NGAO OSM

Design Study

Alex Delacroix
08/05/2009
Version 9

1. Conceptual design and operation

The $\varnothing 5^{\prime \prime}(3.635 \mathrm{~mm})$ probe covers the entire $\varnothing 120^{\prime \prime}(87.24 \mathrm{~mm})$ Field of View.
The 2 degrees of freedom probe arm consists of 2 individual arms: A crank arm and a lever arm, driven by 2 corresponding rotation motors: The crank and lever motors.

Any position in the OSM field of view can be acquired by calculating appropriate values for theta and phi, noting that due to a mirror reflection there are always 2 possible solutions.

The crank motor is secured to the Sensor and rotates the crank arm, precisely about the rotation axis of the crank motor referred to as the theta axis. The lever arm motor provides the necessary second degree of freedom by rotating the lever arm and all associated optics, about the phi axis.

1.2 Position Accuracy

Probe Position within the field shall be measured according to the level of desired accuracy: Direct or indirect.
Indirect measurement:
Total Position Accuracy of $30 \mu \mathrm{~m}$ at the furthest position across the 144 mm field requires a minimum crank rotation accuracy of:
$\sin \alpha=30 \mu \mathrm{~m} / 144 \mathrm{~mm} \rightarrow \alpha=0.012^{\circ}=.012 \pi / 180=.00021 \mathrm{rad}=210 \mu \mathrm{rad}$
And the 100 mm lever arm motor is 60% longer than the 40 mm Crank arm
Crank motor rotation accuracy: $210 \mu \mathrm{rad} \times 60 \%=126 \mu \mathrm{rad}$
Lever motor rotation accuracy: $210 \mu \mathrm{rad} \times 40 \%=84 \mu \mathrm{rad}$

2. Arms Size Equation

2.1 Arm fully extended Equation:

2.2 Arm fully retracted Equation:

2.1.1) Using 40 mm separation for the $\mathrm{PI} \mathrm{M}-038$ and $\mathrm{M}-037$

Lever Arm + Crank Arm + 1.8175 Probe $=87.24$ Fov +40 Separation + Crank Arm Lever Arm $+1.8175=87.24+40 \rightarrow$ Lever Arm $=125.42 \mathrm{~mm}$ 2.1.2) Using 63.5 mm separation for the Newport URS75B Lever Arm $+1.8175=87.24+63.5 \rightarrow$ Lever Arm $=148.9225 \mathrm{~mm}$ 2.2.3) Using a 200 mm Lever Arm, separation $=$ Crank Arm + Fov = need to be:
$200+1.8175=87.24+$ Separation \rightarrow Separation $=114.5775 \mathrm{~mm}$
2.2.4) Using a 230 mm Lever Arm, separation need to be:
$230+1.8175=87.24+$ Separation \rightarrow Separation $=144.5775 \mathrm{~mm}$
2.2.1) Using 40 mm separation for the $\mathrm{PI} \mathrm{M}-038$ and $\mathrm{M}-037$

Lever Arm - Crank Arm = Separation + Crank Arm + Probe
\rightarrow Crank Arm $=41.30 \mathrm{~mm}$
2.2.2) Using 63.5 mm separation for the Newport URS75B
148.9225 - Crank Arm = 63.5 + Crank Arm +1.8175
\rightarrow Crank Arm $=41.8025 \mathrm{~mm}$
2.2.3) Using a 200 mm Lever Arm and 114.5775 mm Separation

200 - Crank Arm = 114.5775 + Crank Arm +1.8175
\rightarrow Crank Arm $=41.8025 \mathrm{~mm}$

3. Optical Equation

Optical Layout is optimized when the following equations are verified:
3.1) $a=b=c=d$
3.2) $a+b=x(c+d)$

Keeping the AO Focus away from the Probe mirror (FM1) gives:
3.3) $a=a_{1}+a_{2}$

Keeping each Lever arms on a different plane to avoid collision between each other gives a different value of a1 for each OSM The Lever Arm Length previously determined gives:
3.4) Lever Arm length $=b+a_{2}$

Replacing 3.3 \& 3.4 in 3.1 gives: $\mathrm{a}=\mathrm{b} \rightarrow \mathrm{a}_{1}+\mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{2}$
Solving for $\mathrm{a}_{2} \rightarrow 2 \mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{1} \boldsymbol{\rightarrow} \mathrm{a}_{2}=\left(\right.$ Lever Arm length $\left.-\mathrm{a}_{1}\right) / \mathbf{2}$

Using a 250 mm Lever Arm, would give the following results :

$$
\begin{aligned}
& \text { a1 }=10 \mathrm{~mm} \text { for OSM \#1 } \rightarrow 10+2 \mathrm{a}_{2}=250 \rightarrow 2 \mathrm{a}_{2}=250-10 \rightarrow \mathrm{a}_{2}=120 \\
& \text { a1 }=-5 \mathrm{~mm} \text { for OSM \#2 } \rightarrow-5+2 \mathrm{a}_{2}=250 \rightarrow 2 \mathrm{a}_{2}=250+5 \rightarrow \mathrm{a}_{2}=127.5 \\
& \mathrm{a} 1=-20 \mathrm{~mm} \text { for OSM \#3 } \rightarrow-20+2 \mathrm{a}_{2}=250 \rightarrow 2 \mathrm{a}_{2}=250+20 \rightarrow \mathrm{a}_{2}=135
\end{aligned}
$$

OSM\#	a_{1}	a_{2}	$\mathrm{a}=\mathrm{a}_{1}+\mathrm{a}_{2}$	$\mathrm{a}+\mathrm{b}$
I	10	120	130	260
II	-5	127.5	122.5	245
III	-20	135	115	230

