal, A., et al. (2019), Constraining neutrino mass and dark energy with peculiar velocities and lensing dispersions of Type Ia supernovae. PRD, 100, 063534.
- Wojtak, R., et al. (2019), Magnified or multiply imaged? - Search strategies for gravitationally lensed supernovae in wide-field surveys. MNRAS, 487, 3342.
- Kremer, K., et al. (2019), Tidal Disruptions of Stars by Black Hole Remnants in Dense Star Clusters. ApJ, 881, 75.
- Littenberg, T. B., & Cornish, N. J. (2019), Prospects for Gravitational Wave Measurement of ZTF J1539+5027. ApJL, 881, L43.
- Holder, J., et al. (2019), VERITAS Observations of Fast Radio Bursts. 36th International Cosmic Ray Conference (ICRC2019), 36, 698.
- Davenport, J. R. A. (2019), SETI in the Spatio-Temporal Survey Domain. arXiv e-prints, arXiv:1907.04443.
- Goldstein, D. A., et al. (2019), Rates and Properties of Supernovae Strongly Gravitationally Lensed by Elliptical Galaxies in Time-domain Imaging Surveys. ApJS, 243, 6.
- Hsieh, H. H., et al. (2019), Maximizing LSST Solar System Science: Approaches, Software Tools, and Infrastructure Needs. arXiv e-prints, arXiv:1906.11346.
- Stephan, A. P., et al. (2019), The Fate of Binaries in the Galactic Center: The Mundane and the Exotic. ApJ, 878, 58.
- Kim, A., et al. (2019), Testing Gravity Using Type Ia Supernovae Discovered by Next-Generation Wide-Field Imaging Surveys. BAAS, 51, 140.
- Eracleous, M., et al. (2019), An Arena for Multi-Messenger Astrophysics: Inspiral and Tidal Disruption of White Dwarfs by Massive Black Holes. BAAS, 51, 10.
- Scolnic, D., et al. (2019), The Next Generation of Cosmological Measurements with Type Ia Supernovae. Astro2020: Decadal Survey on Astronomy and Astrophysics, 2020, 270.
- D'Orazio, D. J., et al. (2019), Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies. MNRAS, 485, 4413.
- Garcia, K., et al. (2019), On the amount of peculiar velocity field information in supernovae from LSST and beyond. arXiv e-prints, arXiv:1905.00746.
- Yalinewich, A., et al. (2019), Shock breakouts from tidal disruption events. MNRAS, 482, 2872.
- Smith, K. W., et al. (2019), Lasair: The Transient Alert Broker for LSST:UK. Research Notes of the American Astronomical Society, 3, 26.
-- Przemek Mroz - 2020-04-17
Comments
|