Palomar Adaptive Optics Test Plan

Title	Low-order servo loop optimization
Version	1.1
Date released	4/3/2007
Lead	A. Bouchez
Time requested	2 hours
Required conditions	Photometric, >90deg. from moon.

Purpose

- 1. Determine optimal low-order servo loop parameters as a function of NGS magnitude.
- 2. Practice acquisition procedure with faint NGS.

Previous analysis

Starting estimates (please note optimized values):

Otarting octimat	oo (picaco ii	oto optiini	izoa valacoj.			
NGS V magnitude	Acq inte	eg. (s)	Framerate (Hz)		Integra	l gain
10	0.03		700		1.0	
12	0.5		400		1.0	
14	2.0		250		1.0	
15	10.0		200		1.0	
16	20.0		150		1.0	
17	30.0		100		1.0	
18	30.0	•	50		1.0	

Test procedure

Targets for this test: isolated V=14, 15, 16, 17 stars near zenith. Use red stars (B-V = 1.0-2.5) to maximize PHARO sensitivity.

- 1. Follow LGS Target Acquisition testplan for star.
 - 1.1. Only perform NGS tune-up on the first target.
 - 1.2. Use LOWFS framerates from the table above.
 - 1.3. DO perform "zero LOWFS centroids" step!
 - 1.4. Record acquisition camera image before offsetting LOWFS.
- 2. Determine PHARO integration time for decent SNR images. Goal is 10-15k peak counts, but keep integration time <30s.
- 3. Take a PHARO sky
 - 3.1. Open TT loop from TAO command line (TAO button? / PHARO button??)
 - 3.2. Offset telescope from PHARO buttons (or TAO)
 - 3.3. Take a PHARO sky.
 - 3.4. Offset back to target.
 - 3.5. Close TT loop (same way as opened).
- 4. Record average Strehl of 3 frames in table below.
- 5. Adjust framerate
 - 5.1. Open TT loop.
 - 5.2. Set framerate to one "level" higher
 - 5.3. Take new LOWFS background (offset 60" to sky).
 - 5.4. Close TT loop.

- 5.5. Record average Strehl of 3 frames.
- 5.6. Repeat for one level lower.
- 6. Set to optimal framerate and take a new sky. Record value in table above.
- 7. Adjust integral gain:
 - 7.1. set ttm_integral_gain to 0.25, 0.5, 1.0, 1.5
 - 7.2. Record average Strehl of 3 frames.
 - 7.3. If loop goes unstable, open TT loop and manually set TTM to (0,0).
- 8. Record optimal gain in table above.
- 9. Move on to next fainter star.

/ mag.	Star name	framerate	gain	PHARO frames	Average Strehl
10.0					