Palomar Hale 200" M1 to M2 distance measurement

Matt Matuszewski matmat@caltech.edu Space Astrophysics Lab

May 12, 2011

1 Introduction

During the design phase of CWI there was some uncertainty as to the distance from the secondary to a datum surface on the 200" Hale Telescope. For most instruments this is not a problem as the location is sufficiently close to the nominal Cassegrain focus, that the telescope can be easily focused to where it require it. The CWI design is such that the telescope needs to focus close to the lower end of the available range. Dan McKenna, Jeff Zolkower, Shahin Rahman, and I used a laser range finder newly acquired by Palomar to measure the location of the secondary. According to the manufacturer, the range-finder measurements are accurate to within 1.5 mm, with the caveat that the instrument is typically used with a diffusing, rather than specular, surface. Data was taken on June 26, 2008, the temperature of the primary mirror cell was 20°C, the primary focus cage was at 17°C. The original version of this write-up was put together on July 1st, 2008 and updated in May 2011.

2 Configuration

This range-finder was clamped in a vice, placed on the observatory floor with the cass-cage door removed. It was aligned along the optical axis of the telescope by eye. The device was shifted so that the return beam from the secondary did not come back directly onto the sensor, otherwise the device was saturated and would not produce an output. This shift/tilt does not introduce more than 1 mm of difference into the measurement.

The telescope was fitted with the F/16 secondary and data points were taken for several primary cage encoder readings (Table 2). To provide a datum surface a 1/2" thick aluminum bar was clamped

flush against the cass rotator ring. The range-finder was then used to measure the distance to that bar. This measurement is also noted in Table 2.

Finally, a caliper and ruler were used to measure the offset of the lower surface of the aluminum bar from the lower surface of the true cass ring (this is the ring shown in the construction drawing from Hal Petrie, (4). The remaining distances used in the calculation were taken from that same drawing.

Primary Cage	Distance
Encoder Reading	Measurement
	(mm)
1.01	19263
2	19264
8	19270
15	19277
22	19284
29	19291
36	19298
43	19305
50	19312
70	19333
Bar Reading	4317

Table 1: Encoder reading for the primary focus cage and measured position of the secondary from the range-finding device resting in a vice on the observatory floor. Also included is the distance from the device at that same place to a 1/2" thick bar spanning the bottom face of the cassegrain rotator ring. The error in each measurement is no worse than 1.5mm

3 Results

The total thickness from the bottom surface of the aluminum bar to the bottom surface of the cass ring is 56.5 mm. Taking the measurement at 36mm as the "central" location of the secondary, this gives the distance from the secondary to the lower cass ring as: 14924.5 mm. The corresponding distance from the secondary to the primary vertex is: 13763.4 mm. The value used in CWI design for this distance is 13768.0 mm, which is in reasonable agreement with the measured quantity. The error in our measurement should not exceed 3mm, though this is a best-guess estimate of the error.

Distance	Distance		Notes
From	То	(mm)	
Aluminum bar	Cass Rotator	12.7	Clamped. $(\frac{1}{2})$
Cass Rotator	Metal Ruler	10.7	Next surface is beveled.
			Ruler needed to be able
			To use the caliper.
Metal Ruler	Second Ring	1	See above
Second Ring	Cass Ring	32.1	
	Lower Surface		
Cass Ring	Mirror Cell	117.5	From Hale Drawing
			$(4\frac{5}{8}")$
Mirror Cell		612.8	Thickness. From Drawing
			$(24\frac{1}{8}")$
Gap		38.1	Between Mirror Cell and Mirror.
			From Drawing.
			$(1\frac{1}{2}))$
200" Mirror Rear	Mirror Vertex	498.5	From Drawing.
			$(19\frac{5}{8}")$

Table 2: Other distances relevant to the measurement. Some were performed at Palomar on June 26, 2008, the error on these is uncertain, but unlikely to total more than 3mm or so. Others are taken from the Palomar 200" drawing.