4. Lever Arm Design

Using a Lens holder imposes increasing the arm length to avoid eventual vignetting of the FoV

Compact Lens Positioners

NEW

- Positions 1.0 in. (25.4) optical elements
- Precision positioning using 100 TPI adjustment screws
- Compact size is ideal for limited-space applications
- English/metric compatibility

LAIVXY
the new LAIV-XY and LPV-1 Compact Lens Positioners provide an economical solution for applications requiring two (XY) or five (XYZ $\theta_{\mathrm{X}} \theta_{\mathrm{Y}}$) axes of precision adjustrnent. Their compact size makes them Ideal for OEM applications, or research projects with limited table space. Precise positioning is achleved with the integration of 100 TPI drive screws.
Additionally, an integral $5 / 64$ (M2) hex hole in the drive knobs allows for optional Allen key adjustment. Each unit is supplied with two non-marring Delrin retaining rings to safely secure optical elements with a maximum outer diameter of 1.0 in . (25.4 mm). Post mounting on the LAIV-XY is achleved by accessing one of the tapped 8 -32 or M4 threaded holes in the mount body. The LPV-1 is post mounted via a counterbored hole sized for $8-32$ or M4 screws.
Specifications

Specifications	LA1v-xy	LPV-1
Degrees of Freedom	XY	
Maximum Optic Diameter [im. (mm)]	1.0 (25.4)	1.0 (25.4)
Optical Axı Helignt [in. (mm)]	1.0 (25.4)	1.25 (31.8)
Range, XY [in. (mm)]	40.125 (32)	± 0.125 (3.2)
Range, \bar{Z} [in (mm)] $]$		± 0.18 (4.6)
Range, $0_{x}{ }^{\text {a }}$ Y		$\pm 5^{\circ}$
Sensituty, XY (um)	0.75	0.75
Sensitury, 2 (um)		1
Sersituty, $\mathrm{x}_{\mathrm{x}} \mathrm{e}^{\text {a }}$ (arc sec)		2

Ordering Information

LPV-1
Search for: LPV-1
\rightarrow
Model: LPV-1 |5-Axis Compact Lens Positioners, 1-in. Diameter
Opto Mechanics > Lens Holders > Compact Lens Positioners
Available Today

$\$ 249.99 \quad 1 \quad$ Add to cart

- Diameter: 1.0 in . (25.4 mm)
- Adjustments: $x, y, z, \theta x$, By

Catalog PDF	3-D Model
Drawings	Description
Specifications Product Detail	

The new LA1V-XY and LPV-1 Compact Lens Positioners provide an economical solution for applications requiring two $(X Y)$ or five ($\left(X Z \theta_{X} \theta_{Y}\right)$ axes of precision adjustment. Their compact size makes them ideal for OEM applications, or research projects with limited table space. Precise positioning is achieved with the integration of 100 TPI drive screws. Additionally, an integral $5 / 64(\mathrm{M} 2)$ hex hole in the drive knobs allows for optional Allen key adjustment. Each unit is supplied with two non-marring Delrin retaining rings to safely secur optical elements with a maximum outer diameter of 1.0 in . (25.4 mm). Post mounting on the LA1V-XY is achieve by accessing one of the tapped 8-32 or M4 threaded holes in the mount body. The LPV-1 is post mounted via a counterbored hole sized for 8-32 or M4 screws.

Preliminary Design With Newport Stages

Crank \& Lever Motor @ 0° : Probe at 0° (Probe Fully Retracted)

Crank @ $90^{\circ} \mathrm{CW} \&$ Lever Motor @ $90^{\circ} \mathrm{CCW}{ }^{\circ}$: Probe at $90^{\circ} \mathrm{CW}$

Crank @ 180° CW \& Lever Motor @ 180° CCW ${ }^{\circ}$: Probe Fully Extended

LOWFS OSM Assy shown at various probe position

LOWFS OSM Assy shown at various probe position

LOWFS OSM Assy

Lever Arm CG Location

Crank Arm Assy CG Location

Max Cantilever Torque and Deflection

5. Servo Motors Vs Stepper Motors

Motion Characteristics	Servo Motors	Stepper Motors
High Torque, Low Speed	Can be considered if cost/ complexity is not an issue.	Continuous duty applications requiring high torque and low speed.
High Torque and high speed (>2000 rpm)	Continuous duty applications requiring high torque and high speed. DC servomotor can deliver greater continuous shaft power at high speeds compared to steppers. High speed up to 12000 rpm is possible. AC servo motors can handle higher current surges compared to DC servos. Can get lot stronger AC servo compared to either DC servo or DC stepper.	If speeds are less than 2000 rpm stepper may be economical. Stepper becomes bulky at high torque.
Short, Rapid Repetitive Moves	Use servo if need high dynamic requirements.	Stepper will offer more economic solution when requirements are more modest.
Positioning Applications	Servo can handle effectively when load is mostly inertia instead of friction. The ability to overdrive servo motor in intermittent duty allows a smaller motor to be used. If positioning is critical in micron level use servo.	Use stepper motor if torque is lower than 500 oz-in, less 2000 rpm, low to medium acceleration rates.
Applications in Hazardous Environments	Use brushless servo motor.	Use step motor.
Low Speed, High Smoothness	Use DC servo.	Use microstepping.
Control Method	Closed loop.	Preferred to be used in open loop applications.

6. Potential Lever Motor

PI M-037.DG Rotation stage

M-037 rotation stages are equipped with ultra-precise worm gear drives allowing unlimited rotation in either direction. An integrated spring preload eliminates backlash.
Double-row ball bearings allow zero backlash, high load capacity and extremely low wobble.

