Difference: PapersCitingZTF (1 vs. 2)

Revision 22020-05-15 - PrzemekMroz

Line: 1 to 1
 

Papers citing ZTF

Papers using ZTF data:

Changed:
<
<
  1. de la Fuente Marcos, C., & de la Fuente Marcos, R. (2020), On the orbital evolution of 2020 AV<SUB>2</SUB>, the first asteroid ever observed to go around the Sun inside the orbit of Venus. MNRAS, 494, L6.
  2. Wolf, M., et al. (2020), DX Cygni: A triple system with mass transfer. New Astronomy, 76, 101336.
  3. Srivastav, S., et al. (2020), The Lowest of the Low: Discovery of SN 2019gsc and the Nature of Faint Iax Supernovae. ApJL, 892, L24.
  4. Prentice, S. J., et al. (2020), The rise and fall of an extraordinary Ca-rich transient. The discovery of ATLAS19dqr/SN 2019bkc. A&A, 635, A186.
  5. Veras, D., et al. (2020), Constraining the origin of the planetary debris surrounding ZTF J0139+5245 through rotational fission of a triaxial asteroid. MNRAS, 492, 5291.
  6. Antier, S., et al. (2020), The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. MNRAS, 492, 3904.
  7. Giannini, T., et al. (2020), Do subsequent outbursts of the same EXor source present similar features?. arXiv e-prints, arXiv:2003.13383.
  8. Schwope, A. D., et al. (2020), Identification of 3XMM J000511.8+634018 as a new polar at P(orb)=133.5 min -- is it inside or outside the period gap?. arXiv e-prints, arXiv:2003.13647.
  9. Paillassa, M., et al. (2020), MAXIMASK and MAXITRACK: Two new tools for identifying contaminants in astronomical images using convolutional neural networks. A&A, 634, A48.
  10. Byrne, C. M., & Jeffery, C. S. (2020), Pulsation in faint blue stars. MNRAS, 492, 232.
  11. Lee, C.-H., et al. (2020), ZTF18abhjrcf: The First R Coronae Borealis Star from the Zwicky Transient Facility Public Survey. AJ, 159, 61.
  12. Lü, G., et al. (2020), Possible Formation Scenarios of ZTF J153932.16+502738.8—A Gravitational Source Close to the Peak of LISA's Sensitivity. ApJ, 890, 69.
  13. Ackley, K., et al. (2020), Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger S190814bv. arXiv e-prints, arXiv:2002.01950.
  14. Ni, Q., et al. (2020), An Extreme X-Ray Variability Event of a Weak-line Quasar. ApJL, 889, L37.
  15. Tomasella, L., et al. (2020), Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha?. arXiv e-prints, arXiv:2002.00393.
  16. Konyves-Toth, R., et al. (2020), Comparative Spectral Analysis of the Superluminous Supernova 2019neq. arXiv e-prints, arXiv:2002.08728.
  17. Lam, M. C., et al. (2020), First discovery of an ultra-cool white dwarf benchmark in common proper motion with an M dwarf. MNRAS, 493, 6001.
  18. Barbieri, C., et al. (2020), The kilonova of GW190425-like events. arXiv e-prints, arXiv:2002.09395.
  19. Chen, P., et al. (2020), The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr. ApJL, 889, L6.
  20. Williams, S. C., et al. (2020), AT 2019abn: multi-wavelength observations of the first 200 days. arXiv e-prints, arXiv:2001.08782.
  21. Stachie, C., et al. (2019), Differentiating the signal from the noise: towards optimal choices of wide field-of-view telescope transient follow-up. arXiv e-prints, arXiv:1912.06383.
  22. Liu, X.-L., et al. (2019), The UV/optical peak and X-ray brightening in TDE candidate AT2019azh: A case of stream-stream collision and delayed accretion. arXiv e-prints, arXiv:1912.06081.
  23. Skowron, D. M., et al. (2019), Mapping the Northern Galactic Disk Warp with Classical Cepheids. Acta Astron., 69, 305.
  24. Cai, Y.-Z., et al. (2019), The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon. A&A, 632, L6.
  25. Yang, Q., et al. (2019), An Unusual Mid-infrared Flare in a Type 2 AGN: An Obscured Turning-on AGN or Tidal Disruption Event?. ApJ, 885, 110.
  26. McBrien, O. R., et al. (2019), SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. ApJL, 885, L23.
  27. Muthukrishna, D., et al. (2019), RAPID: Early Classification of Explosive Transients Using Deep Learning. PASP, 131, 118002.