4 Discussion

This measurement does not gives either the curvature of the secondary, nor the focus location, and as such must rely on prior data to yield a useful conclusion about the location of the nominal focus. We do have one data point to work from, which is the location of the PALM3k focus as indicated in the "as built" ZEMAX ray-trace of the system¹:

http://www.oir.caltech.edu/twiki_oir/bin/view/Palomar/HaleOptics.

The M2 to focus distance given by the file is 14997mm. This puts the focus at \sim 72.5 mm below the original cass ring, or, \sim 28.5 mm below the cass rotator ring. The night before our measurement, the cass encoder reading was 55 with an AO instrument in-use. Taking the nominal values of the prime

¹At the time when this report was originally written, in mid-2008, the ray-trace was at: http://www.oir. caltech.edu/twiki_oir/bin/view/Palomar/Reference/OpticalModels. That URL appears to have been lost. That was a model of the Hale telescope used for PALMAO and included several useful reference surfaces; the link in-text is a simplified version of that model. This was also the model of the telescope used in the design of CWI. A ZEMAX generated prescription file of this model is attached at the end of this document.

focus focal ratio and that of the Cass F/#, the shift in the position of the secondary corresponds to a factor of 22.6 larger shift in the focus position. $\left(\left(\frac{F_{cass}}{F_{primary}}\right)^2 = \left(\frac{15.7}{3.3}\right)^2\right)$. The CWI focus is 900 mm behind the PALMAO focus, requiring the secondary be shifted downward by 39.8 mm from the PALMAO location, to an encoder reading of, roughly, 15 mm. This indicates that the Hale can be focused far enough behind the primary mirror for the purposes of CWI. These measurement givee no indication about the image quality at any point in the focus range, that measurement would likely require some on-sky engineering time.

5 Follow-up

The preceding paragraphs were written shortly after the distance measurements were made (mid 2008). At time of this update (May 2011), CWI had been built, commissioned, and seen several observing runs. The secondary-defocus surface thickness in the CWI ZEMAX model is -17.33 mm when the telescope is in-focus at the slicer. The instrument focuses well and close to the location found by our measurement and computed with ZEMAX. The secondary encoder reading for best focus has varied from 17 to 22 during our observing runs, depending on dome temperature. (There is a sign-flip between the ray-trace model and the encoder reading).

System/Prescription Data

File : C:\Documents and Settings\Matt (Admin)\My Documents\cwi\CWI Final Raytraces\HaleTelescopeFromA0.ZMX
Title: Hale Telescope Model Used for CWI
Date : WED MAY 11 2011

LENS NOTES:

The Model of the Hale 200" telescope used for CWI. The model was obtained from PALMAO (Rich Dekany?) GENERAL LENS DATA:

Surfaces	:	8	1		
Stop	:	2			
System Aperture	: Entran	ce Pupil D	iameter = 5105	5.4	
Glass Catalogs	: SCHOTT	_			
Ray Aiming	: Off				
Apodization	: Unifor	m, factor	= 0.0000E+0	000	
Temperature (C)	: 5.0	0000E+000			
Pressure (ATM)	: 1.0	0000E+000			
Adjust Index Data To E	nvironment	: On			
Effective Focal Length	:	79661.94	(in air at sys	stem temperature	and pressure)
Effective Focal Length	:	79661.94	(in image space	ce)	-
Back Focal Length	:	14950.58	• •		
Total Track	:	14987			
Image Space F/#	:	15.60347			
Paraxial Working F/#	:	15.60347			
Working F/#	:	15.6097			
Image Space NA	: 0	.03202772			
Object Space NA	: 2.	5527e-007			
Stop Radius	:	2552.7			
Paraxial Image Height	:	278.0738			
Paraxial Magnification	:	0			
Entrance Pupil Diamete	r :	5105.4			
Entrance Pupil Position	1 :	0			
Exit Pupil Diameter	:	1158,564			
Exit Pupil Position	:	-18079.03			
Field Type	: Angle	in degrees			
Maximum Radial Field	:	0.2			
Primary Wavelength	:	0.55	m		
Lens Units	: Mill	imeters			
Angular Magnification	:	4.406663			
	-				
Fields : 2					
Field Type: Angle in de	egrees				
# X-Value	Y-Value	We	ight		
1 0.00000	0.000000	1.00	0000		
2 0.200000	0.000000	1.00	0000		
Vignetting Factors					
# VDX VDY	VCX	VCY	VAN		
1 0.000000 0.000000	0.000000	0.000000	0.000000		
2 0.000000 0.000000	0.000000	0.000000	0.000000		
Wavelengths : 3					
Units: m					