Model M-037.DG is closed-loop DC motors with shaft-mounted position encoders and precision gearheads providing $3.5 \mu \mathrm{rad}$ at a design resolution of $0.6 \mu \mathrm{rad}$.

Model M-037.2S models feature a cost-effective directdrive, 2-phase stepper motor, providing very smooth operation and a resolution of $5.45 \mu \mathrm{rad}$ at a minimum incremental motion of $21 \mu \mathrm{~m}$.

Model	M-037.00	M-037.DG	M-037.PD	M-037.2S	
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	>360	>360	360	>360	-
Integrated sensor	-	Rotary encoder	Rotary encoder	-	
Sensor resolution	-	2000	2000	-	cts.rev,
Design resolution	-	$0.59(34 \times 109)$	3.75 (0.0005)	5.45* 0.00031)	$\mu \mathrm{rad}$ (9)
Min. incremental motion	-	3.5	27	21	$\mu \mathrm{rad}$
Backlash	-	200	200	200	Hrad
Unidirectional repeatability	-	30	30	30	$\mu \mathrm{rad}$
Wobble	<150	<150	-150	<150	$\mu \mathrm{rad}$
Max. velocity	-	6	45	10	\%/s
Mechanical properties					
Worm gear ratio	180:1	180:1	180:1	180:1	
Gear ratio	-	$(28 / 12)^{*}=29.6: 1$	-	-	
Motor resolution	-	-	-	6400^{*}	steps/rev.
Load capacity/axial force, self-locking	± 300	± 300	-300	± 300	N
Max, torque ($0_{x}, \theta_{y}$)	± 3	± 3	$=3$	± 3	Nm
Max. torque clockwise (0_{2})	1	1	1	1	Nm
Max. torque counter clockwise (θ_{z})	0.5	0.5	p. 5	0.5	Nm
Drive properties					
Motor type	-	DC motor, gearhead	ActiveDrive ${ }^{\text {TM }}$ DC Motor	2-phase stepper motor*	
Operating voltage	-	0 to ± 12	24 (PWM)	24	v
Electrical power	-	3	30		w
Reference switch	-	Hall-effect	Hall-eflect	Hall-effect	
Miscellaneous					
Operating temperature range	-20 to +65	-20 to +65	20 to 65	-20 to +65	${ }^{\circ} \mathrm{C}$
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.3	0.65	p. 62	0.64	kg
Recommended controller/driver	-	C-863 (single-axis) C-843 PCl-Karte (for up to 4 axes)	-863 (single-axis, p. 4-114) --843 PCI-Karte (p. 4-120) for up to 4 axes)	C-663 (single-axis, p. 4-112)	

inc. motor cable, 3 m , sub-D connector 15 -pin
$* 2$-phase stepper motor, 24 V chopper voltage, max 0.8 A . $\mathrm{phase}, 400$ full steps/rev, motor resolution with C .663 stepper motor controller

M-037.DG rotation stage with DC Motor and gearhead.

7. Potential Crank Motor

PI M-038.DG Rotation stage

Model M-038.DG1 equipped with a closed-loop DC motor with shaft-mounted position encoder and precision gearhead providing minimum incremental motion of $3.5 \mu \mathrm{rad}$ at a design resolution of $0.6 \mu \mathrm{rad}$.

Model M-038.2S1 models feature a cost-effective directdrive, 2-phase stepper motor, providing very smooth operation and a resolution of $5.45 \mu \mathrm{rad}$ at a minimum incremental motion of $21 \mu \mathrm{~m}$.

ActiveDrive ${ }^{\text {TM }}$

Model M-038.PD is equipped with the highly efficient Active Drive ${ }^{\text {TM }}$ direct drive and reaches velocities up to $45^{\circ} / \mathrm{s}$. The ActiveDrive ${ }^{\text {TM }}$ design, developed by PI, features a high-efficiency PWM (pulse width modulation) servo-amplifier mounted side-by-side with the DC motor and offers several advantages: Increased efficiency, by eliminating power losses between the amplifier and motor. Reduced cost of ownership and improved reliability, because no external driver is required Elimination of PWM amplifier noise radiation, by mounting the amplifier and motor together in a single, electrically shielded case

Technical Data

Model	M-038.001	M-038.DG1	M-038.PD1	M-038.2S1	Units
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	$>360^{\circ}$	>360 ${ }^{\circ}$	> 360°	$>360^{\circ}$	
Integrated sensor	-	Rotary encoder	Rotary encoder	-	
Sensor resolution	-	2000	4000	-	steps/rev.
Design resolution	-	0.60 (35 $\times 10 \%)$	8.95 (0.0005)	$5.58 *(0.00032)$	urad (')
Min. incremental motion	-	3.5	27	21	urad
Backlash	-	200	200	200	Hrad
Unidirectional repeatability	-	20	20	20	prad
Wobble	<75	<75	<75	<75	$\mu \mathrm{rad}$
Max, velocity	-	6	90	10	\%/s
Mechanical properties					
Worm gear ratio	176:1	176:1	176:1	176:1	
Gear ratio	-	$2401: 81=29.6: 1$	-	-	
Motor resolution	-	-	-	6400^{*}	steps/rev.
Max. load/axial force	± 400	± 400	± 400	± 400	N
Maximum torque (0x, 0_{y})	± 6	± 6	± 6	± 6	
Maximum torque $\mathrm{CW}^{* *}$	2	2	2	2	Nm
Maximum torque CCW**	0.8	0.8	0.8	0.8	Nm
Drive properties					
Motor type	-	DC Motor, gearhead	ActiveDrive ${ }^{\text {™ }}$ DC Motor	2-phase stepper motor*	
Electrical power	-	3	30		W
Reference switch	-	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating voltage	-	12 V differential	24 (PWM)	24	V
Operating temperature range	-20 to +65	-20 to +65	-20 to +65	-20 to +65	${ }^{\circ} \mathrm{C}$
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.9	1.25	1.35	1.25	kg
Recommended controller/driver		C. 863 (single-axis) C. 843 PCl board (for up to 4 axes)	C-863 (single-axis, p. 4-114) C-843 PCl board (p. 4-120) (for up to 4 axes)	C-663 (single-axis. p. 4.112)	