  28. Hu, B. X., et al. (2019), Spikey: A Search for Lensing Flares from SMBH Binaries. arXiv e-prints, arXiv:1910.05348.
  29. Bostroem, K. A., et al. (2019), Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. arXiv e-prints, arXiv:1909.07304.
  30. Singh, A., et al. (2019), SN 2018hna: 1987A-like Supernova with a Signature of Shock Breakout. ApJL, 882, L15.
  31. Marsset, M., et al. (2019), Active Asteroid (6478) Gault: A Blue Q-type Surface below the Dust?. ApJL, 882, L2.
  32. Vanderbosch, Z., et al. (2019), A White Dwarf with Transiting Circumstellar Material Far Outside Its Tidal Disruption Radius. arXiv e-prints, arXiv:1908.09839.
  33. Kawabata, M., et al. (2019), Type Ia SN 2019ein: New Insights into the Similarities and diversities among High-Velocity SNe Ia. arXiv e-prints, arXiv:1908.03001.
  34. Pasham, D. R., & Wevers, T. (2019), Gaia19bsj/AT2019evq: A “Changing-look” Quasar at a Redshift of 1.3. Research Notes of the American Astronomical Society, 3, 92.
  35. de la Fuente Marcos, C., & de la Fuente Marcos, R. (2019), Hot and Eccentric: The Discovery of 2019 LF6 as a New Step in the Quest for the Vatira Population. Research Notes of the American Astronomical Society, 3, 106.
  36. Godines, D., et al. (2019), A machine learning classifier for microlensing in wide-field surveys. Astronomy and Computing, 28, 100298.
  37. Hosseinzadeh, G., et al. (2019), Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. ApJL, 880, L4.
>
>
  1. Jacobson-Galán, W. V., et al. (2020), SN 2019ehk: A Double-Peaked Ca-rich Transient with Luminous X-ray Emission and Shock-Ionized Spectral Features. arXiv e-prints, arXiv:2005.01782.
  2. Vioque, M., et al. (2020), Catalogue of new Herbig Ae/Be and classical Be stars. A machine learning approach to Gaia DR2. arXiv e-prints, arXiv:2005.01727.
  3. Kawaguchi, K., et al. (2020), Constraint on the Ejecta Mass for Black Hole-Neutron Star Merger Event Candidate S190814bv. ApJ, 893, 153.
  4. Kawabata, M., et al. (2020), SN 2019ein: New Insights into the Similarities and Diversity among High-velocity Type Ia Supernovae. ApJ, 893, 143.
  5. Li, Z., et al. (2020), Gravitational-wave Radiation of Double Degenerates with Extremely Low-mass White Dwarf Companions. ApJ, 893, 2.
  6. Soraisam, M. D., et al. (2020), A Classification Algorithm for Time-domain Novelties in Preparation for LSST Alerts. Application to Variable Stars and Transients Detected with DECam in the Galactic Bulge. ApJ, 892, 112.
  7. Greenstreet, S. (2020), Orbital Dynamics of 2020 AV<SUB>2</SUB>: the First Vatira Asteroid. MNRAS, 493, L129.
  8. de la Fuente Marcos, C., & de la Fuente Marcos, R. (2020), On the orbital evolution of 2020 AV<SUB>2</SUB>, the first asteroid ever observed to go around the Sun inside the orbit of Venus. MNRAS, 494, L6.
  9. Wolf, M., et al. (2020), DX Cygni: A triple system with mass transfer. New Astronomy, 76, 101336.
  10. Srivastav, S., et al. (2020), The Lowest of the Low: Discovery of SN 2019gsc and the Nature of Faint Iax Supernovae. ApJL , 892, L24.
  11. Prentice, S. J., et al. (2020), The rise and fall of an extraordinary Ca-rich transient. The discovery of ATLAS19dqr/SN 2019bkc. A&A, 635, A186.
  12. Veras, D., et al. (2020), Constraining the origin of the planetary debris surrounding ZTF J0139+5245 through rotational fission of a triaxial asteroid. MNRAS, 492, 5291.
  13. Antier, S., et al. (2020), The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. MNRAS, 492, 3904.
  14. Giannini, T., et al. (2020), Do subsequent outbursts of the same EXor source present similar features?. arXiv e-prints, arXiv:2003.13383.
  15. Schwope, A. D., et al. (2020), Identification of 3XMM J000511.8+634018 as a new polar at P(orb)=133.5 min -- is it inside or outside the period gap?. arXiv e-prints, arXiv:2003.13647.