#	Value	Weight
1	0.350000	1.000000
2	0.550000	1.000000
3	0.900000	1.000000

SURFACE DATA SUMMARY:

Surf	f Type	Radius	Thickness	Glass	Diameter	Conic	Comment
OBJ	STANDARD	Infinity	Infinity		0	0	sky!
1	STANDARD	Infinity	0		5105.4	0	center obscuration
STO	STANDARD	-33926.78	-13724.78	MIRROR	5106.071	-1	primary
3	STANDARD	Infinity	-55.00057		1077.405	0	secondary defocus
4	STANDARD	-8089.9	13724.78	MIRROR	1092.2	-2.3528	secondary
5	STANDARD	Infinity	55.00057		596.8754	0	sec. defocus. comp.
6	STANDARD	Infinity	1207.219		595.0376	0	primary vertex
7	STANDARD	Infinity	-35		560.8434	0	bottom of cass ring
IMA	STANDARD	Infinity			557.5221	0	ao focus

SURFACE DATA DETAIL:

Surface OBJ	: STANDARD sky!
Surface 1	: STANDARD center obscuration
Aperture	: Circular Obscuration
Minimum Radius	: 0
Maximum Radius	: 514.35
Surface STO	: STANDARD primary
Mirror Substrat	e : None
Surface 3	: STANDARD secondary defocus
Surface 4	: STANDARD secondary
Mirror Substrat	e : None
Aperture	: Circular Aperture
Minimum Radius	: 0
Maximum Radius	: 520.7
Surface 5	: STANDARD sec. defocus. comp.
Surface 6	: STANDARD primary vertex
Surface 7	: STANDARD bottom of cass ring
Surface IMA	: STANDARD ao focus

COATING DEFINITIONS:

PHYSICAL OPTICS PROPAGATION SETTINGS SUMMARY:

OBJ STANDARD sky!	
Use Rays To Propagate To Next Surface :	Off
Recompute Pilot Beam :	Off
Do Not Rescale Beam Size Using Ray Data:	Off
Use Angular Spectrum Propagator :	Off
Output Pilot Radius :	Best Fit
1 STANDARD center obscuration	
Use Rays To Propagate To Next Surface :	Off
Recompute Pilot Beam :	Off
Do Not Rescale Beam Size Using Ray Data:	Off
Use Angular Spectrum Propagator :	Off
Output Pilot Radius :	Best Fit
STO STANDARD primary	
Use Rays To Propagate To Next Surface :	Off