2-phase stepper motoc, 24 V chopper voltage, max. 0.8 Aphase, 400 full steparev, motor resolution with C - 683 stepper motor controller *CW: clockwise: CCW: counter-clockwise

Other Possible Crank motor: M-06X.DG Rotation stage

Dimensions	M-060.M0	M-061.M0	M-062.M0
A	90	130	150
B	29	34	42
C	25	30	38
D	35	55	65
E	12,5	15	21,5
F	70	110	130
G	60	100	120
H	20	35	45
I	50	90	110
J	38	50	60
K	20	20	28

Technical Data

Model	$\begin{aligned} & \text { M-060.M0 I } \\ & \text { M-061.M0 / } \\ & \text { M-062.M0 } \end{aligned}$	M-060.PD / M-061.PD / M-062.PD	M-060.DG / M-061.DG / M-062.DG	M-060.2S / M-061.2S / M-062.2S	Units
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	>360	>360	>360	>360	-
Integrated sensor	-	Rotary encoder	Rotary encoder		
Sensor resolution	-	4000	2000		Cts./rev.
Design resolution	-	32 (0.0018) / 17.5 (0.001) / 15 (0.0008)	$\begin{aligned} & 2.1(0.00012) / \\ & 1.2\left(6.9 \times 10^{5}\right) / \\ & 0.96\left(5.5 \times 10^{5}\right) \end{aligned}$	19.7 (0.0011) / 10.9 (0.00063) / 8.9 (0.00051)*	$\mu \mathrm{rad}\left({ }^{\circ}\right)$
Min. incremental motion	-	$32 / 17.5$ / 15	6.3/6/5	40 / 20 / 18*	$\mu \mathrm{rad}$
Backlash	-	200/200/240	200/200/240	200/200/240	$\mu \mathrm{rad}$
Unidirectional repeatability	-	$50 / 50$ / 60	50/50/60	$50 / 50 / 60$	$\mu \mathrm{rad}$
Max. velocity	-	90	16/9/7.3	36/20/16	\%
Mechanical properties					
Worm gear ratio	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	
Gear ratio	-	-	$(28 / 12)^{4}: 1 \approx 29.6: 1$	-	
Motor resolution	-	-	-	6400*	steps/rev.
Axial force	$\pm 500 / \pm 550 / \pm 650$	$\pm 500 / \pm 550 / \pm 650$	$\pm 500 / \pm 550 / \pm 650$	$\pm 500 / \pm 550 / \pm 650$	N
Max. torque θ_{X}, θ_{Y}	$\pm 6 / \pm 6 / \pm 7$	$\pm 6 / \pm 6 / \pm 7$	$\pm 6 / \pm 6 / \pm 7$	$\pm 6 / \pm 6 / \pm 7$	Nm
Max. torque θ_{z}	$\pm 4 / \pm 6 / \pm 8$	$\pm 4 / \pm 6 / \pm 8$	$\pm 4 / \pm 6 / \pm 8$	$\pm 4 / \pm 6 / \pm 8$	Nm
Drive properties					
Motor type	-	ActiveDrive ${ }^{\text {TM }}$ DC-Motor	DC-Motor, gearhead	2-phase Stepper-M	
Operating voltage	-	24 (PWM)	12 differential	24	v
Electrical power	-	30	3	-	
Reference switch	Hall-effect	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating temperature range	-20 to +65	-20 to +65	-20 to +65	-20 to +65	${ }^{\circ} \mathrm{C}$
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.42 / 1.36 / 2.24	0.94/1.88/2.76	0.94 / 1.88 / 2.76	0.96/1.9 / 2.78	kg
Recommended controller/driver		C-863 single-axis C-843 PCI board, for up to 4 axes	C-863 single-axis (p. 4-114) C-843 PCI board (p. 4-120), for up to 4 axes	C-663 single-axis (p.	

8. Potential Crank \& Lever Motor

Newport URS Series Precision Rotation Stages

Dimensions

Dimensions in inches (millimeters)
MODEL URS 100B

Notes:
"The drive box of the URS75BCC exceeds. 20 in. 15 mm) from the body
${ }^{3}$ URSISOB: 4 slots counterbored

Design Details
Base Material Hardened steel with aluminum body Eearings Drive Mechanism Ground worm gear with self-compensating preload. Additional $1: 2.75$ drive belt with URS-CC versions (no belt on URS-PP versions) Worm Gear Ratio $1: 90$ Feedback CC: Worm mounted rotary encoder, 8,000 ctsirev, index pulse. PP: None Limit Switches Two independently adjustable optical limit switches Origin Optical, fixed at position 0°. Typical 0.0005° repeatability for URS-CC and 0.04° repeatability for URS-PP Manual Adjustment Via allen wrench at the end of the worm screw. Allen wrench is included. Motor CC: UE34CC DC servo motor PP: UE34PP Two phase stepper motor, 1 full step $=0.02^{\circ}$ Cable

