NGAO OSM

Design Study Update

Alex Delacroix
08/11/2009
Version 11

1. Conceptual design and operation

The $\emptyset 5^{\prime \prime}(3.635 \mathrm{~mm})$ probe covers half of the entire $\varnothing 120^{\prime \prime}(87.24 \mathrm{~mm})$ Field of View.

The 2 degrees of freedom probe arm consists of 2 individual arms: A crank arm and a lever arm, driven by 2 corresponding rotation motors: The crank and lever motors.

Any position in the OSM field of view can be acquired by calculating appropriate values for theta and phi, noting that due to a mirror reflection there could be 2 possible solutions.

The crank motor is secured to the Sensor and rotates the crank arm, precisely about the rotation axis of the crank motor referred to as the theta axis. The lever arm motor provides the necessary second degree of freedom by rotating the lever arm and all associated optics, about the phi axis.

1.2 Position Accuracy

Probe Position within the field shall be measured according to the level of desired accuracy: Direct or indirect. Indirect measurement:
Total Position Accuracy of $30 \mu \mathrm{~m}$ at the \notin thest position across the 144 mm field requires a minimum crank rotation accuracy of:
$\sin \alpha=30 \mu \mathrm{~m} / 144 \mathrm{~mm} \rightarrow q \overline{\mathrm{r}} .2=.012 \pi / 180=.00021 \mathrm{rad}=210 \mu \mathrm{rad}$
And the 100 mm levgr arm nor is 60% longer than the 40 mm Crank arm
Crank motor rota巴0Dacturacy: $210 \mu \mathrm{rad}$ x 60\% = 126 $\mu \mathrm{rad}$
Lever motdWtation accuracy: $210 \mu \mathrm{rad} \times 40 \%=84 \mu \mathrm{rad}$

1.1 Basic Design requirements:

Mechanism Type: $\quad \phi / \theta$

Patrolled Field:	$\varnothing \mathbf{1 2 0 \prime}(\mathbf{8 7 . 2 4 m m})$
Probe FoV:	$\varnothing 5^{\prime \prime}(3.635 \mathrm{~mm})$

Acquisition accuracy: 40 mas ($30 \mu \mathrm{~m}$)
Stability: 5 mas / 3600s $(1 \mu \mathrm{~m})$
Position knowledge: $<1 \mu \mathrm{~m}(\mathrm{TBC})$
Minimum Incremental motion: TBD
Operating Temperature: $-10^{\circ} \mathrm{C}+/-0.3$

Note: Separation is a distance determined by the Lever Arm motor envelope to clear the Field of view at any angle of Crank rotation.

1.1.3 Probe operation

3. Optical Equation

Optical Layout is optimized when the following equations are verified:
3.1) $a=b=c=d$
3.2) $a+b=x(c+d)$

Keeping the AO Focus away from the Probe mirror (FM1) gives:
3.3) $a=a_{1}+a_{2}$

Keeping each Lever arms on a different plane to avoid collision between each other gives a different value of a1 for each OSM The Lever Arm Length previously determined gives:
3.4) Lever Arm length $=b+a_{2}$

Replacing 3.3 \& 3.4 in 3.1 gives: $\mathrm{a}=\mathrm{b} \rightarrow \mathrm{a}_{1}+\mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{2}$
Solving for $\mathrm{a}_{2} \rightarrow 2 \mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{1} \boldsymbol{\rightarrow} \mathrm{a}_{2}=\left(\right.$ Lever Arm length $\left.-\mathrm{a}_{1}\right) / \mathbf{2}$
3.5) The Lens Holder size is driving a_{2}

Using a 250 mm Lever Arm , would give the following results :
a1 $=10 \mathrm{~mm}$ for OSM \#1 $\rightarrow 10+2 \mathrm{a}_{2}=250 \rightarrow 2 \mathrm{a}_{2}=250-10 \rightarrow \mathrm{a}_{2}=120$
a1 $=-5 \mathrm{~mm}$ for OSM \#2 $\rightarrow-5+2 \mathrm{a}_{2}=250 \rightarrow 2 \mathrm{a}_{2}=250+5 \rightarrow \mathrm{a}_{2}=127.5$
$\mathrm{a} 1=-20 \mathrm{~mm}$ for OSM \#3 $\rightarrow-20+2 \mathrm{a}_{2}=250 \rightarrow 2 \mathrm{a}_{2}=250+20 \rightarrow \mathrm{a}_{2}=135$

