Palomar Adaptive Optics Test Plan

Title	LGS Acquisition and characterization
Date	7/12/06
Lead	A. Bouchez, M. Troy
Time requested	1 hr
Required conditions	Clear enough to project laser.

Purpose

Acquire LGS, focus LLT, determine LGS magnitude and spot size,

Test procedure

1. Setup

- 1.1. Telescope at zenith, at best NGS focus.
- 1.2. Acquisition camera filter installed.
- 1.3. Move LLT mirror to a its default position (determined during LLT alignment)
- 1.4. Load best available flatmap.
- 1.5. Focus acqisition camera to 90 km altitude:

move acq_z 11950 (for NGS focus = 14500)

1.6. Focus LLT to 90 km altitude:

- 1.7. Check that laser focus is set to optimal position (4000 on 7/12/06):
 - bto_control "move laser_focus 4000"
- 1.8. Setup acquisition camera:
 - 1.8.1. Start up IDL program acqview
 - 1.8.2. Set integration time to 2s.
 - 1.8.3. In the correct experiment directory: IDL> ao_plot_vid_image
- 2. Perform final safety checks and fire laser.

3. Acquire LGS

3.1. If LGS is not in Acq FOV, use ellipticity of dichroic spots (apex points to LGS) and Raleigh gradient (brighter towards LGS) to steer it in:

```
offset llt_a +X = down; offset llt_b +X = right.
```

- 3.2. Move LGS onto HOWFS by clicking on "center LGS".
- 3.3. Move LGS to clear region of Acq field: offset llt_b + 30

4. Focus on Na layer

4.1. Roughly focus laser spot:

bto_control "move llt_focus ..." in steps of 50

- move acq_z \dots in steps of 300
- 4.2. Detune laser, save a 5s background image.

4.3. Focus Acq

IDL> ao_focus_loop, current-600, 300, 5, `acq', `save_name', `sky_name', time=6.0

IDL> ao_read_focus, data,file='save_name'

- AO> move acq_z best_focus
- 4.4. Focus LLT

```
IDL> ao_focus_loop, current-100, 50, 5, `llt', `save_name',
```

Caltech Optical Observatories / NASA Jet Propulsion Laboratory Palomar Adaptive Optics

`sky_name', time=6.0

IDL> ao_read_focus, data,file='save_name'

- AO>bto_control "move llt_focus XXX"
- 4.5. Repeat steps 3.2 and 3.3 again if necessary
- 5. Tune center wavelength
 - 5.1. Save a 5s background image.
 - 5.2. Scan over wavelength, recording peak counts.
 - 5.3. Adjust to peak return.
- 6. Record photometry
 - 6.1. Record and save a final set of detuned and tuned 5s Acq images for measuring photometry and spot size.
 - 6.2. Image photometric calibrator
 - 6.2.1. Go to photometric standard NGS, Landolt ~mV=11.0
 - 6.2.2. Move acq_z to NGS focus
 - 6.2.3. Move star to approximate position of LGS
 - 6.2.4. Take two images, with a \sim 10" dither between them

Results and conclusions