	PP		CC	
	Typical	Guaranteed	Typical	Guaranteed
Travel Range (')	360 continuous ${ }^{(1)}$			
Resolution (")	$0.0002^{(2)}$		0.0005	
Minimum Incremental Motion (\%)	0.0002		0.002	
Uni-directional Repeatability (${ }^{(}$)	0.001	0.002	0.001	0.002
Reversal Value (Hysteresis) (\%)	0.006	0.01	0.002	0.004
Absolute Accuracy (')	0.016	0.030	0.012	0.023
Maximum Speed (\%/s)	40		80	
Wobble ($\mu \mathrm{rad}$)	20	50	20	50
Eccentricity ($\mu \mathrm{m}$)		3		3
MTEF	20,000 h at 25% load and with a 30\% duty cycle			

1) With disabled liritit switches
2) Equal to $1 / 100$ of a full step

See the Motion Control Metrology Primer section (see Motion Control Metrology Primer) for more information on typical and guara

	UR575	URS100	URS150
Cz, Normal centered load capacity (N)	200	300	300
$\mathrm{a}_{\text {, Construction parameter (}}(\mathrm{mm})$	25	35	55
ko, Transversal compliance ($\mu \mathrm{rad} / \mathrm{Nm}$)	30	10	5
Mz, Nominal Torque (Nm)	+/-0.5	+ -1	+1-2
Q, Off-center load	Q $\leq \mathrm{Cz}$ / ((a)	
D, Cantilever distance in mm			
Weight [lb (kg)]	3.7 (1.7)	4.4 (2)	7.5 (3.4)

9. Comparison between Potential Stages.

Specifications	URS75BPP		URS75BCC Typ. Guaranteed		M-037.DG	M-038.DG1
Motor Type	Stepper		DC servo		DC servo	DC servo
Feedback	None		Worm	mounted encoder	Shaft mounted encoder	Shaft mounted encoder
Worm Gear Ratio	1:90			90	180:1	176:1
Sensor Resolution (cts/rev)	None				2000	2000
Resolution (${ }^{\circ}$)	0.0002			0005	0.00003	. 000003
Minimum Incremental Motion (${ }^{\circ}$)	0.0002			. 002	. 0002	. 0002
Uni-directional Repeatability (${ }^{\circ}$)	0.001	0.002	0.001	0.002	. 0017	. 0011
Reversal Value (Hysteresis) (${ }^{\circ}$)	0.006	0.01	0.002	0.004	. 01	. 01
Absolute Accuracy (${ }^{\circ}$)	0.016	0.030	0.012	0.023	TBD	TBD
Maximum Speed (\%/s)					6	6
Wobble ($\mu \mathrm{rad}$)	20	50	20	50	<150	<75
Eccentricity ($\mu \mathrm{m}$)				3	TBD	TBD
Max Axial Load (N)				200	300	400
Max CW Torque (CCW)				0.5 (0.5)	1 (0.5)	2 (0.8)
Max Cantilever Torque (Nm)				5	6	6
Mass (N)				17	6.5	12.5
MTBF at 25% load and with a 30% duty cycle				0,000 h	TBD	TBD
Integrated limit switch				djustable	No	No
Price				\$3436	\$4178	\$4724