  16. Paillassa, M., et al. (2020), MAXIMASK and MAXITRACK: Two new tools for identifying contaminants in astronomical images using convolutional neural networks. A&A, 634, A48.
  17. Byrne, C. M., & Jeffery, C. S. (2020), Pulsation in faint blue stars. MNRAS, 492, 232.
  18. Lee, C.-H., et al. (2020), ZTF18abhjrcf: The First R Coronae Borealis Star from the Zwicky Transient Facility Public Survey. AJ, 159, 61.
  19. Lü, G., et al. (2020), Possible Formation Scenarios of ZTF J153932.16+502738.8—A Gravitational Source Close to the Peak of LISA's Sensitivity. ApJ , 890, 69.
  20. Ackley, K., et al. (2020), Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger S190814bv. arXiv e-prints, arXiv:2002.01950.
  21. Ni, Q., et al. (2020), An Extreme X-Ray Variability Event of a Weak-line Quasar. ApJL , 889, L37.
  22. Tomasella, L., et al. (2020), Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha?. arXiv e-prints, arXiv:2002.00393.
  23. Konyves-Toth, R., et al. (2020), Comparative Spectral Analysis of the Superluminous Supernova 2019neq. arXiv e-prints, arXiv:2002.08728.
  24. Lam, M. C., et al. (2020), First discovery of an ultra-cool white dwarf benchmark in common proper motion with an M dwarf. MNRAS, 493, 6001.
  25. Barbieri, C., et al. (2020), The kilonova of GW190425-like events. arXiv e-prints, arXiv:2002.09395.
  26. Chen, P., et al. (2020), The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr. ApJL , 889, L6.
  27. Williams, S. C., et al. (2020), AT 2019abn: multi-wavelength observations of the first 200 days. arXiv e-prints, arXiv:2001.08782.
  28. Stachie, C., et al. (2019), Differentiating the signal from the noise: towards optimal choices of wide field-of-view telescope transient follow-up. arXiv e-prints, arXiv:1912.06383.
  29. Liu, X.-L., et al. (2019), The UV/optical peak and X-ray brightening in TDE candidate AT2019azh: A case of stream-stream collision and delayed accretion. arXiv e-prints, arXiv:1912.06081.
  30. Skowron, D. M., et al. (2019), Mapping the Northern Galactic Disk Warp with Classical Cepheids. Acta Astron., 69, 305.
  31. Cai, Y.-Z., et al. (2019), The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon. A&A, 632, L6.
  32. Yang, Q., et al. (2019), An Unusual Mid-infrared Flare in a Type 2 AGN: An Obscured Turning-on AGN or Tidal Disruption Event?. ApJ , 885, 110.
  33. McBrien , O. R., et al. (2019), SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. ApJL , 885, L23.
  34. Muthukrishna, D., et al. (2019), RAPID: Early Classification of Explosive Transients Using Deep Learning. PASP, 131, 118002.
  35. Hu, B. X., et al. (2019), Spikey: A Search for Lensing Flares from SMBH Binaries. arXiv e-prints, arXiv:1910.05348.
  36. Bostroem, K. A., et al. (2019), Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. arXiv e-prints, arXiv:1909.07304.
  37. Singh, A., et al. (2019), SN 2018hna: 1987A-like Supernova with a Signature of Shock Breakout. ApJL , 882, L15.
  38. Marsset, M., et al. (2019), Active Asteroid (6478) Gault: A Blue Q-type Surface below the Dust?. ApJL , 882, L2.
  39. Vanderbosch, Z., et al. (2019), A White Dwarf with Transiting Circumstellar Material Far Outside Its Tidal Disruption Radius. arXiv e-prints, arXiv:1908.09839.
  40. Pasham, D. R., & Wevers, T. (2019), Gaia19bsj/AT2019evq: A “Changing-look” Quasar at a Redshift of 1.3. Research Notes of the American Astronomical Society, 3, 92.
  41. de la Fuente Marcos, C., & de la Fuente Marcos, R. (2019), Hot and Eccentric: The Discovery of 2019 LF6 as a New Step in the Quest for the Vatira Population. Research Notes of the American Astronomical Society, 3, 106.
  42. Godines, D., et al. (2019), A machine learning classifier for microlensing in wide-field surveys. Astronomy and Computing, 28, 100298.
  43. Hosseinzadeh, G., et al. (2019), Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. ApJL , 880, L4.
 

