Latency.nb

Thisis adescription of how latency in a[open | closed] loop controller maps to wavefront rms error
The Taylor frozen-flow atmosphere has the power spectrum
= Se[f] :=0.0770491 (rq/v)-5/3f-88

radians®2/Hz. To convert to nanometers, multiply by A/2xr. For a general closed loop control law, Hc [ f], the residua power
spectrumis

Self1: = lIHoclf 111 Splf ]

In the case of open-loop control, the controller process consists of subtracting an estimated version of the wavefront from the
current wavefront. The estimate is formed after integrating the wavefront sensor for a cycle time, then waiting one frame cycle
for the WFS camera readout and then a compute delay to calculate the estimate. Finally the estimated wavefront is held on the
actuators of the DM for one cycletime. There is no feedback. In the Fourier domain, the process is described by
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where T isthe sample time and 7is the compute delay.
In the case of closed-loop control, the controller has a feedback loop. In the case of integral feedback with a gain, vy, the transfer
functionis
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Theresidua wavefront varianceis determined by integrating Se[f | up to the Nyquist frequency :
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This ignores spectral contributions beyond Nyquist, which welll categorize as "aliasing error” rather than bandwidth error. This
reasonable to do for two reasons: &) the sampling time is usually chosen by design so that out-of-band contributions are negliga-
ble, b) the Hartmann subaperatures actually impose a low-pass filter on the disturbance entering the controller, at a cuttoff of v/d
Hz where v is the wind velocity and d is the subaperture size, and, again, the sampling frequency L/T is by design chosen much
larger than v/d. In essence, this is saying that aliasing error due to the finite subaperture size has already counted in al the
dliasing, and we don't have to re-count it in the bandwidth error calculation.

Through a change of variables, it is possible to factor out the relevant scale factors and do the integration numerically:

odw= (VT /ro)®3¢g

where ¢ is a constant that depends on the case of open or closed loop, the delay parameter a = 7/T, and in the case of closed
loop, the closed loop gain, .

m Comparison to Greenwood Frequency

The Greenwood Frequency is a parameter relating the rms closed loop residual in an ideal continuous-time integral feedback
controller to the atmospheric conditions and the closed-loop -3db rejection frequency, f..
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For the case of discrete time systemswith delays, it is difficult to get a bandwidth of rejection that is more than about 1/10 of the
sample frequency. The discussion below shows that, with a compute delay combined with the camera readout, WFS integration,
and DM hold times, the bandwidth is about 0.05/T when the compute delay is one sample and 0.025/T when the compute delay is
two samples. Substituting thisin to the above formula gives approximate values for Zg:

0. 135573 1 \5/3 /0.135)5/3 1 5/3
e B b B e
0.314 0.05 0.314 0.025

ou179]= {36.0903, 114.579}

In[179]:= &g = {[

s Comparison to pure time-lag (7o)

In asimple open-loop lag model, the correction is applied T4 seconds delayed. The residua isthen

V Tq)5/3 v T)5/3
o3y = 6. 88 [ : ) =& [r—]
0 0

We can approximate the WFS stare time and DM hold time as latency delays of 1/2 a sample period each. The approximation is
justified by noting that this is the "average" age of the data in each case (the calculations in the next section vindicate this). Add
to this WFS readout time and compute delays of either one or two sample periods and the equivalent valuesfor &g are:

nn7sl= Lo = 6.88 x {3, 4}%/3
outj178]= {42.9329, 69. 3461}

m Discrete time systems

In the next section we show that the actual values are considerably larger than this, owing to the fact that the delays actually
cause overshoot (gains > 1 at some high frequency band) in the rejection curves. For open-loop the values are: ¢ = 84 and 137 for
one and two T compute delays respectively. For closed-loop (with optimally tuned feedback gain) the values are: £ =98 and 172
for one and two T compute delays respectively.

a=1|a=2

Greenwood, fy | 36 115

Time-lag, 7o | 43 69
Closed loop 98 172
Openloop 84 137

Table of normalized residua variances, ¢, as computed by various methods for one and two samples of compute delay.

We can substitute the Keck NGAO nominal values for v and rg to trandate these normalized residuals into nanometers of
wavefront error. For the nominal NGAO design conditions, v =9 m/sec, ro =16 cmat A =0.5um, and T = 0.5 msthisyields
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Plot of rmsresidua wavefront due to control loop following error as a function of the constant parameter £. All the values mentioned in the text lie on this
graph.

In all cases considered, including discrete-time open or closed loop with 2 samples of compute delay, ¢ < 200 and so ogw < 60
nm.

neo7= Style [Gri d [Tr anspose [
{{" ogw(nM", "G eenwood", "Time-lag", "C osed |oop", "Open Loop"}, Join [{"a:l" },
9 x 0. 0005
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R ) x \/5, (e, {36, 43, 98, 84}}] /7 Round],

Table[(SOO/ (2 7)) x [

9 x 0.0005
0.16
Round]}], Frane ->AII], FontFamly -»"Ti nes"]

5/6
Join[{"a=2"}, Table[(SOO/ (2 7)) x [ ] x A€, (& {115, 69, 172, 137}}] /]

ogw(nM) |a=1|a=2
Greenwood | 24 | 44
out2071= | Time-lag | 27 | 34
Closed loop | 40 | 53
Open Loop | 37 | 48

Table of residual wavefront errors for the NGAO nominal conditions. Units are nanometers, rms.

Appendix:
Rejection performance of discrete-time control laws

In this section we calculate £ for the discrete-time control laws. As mentioned in the main text, ¢ is considerably higher in the
case of areal systemwith delaysthan it isin the simplified models.
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m Open loop transfer function curves

in163):= LogLogPl ot [{
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Open loop transfer functions for 1 and 2 sample-time compute delays (increasing crossover frequency with decreasing compute delay). The dashed curves
represent the "average age of data' approximation where we substute the WFS stare and DM hold transfer functions each with 1/2 sample time delays.
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Open loop residual spectra for 1 and 2 sample-time compute delays (decreasing residual with decreasing compute delay). The dashed curves represent the
"average age of data" approximation where we substute the WFS stare and DM hold transfer functions each with 1/2 sample time delays.
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m Closed loop transfer function curves

In[95]:= ¥ =.
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Closed loop transfer functions for various feedback gains (increasing crossover and resonant peak with increasing gain). The solid lines are for one sample
time compute delay; dashed lines are two sample times of compute delay. Thick lines indicate optimal total-power-rejection curves for a Kolmogorov
disturbulence input spectrum.
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Closed loop residual spectra for various feedback gains (increasing crossover and resonant peak with increasing gain). The solid lines are for one sample
time compute delay; dashed lines are two sample times of compute delay. Thick lines indicate the least-total-integrated power curves.
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