Comparison between Potential Stages.

```
Mass on Lever motor: Tip Tilt Mirror (0.065 Kg) + TT Mirror Housing (0.100 Kg) + Probe Assy (0.120 Kg) + Collimator Assy (0.01 Kg) = 0.295 Kg
Mass on crank motor:
Mass on lever motor +Crank Adaptor (0.100 Kg) + Lever Adaptor (0.100 Kg) + Periscope Assy(0.015 Kg) + Counterweight (1 Kg) + Lever Motor = 1.215 Kg + Lever Motor
Distance between Crank Motor and center of Mass installed on Crank motor: 40mm
1) Using the PI Motors as follow: M-038.DG1 as Crank Motor and the M-037.DG as the Lever motor:
Mass on Crank motor: 1.215 Kg + 0.65 Kg = 2 Kg (2ON)
Cantilever Torque at Crank motor: 0.04m X 20 = 0.8 Nm
2) Using the URS75BCC Newport Motor for both Crank and Lever motor:
Mass on Crank motor: 1.215 Kg + 1.7 Kg = 3 Kg (30N)
Cantilever Torque at Crank motor: 0.04m X 30 = 1.2 Nm
Off Center Load: Q < 200 / (1 + 40/25) = 77 N
CONCLUSION: The Newport URS75BCC is cheaper and faster than the PI Stages and comparatively as accurate.
The Newport URS75BCC is a bigger stage than the PI Stage: The Arm length will have to be proportionally longer.
\begin{tabular}{ll} 
Lever Arm + Crank Arm + Probe = Fov + Separation + Crank Arm & Lever Arm - Crank Arm = Separation + Crank Arm + Probe \\
Lever Arm + \(1.8175=87.24+63.5\) & \(148.9225-\) Crank Arm = 63.5 + Crank Arm + 1.8175 \\
\(\rightarrow\) Lever Arm =148.9225 mm & \(\rightarrow\) Crank Arm = 41.8025 mm
\end{tabular}

\section*{10. Potential Tip / Tilt Mirror}

PI S-334 Miniature Piezo Fast Steering Tip/Tilt-Mirror up to 120 mrad Deflection


S-334.25L cablo configuration
\begin{tabular}{|c|c|c|c|c|}
\hline Model & S-334.2SL & S-334.2SD & Units & Tolerance \\
\hline Active Axes & Ox, er & ex, \(\theta\) r & & \\
\hline \multicolumn{5}{|l|}{Motion and positioning} \\
\hline Integrated sensor & SGS & SGS & & \\
\hline *Open-loop tilt angle at -20 to +120 V & 60 & 60 & mrad & min. \((+20 \% /-0 \%)\) \\
\hline *Closed-loop tilt angle & 50 & 50 & mrad & \\
\hline Open-loop resolution & 0.5 & 0.5 & \(\mu \mathrm{rad}\) & typ. \\
\hline Closed-loop resolution & 5 & 5 & \(\mu \mathrm{rad}\) & typ. \\
\hline Linearity & 0.05 & 0.05 & \% & typ. \\
\hline Repeatability & 5 & 5 & \(\mu \mathrm{rad}\) & typ. \\
\hline \multicolumn{5}{|l|}{Mechanical properties} \\
\hline Resonant frequency under load (with standard mirrors) & 1.0 & 1.0 & kHz & \(\pm 20 \%\) \\
\hline Resonant frequency with 12.5 mm diam. \(\times 2 \mathrm{~mm}\) glass mirror & 0.8 & 0.8 & kHz & \(\pm 20 \%\) \\
\hline Load capacity & 0.2 & 0.2 & N & Max. \\
\hline Distance of pivot point to platform surface & 6 & 6 & mm & \(\pm 1 \mathrm{~mm}\) \\
\hline Platform moment of inertia & 1530 & 1530 & \(\mathrm{gX} \mathrm{mm}{ }^{2}\) & \(\pm 20 \%\) \\
\hline Standard mirror (mounted) & diameter. 10 mm , thickness: 2 mm , BK7, \(\lambda / 5, \mathrm{R}>98 \%\) \(a=500 \mathrm{~nm}\) to \(2 \mu \mathrm{~m}\) ) & diameter: 10 mm , thickness: 2 mm , BK7, \(\quad \lambda / 5, R>98 \%\) a \(=500 \mathrm{~nm}\) to \(2 \mu \mathrm{~m}\) ) & & \\
\hline \multicolumn{5}{|l|}{Drive properties} \\
\hline Ceramic type & PICMA 0 P-885 & PICMA \({ }^{\text {P-885 }}\) & & \\
\hline Electrical capacitance & 6 & 6 & \(\mu \mathrm{F}\) & \(\pm 20 \%\) \\
\hline \multicolumn{5}{|l|}{Miscellaneous} \\
\hline Operating temperature range & -20 to 80 & -20 to 80 & \({ }^{\circ} \mathrm{C}\) & \\
\hline Material casing & Titanium & Titanium & & \\
\hline Mass & 0.065 & 0.065 & kg & *5\% \\
\hline Cable length & 2 & 2 & m & \(\pm 10 \mathrm{~mm}\) \\
\hline Sensor / voltage connection & LEMO connector & 25-pin sub-D connector & & \\
\hline Recommended controller / amplifier & Modular piezo controller system E-500 (p. 2-144) with amplifier module E-503.00S (three channels) (b. 2-146) or \(1 \times\) E-505.00S and \(2 \times\) E-505 thigh speed applications) (p. 2-147) and \(\mathrm{E}-509\) servo controller (p. 2-152) Open-loop: E-663 three channel amplifier (p. 2-136) & E-616 controller for tiptilt mirror systems (p. 2-132) & & 24 \\
\hline
\end{tabular}

\section*{Potential Tip / Tilt Mirror}

\section*{PI S-330-2XX Miniature Piezo Fast Steering Tip/Tilt-Mirror}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Model & S-330.2SL & S-330.4SL & S-330.8SL & \[
\begin{aligned}
& \text { S-330.2SD } \\
& \text { S-330.4SD } \\
& \text { S-330.8SD }
\end{aligned}
\] & \[
\begin{aligned}
& \text { S-330.20L } \\
& \text { S-330.40L } \\
& \text { S-330.80L }
\end{aligned}
\] & Units & Tolerance \\
\hline Active axes & \(\theta_{\mathrm{X}}, \theta_{\mathrm{Y}}\) & \(\theta_{x}, \theta_{\gamma}\) & \(\theta_{\mathrm{X}}, \theta_{\mathrm{Y}}\) & \(\Theta_{\mathrm{X}}, \theta_{\mathrm{Y}}\) & \(\Theta_{\mathrm{X}}, \theta_{\mathrm{Y}}\) & & \\
\hline \multicolumn{8}{|l|}{Motion and positioning} \\
\hline Integrated sensor & SGS & SGS & SGS & SGS & - & & \\
\hline Open-loop tip/tilt angle, -20 to +120 V & 3.5 & 7 & 15 & as SL version & as SL version & mrad & min. \\