Papers which use ZTF for project planning:

  1. Zenati, Y., et al. (2020), Faint rapid red transients from neutron star-CO white dwarf mergers. MNRAS, 493, 3956.
  2. Almualla, M., et al. (2020), Dynamic Scheduling: Target of Opportunity Observations of Gravitational Wave Events. arXiv e-prints, arXiv:2003.09718.
Line: 45 to 51
 
  1. Salmon, L., et al. (2020), Web application for galaxy-targeted follow-up of electromagnetic counterparts to gravitational wave sources. A&A, 634, A32.
  2. Guetta, D., et al. (2020), Constraining the fraction of core-collapse supernovae harbouring choked jets with high-energy neutrinos. MNRAS, 492, 843.
  3. Tu, Z.-L., et al. (2020), Superflares on Solar-type Stars from the First Year Observation of TESS. ApJ, 890, 46.
Changed:
<
<
  1. Kawaguchi, K., et al. (2020), Constraint on the ejecta mass for a black hole-neutron star merger event candidate S190814bv. arXiv e-prints, arXiv:2002.01662.
  2. Cen, R. (2020), On Post-starburst Galaxies Dominating Tidal Disruption Events. ApJL, 888, L14.
>
>
  1. Cen, R. (2020), On Post-starburst Galaxies Dominating Tidal Disruption Events. ApJL , 888, L14.
 
  1. Carbone, D., & Corsi, A. (2020), An Optimized Radio Follow-up Strategy for Stripped-envelope Core-collapse Supernovae. ApJ, 889, 36.
  2. Graziani, R., et al. (2020), Peculiar velocity cosmology with type Ia supernovae. arXiv e-prints, arXiv:2001.09095.
  3. Kim, A. G., & Linder, E. V. (2020), Complementarity of peculiar velocity surveys and redshift space distortions for testing gravity. PRD, 101, 023516.

Revision 12020-04-17 - PrzemekMroz

Line: 1 to 1
Added:
>
>

Papers citing ZTF

Papers using ZTF data:

