Mechanical limits of 48"dome drive/bogie system
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From dwg 102165 & 102166
 

Calculate Preload Spring rate:
 
Karl D reports that installed spring compressed length is 11.5".  This is longer than shown in assembly dwg.  (9.375")
Spring coil and wire diameter measure, # of coils counted.  Confirmed spring is according to drawing.
 
Determine spring rate
 
Using calculator and assuming closed ground end………10 active coils.
http://www.acxesspring.com/spring-calculator.html
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Currently installed preload on tire
Based on measured compressed length of 11.5" (from Karl D), and spring rate from above calculator:  k= spring rate = 500 lbs/in
dL= compression from free length = 13.25 - 11.5=1.75"
 
Fs= Spring force= dL * k = 1.75" * 500lbs/in = 875 lbs
 
Ft = Load on tire from Spring force (current installed)
 Spring arm Lever ratio:  38/28
Fs * 38"  =  Ft * 28"
Ft = 875 *38/28= 1187.5 lbs
 
Nominal design preload on tire maximum over-hung load on speed reducer:
Reducer manufacturers consider two factors: bearing life and shaft strength, and generally provide tables and/or formulas to calculate acceptable OHL from radial force and distance.  Sumitomo quoted OHL for selected reducer configuration: 7550 lb at center of 3.54" shaft length; presumed de-rating to 4454 lb at 3" distance, or 2429 lb at 5.5".
 
As tire wears position of overhung load changes
Assuming conservative 5.5" overhung load rating of 2429 lbs
 
Ft (28/38)= spring load = 2429*(28/38) = 1789 lbs  
This would correspond to 1790/500 = 3.58" spring compression
dL= compression from free length = 13.25 - 9.375 = 3.875 (nominal spring comp. from dwg)

Dome drive calculations
 
Friction drive wheel reference
http://www.schwingmetall.com/download/catalog/WT5556_Rotafrix_Catalog_en.pdf
 
Typical coefficient of friction for elastomeric/steel Friction Drive:  0.7
 
Friction load:
We measured 320 lb pull to move the dome (breakaway from static was the same, there is no indication of higher static friction).  Assuming 10° pull misalignment in Y and Z,  gives 310 lb tangential pull.  With a 21 ft radius, dome rolling friction ≈ 6720 lb-ft.
 
Inertial Load:
From calculations using dome and motor properties:  ~17500 lb-ft torque
(see 48in Dome Calculations doc)
This is worst case value based on theoretical motor output.  A more realistic and lower value could be derived from actual dome acceleration measurements.
 
Max Total torque: Friction torque + Inertia torque:  6720 lb-ft + 17500 lb-ft = 24220 lb-ft
 
Tangential start-up force on dome drive band:  24220 lb-ft / 21ft = 1153 lbs
 
Theoretical traction drive force:  
Current Installed condition:    
Drive wheel pre-load: 1187.5 lbs
Traction force with CoF:  1187.5 * 0.7 = 831.25 lbs
 
Maximum design spring preload condition: (set by speed reducer overhung load)
Drive wheel pre-load: 2429 lbs
Traction force with CoF:  2429 * 0.7 = 1700 lbs
 
Based on this maximum required traction force, we should be able to drive at maximum acceleration of 1 deg/s/s.
 
Dome truck radial bearing capacity
 
Dome truck radial bearing:  MRC 5208
Double row angular contact bearing
 
Assume worst case that 2 radial bearings are loaded:
 
Nominal spring preload design condition:
Drive wheel pre-load: 2429 lbs
 
 
Radial load per bearing:  ~ 2429/2=   1214 lbs
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Per SKF Bearing literature:
Bearing 5208C    80mm OD
Dynamic Rating:  11,100 lbs
Static Rating:  7640 lbs
 
Assume no thrust load.
Equivalent radial load= P=  1314.75 lbs (from above)
C = Dynamic load rating = 11,100 lbs
L10 life = (C/P)^3 = (11,100 / 1314.75)^3 = 601  million revs
L10 life is 90% reliability of a single bearing life under defined loading.
 