\hline Closed-loop tip/tilt angle & 2 & 5 & 10 & as SL version & - & mrad & \\
\hline Open-loop tip/tilt angle resolution & 0.02 & 0.1 & 0.2 & as SL version & as SL version & \(\mu \mathrm{rad}\) & typ. \\
\hline Closed-loop tip/tilt resolution & 0.05 & 0.25 & 0.5 & as SL version & - & \(\mu \mathrm{rad}\) & typ. \\
\hline Linearity in \(\theta_{\mathrm{x}}, \theta_{\mathrm{Y}}\) & 0.1 & 0.2 & 0.25 & as SL version & - & \% & typ. \\
\hline Repeatability \(\theta_{x}, \theta_{\gamma}\) & 0.15 & 0.5 & 1 & as SL version & - & \(\mu \mathrm{rad}\) & typ. \\
\hline \multicolumn{8}{|l|}{Mechanical properties} \\
\hline Unloaded resonant frequency ( \(\theta_{\mathrm{x}}, \theta_{\mathrm{Y}}\) ) & 3.7 & 3.3 & 3.1 & as SL version & as SL version & kHz & \(\pm 20 \%\) \\
\hline Resonant frequency loaded in \(\Theta_{\mathrm{x}}, \Theta_{\mathrm{V}}\) (with \(25 \times 8 \mathrm{~mm}\) glass mirror) & 2.6 & 1.6 & 1.0 & as SL version & as SL version & kHz & \(\pm 20 \%\) \\
\hline Distance of pivot point to platform surface & 6 & 6 & 6 & 6 & 6 & mm & \(\pm 1 \mathrm{~mm}\) \\
\hline Platform moment of inertia & 1530 & 1530 & 1530 & 1530 & 1530 & \(\mathrm{g} \times \mathrm{mm}^{2}\) & \(\pm 20 \%\) \\
\hline \multicolumn{8}{|l|}{Drive properties} \\
\hline Ceramic type & PICMA \({ }^{\circ}\) & PICMA \({ }^{\circ}\) & PICMA \({ }^{\text {e }}\) & PICMA \({ }^{\circ}\) & PICMA \({ }^{\circ}\) & & \\
\hline Electrical capacitance & 3/axis & 6/axis & 12.5/axis & as SL & as SL & \(\mu \mathrm{F}\) & \(\pm 20 \%\) \\
\hline Dynamic operating current coefficient & 0.22/axis & 0.4/axis & 0.8/axis & as SL & as SL & \(\mu \mathrm{A} / \mathrm{Hz} \cdot \mathrm{mrad})\) & \(\pm 20 \%\) \\
\hline \multicolumn{8}{|l|}{Miscellaneous} \\
\hline Operating temperature range & -20 to 80 & \({ }^{\circ} \mathrm{C}\) & \\
\hline Material case & Stainless steel & & \\
\hline Material platform & Invar & Invar & Invar & Invar & Invar & & \\
\hline Mass & 0.2 & 0.38 & 0.7 & as SL version & as SL version & kg & \(\pm 5 \%\) \\
\hline Cable length & 1.5 & 1.5 & 1.5 & 1.5 & 1.5 & m & \(\pm 10 \mathrm{~mm}\) \\
\hline Sensor / voltage connection & LEMO & LEMO & LEMO & Sub-D connector & LEMO & & \\
\hline
\end{tabular}

Recommended controller / amplifier
Versions with LEMO connector: modular piezo controller system E-500 (p. 2-142) with amplifier module E-503.00S (three channels) (p. 2-146)
or \(1 \times \mathrm{E}-505.00 \mathrm{~S}\) and \(2 \times \mathrm{E}-505\) (high speed applications) (p. 2-147) and E-509 controller (p. 2-152) (optional)
Open-loop: E-663 three channel amplifier (p. 2-136)
Versions with Sub-D connectors: E-616 servo controller for tip/tilt mirror systems (p. 2-132)


\section*{Ordering Information}
s-330.2SL
High-Dynamics Piezo Tip/Tit Plattorm, \(2 \mathrm{mrad}, \mathrm{SGS}\), LEMO Connector S-330.2SD Hlah-Dynamics Plezo Tip/Til Plattorm, \(2 \mathrm{mrad}, \mathrm{SGS}\), Sub-D Connec S. 330.20 L High-Dynamics Plezo Tip/Tir Plattorm, 2 mrad, Open-Loop,
LEMO Connector s. 330.45
S.330.4SL

High-Dynamics Piezo Tip/nil Plattorm, 5 mrad, SG
LEMO Connector
S-330.4SD
High-Dynamics Piezo Tip/Til Plattorm, 5 mrad , SGS.
Sub-D Connector
s.330.40L

High-Dynamics Piezo Tip/Titt Plattorm, 5 mrad, Open-Loop.
LEMO Connector LEMO Connector S-330.8SL
High-Dynamics Piezo Tip/Tilt Plattorm, \(10 \mathrm{mrad}, \mathrm{SGS}\).
s.330.85

S-330.8SD
High-Dynamics Piezo Tip/Titt
Platform, Sub-D Connector
s. 330.80 L
S.330.80L
High-Dynamics Plezo Tipomit High-Dynamics Plezo
Platorm, 10 mrad, Open-Loop, LEMO Connector


\section*{Remaining work to be done}
-Analyze Tip/Tilt Mirror Vibrations and Impact on Probe stabilization.
- System rigidity Analysis

\section*{Questions:}
-Probe position Accuracy: 40 (KAON 562) or 70 mas (Contour)
- Minimum Incremental motion ?
- Max Wobble?
- Position Stability (5 mas / 3600 s ) TBC
- TT Requirements (Deflection, response, resolution,...)

\section*{Rejected Lever Motors}

THORLABS


\section*{Overview}

\section*{Features}
- \(1^{\circ}\) Graduations on Main Dial
- Compact Design ( 23 mim Deep)
- Precision Home Limit Switch
- Post Mountable
- Ideal for SM1 ( 1.035 "-40) Compatible Accessories
- Directly Accepts \(811^{10}\) Optics up to \(0.50^{\prime \prime}(12.5 \mathrm{~mm})\) Thick
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Specification } & Value \\
\hline Bidirectional Repeatability & \(\pm 0.1^{\circ}\) \\
\hline Backlash & \(\pm 0.3^{\circ}\) \\
\hline Max Rotation Velocity & 25 deg/sec \\
\hline Horizontal On-Axis Load Capacity & 1.5 kg \\
\hline Vertical On-Axis Load Capacity & 0.5 kg \\
\hline Min Achievable Incremental Motion & 25 arcsec \\
\hline Min Repeatable Incremental Motion & \(0.03^{\circ}\) \\
\hline Absolute On-Axis Accuracy & \(0.1 \%\) \\
\hline Max Percentage Accuracy & \(0.08 \%\) \\
\hline Home Location Accuracy & \(\pm 0.2^{\circ}\) \\