  1. de la Fuente Marcos, C., & de la Fuente Marcos, R. (2020), On the orbital evolution of 2020 AV<SUB>2</SUB>, the first asteroid ever observed to go around the Sun inside the orbit of Venus. MNRAS, 494, L6.
  2. Wolf, M., et al. (2020), DX Cygni: A triple system with mass transfer. New Astronomy, 76, 101336.
  3. Srivastav, S., et al. (2020), The Lowest of the Low: Discovery of SN 2019gsc and the Nature of Faint Iax Supernovae. ApJL, 892, L24.
  4. Prentice, S. J., et al. (2020), The rise and fall of an extraordinary Ca-rich transient. The discovery of ATLAS19dqr/SN 2019bkc. A&A, 635, A186.
  5. Veras, D., et al. (2020), Constraining the origin of the planetary debris surrounding ZTF J0139+5245 through rotational fission of a triaxial asteroid. MNRAS, 492, 5291.
  6. Antier, S., et al. (2020), The first six months of the Advanced LIGO's and Advanced Virgo's third observing run with GRANDMA. MNRAS, 492, 3904.
  7. Giannini, T., et al. (2020), Do subsequent outbursts of the same EXor source present similar features?. arXiv e-prints, arXiv:2003.13383.
  8. Schwope, A. D., et al. (2020), Identification of 3XMM J000511.8+634018 as a new polar at P(orb)=133.5 min -- is it inside or outside the period gap?. arXiv e-prints, arXiv:2003.13647.
  9. Paillassa, M., et al. (2020), MAXIMASK and MAXITRACK: Two new tools for identifying contaminants in astronomical images using convolutional neural networks. A&A, 634, A48.
  10. Byrne, C. M., & Jeffery, C. S. (2020), Pulsation in faint blue stars. MNRAS, 492, 232.
  11. Lee, C.-H., et al. (2020), ZTF18abhjrcf: The First R Coronae Borealis Star from the Zwicky Transient Facility Public Survey. AJ, 159, 61.
  12. Lü, G., et al. (2020), Possible Formation Scenarios of ZTF J153932.16+502738.8—A Gravitational Source Close to the Peak of LISA's Sensitivity. ApJ, 890, 69.
  13. Ackley, K., et al. (2020), Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger S190814bv. arXiv e-prints, arXiv:2002.01950.
  14. Ni, Q., et al. (2020), An Extreme X-Ray Variability Event of a Weak-line Quasar. ApJL, 889, L37.
  15. Tomasella, L., et al. (2020), Observations of the low-luminosity Type Iax supernova 2019gsc: a fainter clone of SN 2008ha?. arXiv e-prints, arXiv:2002.00393.
  16. Konyves-Toth, R., et al. (2020), Comparative Spectral Analysis of the Superluminous Supernova 2019neq. arXiv e-prints, arXiv:2002.08728.
  17. Lam, M. C., et al. (2020), First discovery of an ultra-cool white dwarf benchmark in common proper motion with an M dwarf. MNRAS, 493, 6001.
  18. Barbieri, C., et al. (2020), The kilonova of GW190425-like events. arXiv e-prints, arXiv:2002.09395.
  19. Chen, P., et al. (2020), The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr. ApJL, 889, L6.