Bearing dia"  80mm =>  9.9" circumference
Rail circumference:   2*262*PI=1,646.19" 
Bearing rev/dome rev =  1646/9.9=   166.2626 brg rev/dome rev
601E6/166 = 3.6205E6  ≈ 3.6 million dome revs for L10 bearing life
 
Assuming 20 year life on bearings, this give ~500 dome revs/day.
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From drawing:  102160
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Dome operating parameter practical limitations:
 
All the Palomar domes, and especially the P60 & P48 domes, exhibit unique behaviors as a function of environmental conditions and actual construction tolerances which show themselves as increased driving torque, intermittent interference between moving and fixed parts, excessive noise especially at lower operating temperatures, and excessive wear of highly stressed components.  (i.e. bearings, wheels, rails, over-travel restraints)
 
There are lateral and radial forces generated due to thermal variations in dome structure from differential expansion of moving steel structure as compared to fixed structure anchors to concrete.  This can be caused by ambient temperature extremes, or differential heating of the dome by the sun.  Experience shows that these variations cause signification changes in the dimensional interface between moving and fixed parts, which can cause wheel to rail misalignment.  
 
Excess and varying lateral loads can also be caused by wind induced loads.   These variable loads can induce skidding and "creep" forces in the wheel to rail contact.  In addition to environmentally induced creep, the construction tolerance of wheel to rail misalignment can cause significant lateral forces.  The subject of skidding and creep is analyzed for various cam follower bearing designs and has been given specific attention in the design of the TMT dome bogie design (see attached "TMT Enclosure - Azimuth Bogies PDR Report" ).  This analysis was also used in defining the dome bogie system design for the CCAT telescope enclosure.


	
 
The lateral (creep) forces that arise come from having the wheels not perfectly aligned with the direction of travel.  Figure 6 of the attached reference shows the "normalized creep forces" which are the lateral forces normalized to the sliding forces (i.e. 1.0 = pure sliding). You can see at 0.1 degrees misalignment (about 1.7mm per 1000mm) the lateral force is about 50% of the static sliding force. 
 
The design of the P60 and P48 from the rail upwards are identical, but the construction methods and tolerances held are not.  We have seen periodic failure and excessive wear of components of each of the systems, which theoretically should see very little load under the operating conditions, and should have a much longer operating life.  Most of the failures appear to be the result of high lateral forces.  It is presumed that these high lateral forces are a result of the environmental and construction induces misalignments between the bogie wheels and rail described above.  Any assessment of the long term durability of the specific dome bogie system must consider these real world conditions when evaluating changes to the system's duty cycle or operating parameters, such as acceleration and maximum velocity, cycles per/year, and resulting time before failure of system components.   
 
[bookmark: _GoBack]Given the operational experience with the P60 and P48 dome systems under previous increases in duty cycle, the result of operating under further increases in operating parameters will likely result in an accelerated failure rate of highly stressed components, and therefore lead to higher maintenance burden, increased operating costs and downtime. 
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1.3 Tracking Mechanics 
In the absence of external disturbances the wheel tracking is affected by misalignments of the wheels 
with respect to the enclosure geometry.  These misalignments lead to the wheels wanting to travel in a 
direction different from the intended direction.  In this case the wheels are constrained by the base, and 
the enclosure rotation is guided by the later guide rollers.  These misalignments result in a small amount 
of apparent slip at the wheel/rail contact point (ie the wheels have a small velocity component 
perpendicular to the direction of rotation).  This relative slip (creepage) results in the development of 
creep forces at the wheel/rail interface.  The misalignments are a result of fabrication and erection 
tolerances as well as deflections caused by environmental and operational loads, and consist of: 
 


1. Radial Misalignment 
2. Vertical (Roll Angle) Misalignment 
3. Tangential Misalignment 


 
 


Ideal Position 
Actual Position 


Radial Misalignment 


Ideal Position 


Actual Position 


Vertical Misalignment 


Ideal Position 


Actual Position 


Tangential Misalignment 


Rail 
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Figure 5: Wheel Misalignment Types 


 
The effects of each of these misalignments differ by an order of magnitude from each other with the 
tangential misalignment resulting in the largest creep forces[1]. 
 