Recompute Pilot Beam : Do Not Rescale Beam Size Using Ray Data: Use Angular Spectrum Propagator : Output Pilot Radius :	Off Off Off Best	Fit
3 STANDARD secondary defocus		
Use Rays To Propagate To Next Surface :	Off	
Recompute Pilot Beam :	Off	
Do Not Rescale Beam Size Using Ray Data:	Off	
Use Angular Spectrum Propagator :	Off	
Output Pilot Radius :	Best	Fit
4 STANDARD secondary		
Use Rays To Propagate To Next Surface :	Off	
Recompute Pilot Beam :	Off	
Do Not Rescale Beam Size Using Ray Data:	Off	
Use Angular Spectrum Propagator :	Off	
Output Pilot Radius :	Best	Fit
5 STANDARD sec. defocus. comp.		
Use Rays To Propagate To Next Surface :	Off	
Recompute Pilot Beam :	Off	
Do Not Rescale Beam Size Using Ray Data:	Off	
Use Angular Spectrum Propagator :	Off	
Output Pilot Radius :	Best	Fit
6 STANDARD primary vertex		
Use Rays To Propagate To Next Surface :	Off	
Recompute Pilot Beam :	Off	
Do Not Rescale Beam Size Using Ray Data:	Off	
Use Angular Spectrum Propagator :	Off	
Output Pilot Radius :	Best	Fit
7 STANDARD bottom of cass ring		
Use Rays To Propagate To Next Surface :	Off	
Recompute Pilot Beam :	Off	
Do Not Rescale Beam Size Using Ray Data:	Off	
Use Angular Spectrum Propagator :	Off	
Output Pilot Radius :	Best	Fit
IMA STANDARD ao focus		
Use Rays To Propagate To Next Surface :	Off	
Recompute Pilot Beam :	Off	
Do Not Rescale Beam Size Using Ray Data:	Off	
Use Angular Spectrum Propagator :	Off	
Output Pilot Radius :	Best	Fit

EDGE THICKNESS DATA:

Surf	X-Edge	Y-Edge
1	-96.059651	-96.059651
STO	-13628.720349	-13628.720349
3	-73.404199	-73.404199
4	13743.183628	13743.183628
5	55.000571	55.000571
6	1207.219441	1207.219441
7	-35.000000	-35.000000
IMA	0.00000	0.00000

SOLVE AND VARIABLE DATA:

Thickness	of	3	:	Variab	le									
Thickness	of	4	:	Solve,	Pickup	from	surface	2	scaled	by	-1,	offset	by	0

Semi Diameter 4 Thickness of 5	: Fixed : Solve	d e, Pickuj	p from su	urface 3 scal	led by -1, of	ffset by O
INDEX OF REFRACTION	DATA:					
System Temperature: System Pressure : Absolute air index: Index data is relat:	5.0000 1.0000 1.00028 ive to air	Celsius Atmosphe 38 at way at the s	eres velength system te	0.550000 m emperature an	nd pressure.	
Surf	Glass	Temp	Pres	0.350000	0.550000	0.900000
0		5.00	1.00	1.00000000	1.00000000	1.0000000
1		5.00	1.00	1.00000000	1.00000000	1.0000000
2	MIRROR	5.00	1.00	1.0000000	1.00000000	1.0000000
3		5.00	1.00	1.0000000	1.00000000	1.0000000
4	MIRROR	5.00	1.00	1.0000000	1.00000000	1.0000000
5		5.00	1.00	1.00000000	1.00000000	1.0000000
6		5.00	1.00	1.0000000	1.00000000	1.0000000
7		5.00	1.00	1.0000000	1.00000000	1.0000000
8		5.00	1.00	1.0000000	1.0000000	1.0000000

THERMAL COEFFICIENT OF EXPANSION DATA:

Surf	Glass	TCE *10E-6
0		0.0000000
1		0.00000000
2	MIRROR	0.00000000
3		0.00000000
4	MIRROR	0.00000000
5		0.00000000
6		0.00000000
7		0.00000000
8		0.0000000

F/# DATA:

 $\ensuremath{\textit{F/\#}}$ calculations consider vignetting factors and ignore surface apertures.