OSM\#	a_{1}	a_{2}	$\mathrm{a}=\mathrm{a}_{1}+\mathrm{a}_{2}$	$\mathrm{a}+\mathrm{b}$
I	10	120	130	260
II	-5	127.5	122.5	245
III	-20	135	115	230

4. Lever Arm Design

Compact Lens Positioners

NEW

- Positions 1.0 in. (25.4) optical elements
- Precision positioning using 100 TPI adjustment screws
- Compact size is ideal for limited-space applications
- English/metric compatibility

LAIVXY
the new LAIV-XY and LPV-1 Compact Lens Positioners provide an economical solution for applications requiring two (XY) or five (XYZ $\theta_{\mathrm{X}} \theta_{\mathrm{Y}}$) axes of precision adjustrnent. Their compact size makes them Ideal for OEM applications, or research projects with limited table space. Precise positioning is achleved with the integration of 100 TPI drive screws.
Additionally, an integral $5 / 64$ (M2) hex hole in the drive knobs allows for optional Allen key adjustment. Each unit is supplied with two non-marring Delrin retaining rings to safely secure optical elements with a maximum outer diameter of 1.0 in . (25.4 mm). Post mounting on the LAIV-XY is achleved by accessing one of the tapped 8 -32 or M4 threaded holes in the mount body. The LPV-1 is post mounted via a counterbored hole sized for $8-32$ or M4 screws.
Specifications

Specifications	LA1v-xy	LPV-1
Degrees of Freedom	XY	
Maximum Optic Diameter [im. (mm)]	1.0 (25.4)	1.0 (25.4)
Optical Axı Helignt [in. (mm)]	1.0 (25.4)	1.25 (31.8)
Range, XY [in. (mm)]	40.125 (32)	± 0.125 (3.2)
Range, \bar{Z} [in (mm)] $]$		± 0.18 (4.6)
Range, $0_{x}{ }^{\text {a }}$ Y		$\pm 5^{\circ}$
Sensituty, XY (um)	0.75	0.75
Sensitury, 2 (um)		1
Sersituty, $\mathrm{x}_{\mathrm{x}} \mathrm{e}^{\text {a }}$ (arc sec)		2

Ordering Information

LPV-1
Search for: LPV-1
\rightarrow
Model: LPV-1 |5-Axis Compact Lens Positioners, 1-in. Diameter
Opto Mechanics > Lens Holders > Compact Lens Positioners
Available Today

$\$ 249.99 \quad 1 \quad$ Add to cart

- Diameter: 1.0 in . (25.4 mm)
- Adjustments: $x, y, z, \theta x$, By

Catalog PDF	3-D Model
Drawings	Description
Specifications Product Detail	

The new LA1V-XY and LPV-1 Compact Lens Positioners provide an economical solution for applications requiring two $(X Y)$ or five ($\left(X Z \theta_{X} \theta_{Y}\right)$ axes of precision adjustment. Their compact size makes them ideal for OEM applications, or research projects with limited table space. Precise positioning is achieved with the integration of 100 TPI drive screws. Additionally, an integral $5 / 64(\mathrm{M} 2)$ hex hole in the drive knobs allows for optional Allen key adjustment. Each unit is supplied with two non-marring Delrin retaining rings to safely secur optical elements with a maximum outer diameter of 1.0 in . (25.4 mm). Post mounting on the LA1V-XY is achieve by accessing one of the tapped 8-32 or M4 threaded holes in the mount body. The LPV-1 is post mounted via a counterbored hole sized for 8-32 or M4 screws.

Design With Newport Stages Upstream

Previous Design With Newport Stages Downstream

Crank \& Lever Motor @ 0° : Probe at 0° (Probe Fully Retracted)

Crank \& Lever Fully Extended: Probe at $90^{\circ} \mathrm{CW}$

Max Probe extension (In forbidden area)

The whole $120^{\prime \prime}$ field can be covered using 180° Rotation for each stages!...

Probes on different level can't collide

LOWFS OSM Assy shown at various probe position

LOWFS OSM Assy with stages upstream

Remaining work to be done

-Analyze Tip/Tilt Mirror Vibrations and Impact on Probe stabilization.

- System rigidity Analysis

Questions:

-Probe position Accuracy: 40 (KAON 562) or 70 mas (Contour)

- Minimum Incremental motion ?
- Max Wobble?
- Position Stability (5 mas / 3600 s) TBC
- TT Requirements (Deflection, response, resolution,...)