\hline Range & \(360^{\circ}\) Continuous \\
\hline
\end{tabular}

With a depth of only \(23 \mathrm{~mm}\left(0.9^{\prime \prime}\right)\), the PRM1 Z8 is a small, compact, motorized rotation stage and mount that accepts \(\varnothing 1\) " optics and is based on our popular PRM1 Rotation Mount. Rotation is driven via a DC servo motor that is equipped with a \(67: 1\) gearbox and a rotary encoder for accurate closed-loop position control. The user can measure the angular displacement by using the Vernier dial in conjunction with the graduation marks that are marked on the rotating plate in \(1^{\circ}\) increments. The precision DC motor actuator provides 1 arcsecond of resolution over the entire \(360^{\circ}\) of rotation. This rotation stageinount is also equipped with a recision home limit switch to faciltate automated rotation to the zero datumn postion, thus ensuring absolute angular postioning thereafter. The limit switch is designed to allow continuous rotation of the stage over mutiple \(360^{\circ}\) cycles.
The TDC0001 DCI Servo Controller is the ideal companion for achieving smooth, continuous motion that can be automated via the soffware interface. The stageimount and controller are sold together below with the item number PRM1 Z8E and PRM1 MZ8E.

Normally the PRM1 Z8 is mounted horizontally. The stage can be fixed directly to the work surface using the counter-bored holes in the main body. For complete flexibility, the stageimount can be used vertically on a standard \(\emptyset 1 / 2 "\) post and has an option to mount in a vertical inclined orientation. When in the vertical orientation, the reduced thickness of the stage is extremely beneficial for optical path applications where space is linited
The PRM1 Z8 is supplied with \(19.6^{\prime \prime}(0.5 \mathrm{~m})\) of cable. An \(8 \mathrm{ft}(2.5 \mathrm{~m}\) ) extension cable (PAA632) is available separately.
The rotating platform features several accessories. The central aperture has a standard SM1 internal thread, for

\section*{Rejected Crank Motors}

\section*{THORLAES}

435 Route \(206 \cdot\) P.O.Box 366
Newton NW 07860-0366
SALES: ( 973 ) 579.7227
FAX: 973 3 \(300-3600\)
wwwthorlabs.com
-360 Degree Continuous Rotation Stage with Stepper Motor Actuator www.thorlabs.com


\section*{Overview \\ Features}
- Resolution Better than 1 arcsec
- Manual Control of the Rotating Carriage
- Preloaded Worm Gear Drive Mechanism with Mininmal Backlash
- Origin Indicating Switch Every \(360^{\circ}\). Mounting Options: Four \(1 / 44^{\prime \prime}\) (M6) Countersunk Holes and Nine M6 Tapped Holes

The NR series rotation stage provides arc-second resolution when driven from a micro-stepping stepper motor controller, such as the ESC100 Series. The low profile design has a height of just 55 mm due to the use of two compact precision bearings. The rotating carriage of the stage features continuous rotation and can support loads up to 50 kg . The 50 mm clear aperture through the center of the rotation stage allows the stage to be used in applications where the optical axis and rotation axis are parallel. The frame of the stage is made from aluminum and has four 1,44 "(M6) countersunk holes that allow the stage to be secured to a translation stage or optical table using one of the adapter plates presented below. In addition, 9 M6 tapped mounting holes are located on the side of the frame to provide addational moun reduction in this gear assembly provides onerevolution of the carriage for every 66 turns of the stepper motor.

We encourage you to review the tabs above for detailed specifications of the NR360S and the recommended Stepper Motor Controller, the ESC100 Series. Please note that Thorlabs offers bottom mounting adapter plates and brackets to secure the NR360S as well as several types of rotating adapter plates; these items are featured below with more detailed product descriptions.

\section*{pecs}
\begin{tabular}{|c|c|}
\hline Specification & Value \\
\hline Travel & \(360^{\circ}\) Continuous Rotation \\
\hline On Axis Load Capacity & 110 lbs ( 50 kg ) \\
\hline Drive Mechanism & Worm Drive \\
\hline Limit Switches & Reference Signal Every \(360^{\circ}\) \\
\hline Motor Type & 2 Phase Stepper \\
\hline Theoretical Resolution & 1 arcsec (if Used with BSC 101) \\
\hline Speed Range & 15\% sec (If Used with BSC 101) \\
\hline Recomended Controller & BSC101 \\
\hline Weight (Actuator) & \(3.11 \mathrm{lbs}(1.4 \mathrm{~kg}\) ) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Motor Specs } \\
\hline Step Angle & \(1.8^{\circ}\) \\
\hline Rated Phase Current & 1 A \\
\hline Phase Resistance & \(4.6 \Omega\) \\
\hline Phase Inductance & 0.6 mH \\
\hline Holding Torque & \(23.1 \mathrm{~N}-\mathrm{cm}\) \\
\hline Detent Torque & \(1.7 \mathrm{~N}-\mathrm{cm}\) \\
\hline Rotor Inertia & \(32 \mathrm{~g}-\mathrm{cm}^{2}\) \\
\hline
\end{tabular}```