	Wavelength:	0.35	50000	0.55	50000	0.90	00000
#	Field	Tan	Sag	Tan	Sag	Tan	Sag
1	0.0000, 0.0000 deg:	15.6097	15.6097	15.6097	15.6097	15.6097	15.6097
2	0.2000, 0.0000 deg:	15.6026	15.5991	15.6026	15.5991	15.6026	15.5991

GLOBAL VERTEX COORDINATES, ORIENTATIONS, AND ROTATION/OFFSET MATRICES:

Reference Surface: 8

Surf	R11	R12	R13	3	Х	
	R21	R22	R23		Y	
	R31	R32	R33		Z	
1	1.0000000000	0.000000000	0.000000000	0.000	000000E+000	center obscuration
	0.000000000	1.000000000	0.000000000	0.000	000000E+000	
	0.000000000	0.000000000	1.000000000	-1.172	2219441E+003	
2	1.0000000000	0.000000000	0.000000000	0.000	000000E+000	primary
	0.0000000000	1.0000000000	0.000000000	0.000	0000000E+000	

	0.000000000	0.000000000	1.000000000 -1.172219441E+003	
3	1.000000000 0.000000000 0.000000000	0.000000000 1.000000000 0.000000000	0.000000000 0.000000000000000000000000	
4	1.000000000 0.000000000 0.000000000	0.000000000 1.000000000 0.000000000	0.000000000 0.000000000000000000000000	
5	1.000000000 0.000000000 0.000000000	0.000000000 1.000000000 0.000000000	0.000000000 0.000000000000000 sec. defocus. comp. 0.0000000000 0.0000000000000000000000	
6	1.000000000 0.000000000 0.000000000	0.000000000 1.000000000 0.000000000	0.000000000 0.000000000000000000000000	
7	1.000000000 0.0000000000 0.0000000000	0.000000000 1.000000000 0.000000000	0.000000000 0.00000000E+000 bottom of cass ring 0.000000000 0.00000000E+000 1.0000000000 3.50000000E+001	g
8	1.000000000 0.000000000 0.000000000	0.000000000 1.000000000 0.000000000	0.000000000 0.000000000000000000000000	

GLOBAL SURFACE CENTER OF CURVATURE POINTS:

Reference Surface: 8

Surf	Х	Y	Z	
1	-	-	- center obsc	uration
2	0.000000000	0.000000000	-35098.9994410056 primary	
3	-	-	- secondary de	efocus
4	0.000000000	0.000000000	-23041.8999999093 secondary	у
5	-	-	- sec. defocus	s. comp.
6	-	-	- primary ver	tex
7	-	-	- bottom of ca	ass ring
8	-	-	- ao focus	

ELEMENT VOLUME DATA:

For centered elements with plane or spherical circular faces, exact volumes are computed by assuming edges are squared up to the larger of the front and back radial aperture.

For all other elements, approximate volumes are numerically integrated to 0.1 $\$ accuracy. Zero volume means the volume cannot be accurately computed.

Single elements that are duplicated in the Lens Data Editor for ray tracing purposes may be listed more than once yielding incorrect total mass estimates.

	Volume cc	Density g/cc	Mass g
Total Mass:			0.000000

CARDINAL POINTS:

Object space positions are measured with respect to surface 1. Image space positions are measured with respect to the image surface. The index in both the object space and image space is considered.

		Ubject Space	Image Space
W = 0.350000			
Focal Length	:	-79661.944502	79661.944502
Focal Planes	:	-351043.325413	-1.420107
Principal Planes	:	-271381.380911	-79663.364609
Anti-Principal Planes	:	-430705.269914	79660.524395
Nodal Planes	:	-271381.380911	-79663.364609
Anti-Nodal Planes	:	-430705.269914	79660.524395
W = 0.550000 (Primary)			
Focal Length	:	-79661.944502	79661.944502
Focal Planes	:	-351043.325413	-1.420107
Principal Planes	:	-271381.380911	-79663.364609
Anti-Principal Planes	:	-430705.269914	79660.524395
Nodal Planes	:	-271381.380911	-79663.364609
Anti-Nodal Planes	:	-430705.269914	79660.524395
W = 0.900000			
Focal Length	:	-79661.944502	79661.944502
Focal Planes	:	-351043.325413	-1.420107
Principal Planes	:	-271381.380911	-79663.364609
Anti-Principal Planes	:	-430705.269914	79660.524395
Nodal Planes	:	-271381.380911	-79663.364609
Anti-Nodal Planes	:	-430705.269914	79660.524395