  20. Williams, S. C., et al. (2020), AT 2019abn: multi-wavelength observations of the first 200 days. arXiv e-prints, arXiv:2001.08782.
  21. Stachie, C., et al. (2019), Differentiating the signal from the noise: towards optimal choices of wide field-of-view telescope transient follow-up. arXiv e-prints, arXiv:1912.06383.
  22. Liu, X.-L., et al. (2019), The UV/optical peak and X-ray brightening in TDE candidate AT2019azh: A case of stream-stream collision and delayed accretion. arXiv e-prints, arXiv:1912.06081.
  23. Skowron, D. M., et al. (2019), Mapping the Northern Galactic Disk Warp with Classical Cepheids. Acta Astron., 69, 305.
  24. Cai, Y.-Z., et al. (2019), The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon. A&A, 632, L6.
  25. Yang, Q., et al. (2019), An Unusual Mid-infrared Flare in a Type 2 AGN: An Obscured Turning-on AGN or Tidal Disruption Event?. ApJ, 885, 110.
  26. McBrien, O. R., et al. (2019), SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. ApJL, 885, L23.
  27. Muthukrishna, D., et al. (2019), RAPID: Early Classification of Explosive Transients Using Deep Learning. PASP, 131, 118002.
  28. Hu, B. X., et al. (2019), Spikey: A Search for Lensing Flares from SMBH Binaries. arXiv e-prints, arXiv:1910.05348.
  29. Bostroem, K. A., et al. (2019), Discovery and Rapid Follow-up Observations of the Unusual Type II SN 2018ivc in NGC 1068. arXiv e-prints, arXiv:1909.07304.
  30. Singh, A., et al. (2019), SN 2018hna: 1987A-like Supernova with a Signature of Shock Breakout. ApJL, 882, L15.
  31. Marsset, M., et al. (2019), Active Asteroid (6478) Gault: A Blue Q-type Surface below the Dust?. ApJL, 882, L2.
  32. Vanderbosch, Z., et al. (2019), A White Dwarf with Transiting Circumstellar Material Far Outside Its Tidal Disruption Radius. arXiv e-prints, arXiv:1908.09839.
  33. Kawabata, M., et al. (2019), Type Ia SN 2019ein: New Insights into the Similarities and diversities among High-Velocity SNe Ia. arXiv e-prints, arXiv:1908.03001.
  34. Pasham, D. R., & Wevers, T. (2019), Gaia19bsj/AT2019evq: A “Changing-look” Quasar at a Redshift of 1.3. Research Notes of the American Astronomical Society, 3, 92.
  35. de la Fuente Marcos, C., & de la Fuente Marcos, R. (2019), Hot and Eccentric: The Discovery of 2019 LF6 as a New Step in the Quest for the Vatira Population. Research Notes of the American Astronomical Society, 3, 106.
  36. Godines, D., et al. (2019), A machine learning classifier for microlensing in wide-field surveys. Astronomy and Computing, 28, 100298.
  37. Hosseinzadeh, G., et al. (2019), Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. ApJL, 880, L4.

