

Design Study Update

Alex Delacroix
08/17/2009
Version 12

1. Conceptual design and operation

Three probes cover the entire $\varnothing 120^{\prime \prime}(87.24 \mathrm{~mm})$ Field of View.

1.1 Basic Design requirements:

Each probe is mounted on a 2 degrees of freedom articulated arm composed of a crank arm and a lever arm, driven by 2 corresponding rotation motors: The crank and lever motors. (See Fig. 2)

Any position in the OSM field of view can be acquired by calculating appropriate values for theta and phi, noting that two possible solutions could be found due to symmetry.

The crank motor is secured to the Sensor and rotates the crank arm, precisely about the rotation axis of the crank motor referred to as the theta axis. The lever arm motor provides the necessary second degree of freedom by rotating the lever arm and all associated optics, about the phi axis.

Each probes are a at a different distance from the Focal plane, 15 mm apart, with the closest probe 5 mm upstream from the focal plane. This design allow each probe to freely roam the entire field without risk of colliding into an other probe. (See Fig. 1)
Mechanism Type: $\quad \phi / \theta$
Patrolled Field: $\quad \varnothing 120^{\prime \prime}(\mathbf{8 7 . 2 4 m m})$
Focal Plane FoV: $\quad \varnothing 5^{\prime \prime}(3.635 \mathrm{~mm})$
Acquisition accuracy: 40 mas $(30 \mu \mathrm{~m})$
Stability:
Position knowledge: $\quad<1 \mu \mathrm{mas} / 3600 \mathrm{~s}(1 \mu \mathrm{~m})$
Minimum Incremental motion: TBD
Operating Temperature: $-10^{\circ} \mathrm{C}+/-0.3$

1.2 Field of View:

The Field of View at the Focal Plane is $\varnothing 5^{\prime \prime}(3.635 \mathrm{~mm})$
The Field of View at the probe is defined by it's distance from the Focal Plane / f\# (See Fig. 2)

Fig. 2

2. Optical Equation

Optical Layout (Fig. 3) is optimized when the following equations are verified:
2.1) $a=b=c=d$
2.2) $a+b=x(c+d)$

Keeping the AO Focus away from the Probe mirror (FM1) gives:
2.3) $a=a_{1}+a_{2}$

Keeping each Lever arms on a different plane to avoid collision between each other gives a different value of a1 for each OSM The Lever Arm Length previously determined gives:
2.4) Lever Arm length $=b+a_{2}$

Replacing 3.3 \& 3.4 in 3.1 gives: $\mathrm{a}=\mathrm{b} \rightarrow \mathrm{a}_{1}+\mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{2}$
Solving for $\mathrm{a}_{2} \rightarrow 2 \mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{1} \boldsymbol{\rightarrow} \mathrm{a}_{2}=\left(\right.$ Lever Arm length $\left.-\mathrm{a}_{1}\right) / \mathbf{2}$

3. Dimensioning the Probe

3.1) The Lens Holder size is driving a_{2}
3.2) Using a 280 mm Lever Arm:
a1 $=10 \mathrm{~mm}$ for OSM \#1 $\rightarrow 10+2 \mathrm{a}_{2}=280 \rightarrow 2 \mathrm{a}_{2}=280-10 \rightarrow \mathrm{a}_{2}=135$
$\mathrm{a} 1=-5 \mathrm{~mm}$ for OSM \#2 $\rightarrow-5+2 \mathrm{a}_{2}=280 \rightarrow 2 \mathrm{a}_{2}=280+5 \rightarrow \mathrm{a}_{2}=142.5$
$\mathrm{a} 1=-20 \mathrm{~mm}$ for OSM \#3 $\rightarrow-20+2 \mathrm{a}_{2}=280 \rightarrow 2 \mathrm{a}_{2}=280+20 \rightarrow \mathrm{a}_{2}=150$

OSM\#	a_{1}	a_{2}	$\mathrm{a}=\mathrm{b}=\mathrm{a}_{1}+\mathrm{a}_{2}$	$\mathrm{a}+\mathrm{b}$
I	10	135	145	240
II	-5	142.5	137.5	275
III	-20	150	130	260

3.2.1.1) Probe FoV

The probe Fold Mirror intercept the light beam at a 45 degree angle creating an elliptical projection.

Ellipse Minor Diameter
$d=d$ at Focus Plan $+(a 1 / f \#)$
$=5 \times 0.727+(10 / 13.66)$
$=3.635+0.732$
$=4.367 \mathrm{~mm}$

Ellipse Major Diameter
D = dV2
$=4.367 \sqrt{ } 2$
$=6.175 \mathrm{~mm}$

3.3) Probe Collision avoidance

Collision between probes and neighboring probe bodies due to a software or operator error is a major risk that is eliminated by the use of a limit switch (wobble switch) located into a track that reproduces the maximum expected probe roaming area.

Wobble Switch

 roaming track

Collision between probes

Wobble Switch Roaming area

3.4 Position Accuracy

Probe Position within the field is measured using absolute encoders position.
Total Position Accuracy of $30 \mu \mathrm{~m}$ at the furthest position across the field requires a minimum crank rotation accuracy of:
$\sin \alpha=30 \mu \mathrm{~m} /(280 \mathrm{~mm}+41.8025 \mathrm{~mm}) \rightarrow \sin \alpha=.03 / 321.8025 \rightarrow \alpha=0.005^{\circ}=.012$ $\pi / 180=.00021 \mathrm{rad}=210 \mu \mathrm{rad}$

Design With Stages Upstream the light path

LOWFS OSM Assy with stages upstream

Remaining work to be done

-Analyze Tip/Tilt Mirror Vibrations and Impact on Probe stabilization.

- System rigidity Analysis

Questions:

-Probe position Accuracy: 40 (KAON 562) or 70 mas (Contour)

- Minimum Incremental motion ?
- Max Wobble?
- Position Stability (5 mas / 3600 s) TBC
- TT Requirements (Deflection, response, resolution,...)