For the azimuth wheels, the analysis yielded the following results:   


 


Normalized Creep Forces vs Wheel Misalignment
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Figure 6: Creep Forces vs Wheel Alignment 


 
The graph shows a rapid increase in the lateral creep force as the misalignment angle increases, and an 
asymptotic approach to the sliding friction force at higher misalignments.  The steep initial slope of the 
graph is due to the high rigidity of steel wheels.  A more compliant wheel (eg: urethane) will have a less 
steep slope. 
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5. Appendix 
 
Methodology for Calculating Creep Forces 
 
The concept of creep and its effect on rail vehicle dynamics has been studied in depth since the 
early 1900’s.  As shown in Ref 1, the creep force due to wheel to rail misalignment is a complicated 
phenomenon to analyze theoretically, however the Simplified Theory of J.J. Kalker [3] has been 
shown to yield results that closely relates to empirical data.   
 
The simplified theory makes use of Kalker’s Linear theory coefficients to calculate the non-linear 
behavior of the creep forces.  The fist step requires determining the area and size of the contact 
patch which is done using Hertz theory [2] for contacting bodies which can be approximated to have 
a lateral (R) and tangential (R’) radius of curvature.  The resulting contact patch takes the form of 
an ellipse, and the major (a) and minor (b) semi-axes can be calculated as follows: 
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Once the contact area is determined, the Kalker Coefficients can be obtained using the following 
table: 
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If the wheel and rail have different Poisson’s ratios, Kalker recommends using an equivalent ratio 
that can be calculated as follows: 
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Next, the creepages must be calculated for the wheel.  Creep is defined as pure slip that is caused 
by the difference between the tangential strains of two bodies in rolling contact.  The slip is 
governed by the elastic deformation of the bodies around the contact patch as the surface material 
enters and exits the contact patch.  For the wheel rail contact problem there are 3 creepages 
defined: 
 


1- Lateral creep (uy) – creep perpendicular to the direction of rolling 
2- Longitudinal creep (ux) – creep parallel to the direction of rolling 
3- Spin creep (Φ) – angular creep about the common normal axis 


 
The creepages are purely a function of the wheel rail geometry and can be found as follows: 
 


 
 


Figure 11: Wheel Tracking Reference Frames 
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The above results can then be used with Kalker’s simplified method to obtain the creep forces 
at the contact patch.  Kalker’s FASTSIM algorithm [4] is a fast algorithm based on the simplified 
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theory and has been shown to correlate well to physical data.  The algorithm calculates the 
normalized (with respect to maximum friction force) creep forces using the given creepages and 
spin calculated by the above method.  The program works by discretizing the contact area into 
slices parallel to the direction of rotation, and then calculating the tractions along each slice 
starting at the leading edge of the contact ellipse. The total traction is then found by integrating 
over the slices. 
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Custom Part Number

PC750-5250-12.000-
Custom Part Number : - uor 8o e e NN
Rates & Loads
Spring Rate (or Spring constant), k:  498.827 Lbs/in
True Maximum Load, True Frex:  1,963.113 IbF
Maximum Load Considering Solid Height,
Sold Height P, #983113 1bF
Safe Travel
True Maximum Travel, True Travelna,: 3.935In
Maximum Travel Considering Solid Height, 5 g3
Solid Height Travelns,: °-5°° 1N
Minimum Loaded Height : 9.315 In

Physical Dimensions

Diameter of spring wire, d:
Outer diameter of spring, Douer
Inner diameter of Spring, Disner
Mean diameter of spring, Dmesn
Free length of spring, Lsee
Number of active coils, na

Number of total coils, nr

0.750In

5.250In

3.7501In

4.500In

13.250 In
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