Papers which use ZTF for project planning:

  1. Zenati, Y., et al. (2020), Faint rapid red transients from neutron star-CO white dwarf mergers. MNRAS, 493, 3956.
  2. Almualla, M., et al. (2020), Dynamic Scheduling: Target of Opportunity Observations of Gravitational Wave Events. arXiv e-prints, arXiv:2003.09718.
  3. Howitt, G., et al. (2020), Luminous Red Novae: population models and future prospects. MNRAS, 492, 3229.
  4. Salmon, L., et al. (2020), Web application for galaxy-targeted follow-up of electromagnetic counterparts to gravitational wave sources. A&A, 634, A32.
  5. Guetta, D., et al. (2020), Constraining the fraction of core-collapse supernovae harbouring choked jets with high-energy neutrinos. MNRAS, 492, 843.
  6. Tu, Z.-L., et al. (2020), Superflares on Solar-type Stars from the First Year Observation of TESS. ApJ, 890, 46.
  7. Kawaguchi, K., et al. (2020), Constraint on the ejecta mass for a black hole-neutron star merger event candidate S190814bv. arXiv e-prints, arXiv:2002.01662.
  8. Cen, R. (2020), On Post-starburst Galaxies Dominating Tidal Disruption Events. ApJL, 888, L14.
  9. Carbone, D., & Corsi, A. (2020), An Optimized Radio Follow-up Strategy for Stripped-envelope Core-collapse Supernovae. ApJ, 889, 36.
  10. Graziani, R., et al. (2020), Peculiar velocity cosmology with type Ia supernovae. arXiv e-prints, arXiv:2001.09095.
  11. Kim, A. G., & Linder, E. V. (2020), Complementarity of peculiar velocity surveys and redshift space distortions for testing gravity. PRD, 101, 023516.
  12. Wyatt, S. D., et al. (2020), The Gravitational Wave Treasure Map: A Tool to Coordinate, Visualize, and Assess the Electromagnetic Follow-Up of Gravitational Wave Events. arXiv e-prints, arXiv:2001.00588.
  13. Boian, I., & Groh, J. H. (2020), Progenitors of early-time interacting supernovae. arXiv e-prints, arXiv:2001.07651.
  14. Danielski, C., et al. (2019), Circumbinary exoplanets and brown dwarfs with the Laser Interferometer Space Antenna. A&A, 632, A113.
  15. Coughlin, M. W., et al. (2019), Optimizing multitelescope observations of gravitational-wave counterparts. MNRAS, 489, 5775.
  16. Piro, A. L. (2019), Inferring the Presence of Tides in Detached White Dwarf Binaries. ApJl, 885, L2.
  17. Bell, K. J. (2019), The Search for Planet and Planetesimal Transits of White Dwarfs with the Zwicky Transient Facility. arXiv e-prints, arXiv:1911.07889.
  18. Greene, J. E., et al. (2019), Intermediate-Mass Black Holes. arXiv e-prints, arXiv:1911.09678.
  19. Levi, M., et al. (2019), The Dark Energy Spectroscopic Instrument (DESI). BAAS, 51, 57.
  20. Hijikawa, K., et al. (2019), The Rate of iPTF 14gqr like Ultra-stripped Supernovae and Binary Evolution Leading to Double Neutron Star Formation. ApJ, 882, 93.
  21. Agrawal, A., et al. (2019), Constraining neutrino mass and dark energy with peculiar velocities and lensing dispersions of Type Ia supernovae. PRD, 100, 063534.
  22. Wojtak, R., et al. (2019), Magnified or multiply imaged? - Search strategies for gravitationally lensed supernovae in wide-field surveys. MNRAS, 487, 3342.
  23. Kremer, K., et al. (2019), Tidal Disruptions of Stars by Black Hole Remnants in Dense Star Clusters. ApJ, 881, 75.
  24. Littenberg, T. B., & Cornish, N. J. (2019), Prospects for Gravitational Wave Measurement of ZTF J1539+5027. ApJL, 881, L43.
  25. Holder, J., et al. (2019), VERITAS Observations of Fast Radio Bursts. 36th International Cosmic Ray Conference (ICRC2019), 36, 698.
  26. Davenport, J. R. A. (2019), SETI in the Spatio-Temporal Survey Domain. arXiv e-prints, arXiv:1907.04443.
  27. Goldstein, D. A., et al. (2019), Rates and Properties of Supernovae Strongly Gravitationally Lensed by Elliptical Galaxies in Time-domain Imaging Surveys. ApJS, 243, 6.
  28. Hsieh, H. H., et al. (2019), Maximizing LSST Solar System Science: Approaches, Software Tools, and Infrastructure Needs. arXiv e-prints, arXiv:1906.11346.
  29. Stephan, A. P., et al. (2019), The Fate of Binaries in the Galactic Center: The Mundane and the Exotic. ApJ, 878, 58.
  30. Kim, A., et al. (2019), Testing Gravity Using Type Ia Supernovae Discovered by Next-Generation Wide-Field Imaging Surveys. BAAS, 51, 140.
  31. Eracleous, M., et al. (2019), An Arena for Multi-Messenger Astrophysics: Inspiral and Tidal Disruption of White Dwarfs by Massive Black Holes. BAAS, 51, 10.
  32. Scolnic, D., et al. (2019), The Next Generation of Cosmological Measurements with Type Ia Supernovae. Astro2020: Decadal Survey on Astronomy and Astrophysics, 2020, 270.
  33. D'Orazio, D. J., et al. (2019), Constraining the stellar mass function from the deficiency of tidal disruption flares in the nuclei of massive galaxies. MNRAS, 485, 4413.
  34. Garcia, K., et al. (2019), On the amount of peculiar velocity field information in supernovae from LSST and beyond. arXiv e-prints, arXiv:1905.00746.
  35. Yalinewich, A., et al. (2019), Shock breakouts from tidal disruption events. MNRAS, 482, 2872.
  36. Smith, K. W., et al. (2019), Lasair: The Transient Alert Broker for LSST:UK. Research Notes of the American Astronomical Society, 3, 26.

-- Przemek Mroz - 2020-04-17

Comments


<--/commentPlugin-->
 
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2025 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback