Keck Adaptive Optics Note 839

Near-Infrared Tip-Tilt Sensor Systems Engineering Management Plan

P. Wizinowich (with contributions from the team) November 29, 2010

Table of Contents

1.	Introduction	. 1
2.	Organization Structure and Lead Personnel	. 1
3.	Product Breakdown Structure	. 2
4.	Project Plan and Schedule	. 4
4.1	Work Breakdown Structure	. 4
4.2	Project Plan	. 5
4.3	Preliminary Design Phase Plan	. 6
5.	Budget	. 8
5.1	Revised Proposal Budget	. 8
5.2	Budget Actuals	. 9
5.3	COO Budget Changes	. 9
5.4	WMKO Budget Changes	. 9
5.5	Budget at SDR	. 9
6.	Staffing	12
7.	Configuration Control	12
8.	Risk Assessment	13
9.	Project Plan Details	15
	•	

1. Introduction

This document is written in support of the NSF ATI-funded near-infrared (NIR) tip-tilt sensor (TTS) project. The purpose of this document is to define the systems engineering management plan (SEMP) for the NIR TTS system to be implemented with the Keck I LGS AO system.

2. Organization Structure and Lead Personnel

The organization chart for the project, provided in the NSF proposal, is shown in Figure 1. Table 4 provides descriptions of the project staff. Wizinowich will act as project manager through the preliminary design phase of this project in order to allow Stalcup to focus on the K1 LGS free space transport project. Chris Neyman will be added to the project team for at least the preliminary design phase to provide systems engineering support and to help define the operations software tools. Andrew Cooper will replace Ed Wetherell during the preliminary design phase.

Figure 1: Project Organization

Position	Name	Notes							
Principal	Peter	As PI & AO project manager Wizinowich is responsible for the overall							
Investigator	Wizinowich	project success in coordination with other WMKO activities.							
Project	Tommaso	Leads the management of the science requirements for the upgrade and							
Scientist	Treu	oversees the performance characterization phase of the project.							
Project	Thomas	Responsible for managing the engineering team & project to meet the budget							
Manager	Stalcup	and schedule. Also leads the optical design, system integration and							
		performance characterization.							
Systems	Richard	Manages the design process to ensure proper design choices and maintains							
Engineer	Dekany	the performance budgets.							
NIR TTS	Roger Smith	Responsible for the design and delivery of the NIR sensor, including readout							
Camera Lead		mode validation and lab performance testing.							
Leads: James (m	echanical),	Engineering leads design and lead modifications to the hardware and software							
LaVen (softwar	e) & Wetherell	systems and design/specify additional components required for the upgrade.							
(electronics)									

Table 1: Project Staff

WMKO's normal management process will provide oversight for this project. This includes regular status reports to WMKO's management and Science Steering Committee. WMKO's Office of Sponsored Programs will monitor project compliance with NSF terms and conditions, including timely reporting. Regular project meetings will be held to manage activities, discuss progress and address problems.

3. Product Breakdown Structure

The Product Breakdown Structure (PBS) is shown in Table 2. The five major subsystems are shown at level 1 and their major components at level 2. A quick summary of the 5 major subsystems of the PBS and their key components is provided in Figure 2.

PBS Level 1	Level 2	Level 3								
Camera System		Camera Optics and baffles								
		Filter Change Mechanism								
		Filter Stage Motor, Limit Switches & Cable								
		Cryostat: vacuum enclosure, window,								
	Comoro Hardwara	radiation shields								
	Calliela Haluwale	Cryotiger								
		Detector and mount								
		Temperature sensor and heaters								
		Dessicant								
		Getter or ion pump								
		ARC Timing Board								
		ARC Video Card								
		ARC clock generator								
	Peadout	Interface to Dewar								
	Flectronics	Interface to Host Computer								
	Licotronios	Interface to RTC								
		Electromnics Enclosure and mounting								
		hardware								
		Cooling system for electronics								
	Housokooping	Ion gauge controller								
	Flectronics	Temperature Controller and cables								
		Interface to Host Computer - Terminal Server								

Table 2:	Product	breakdown	structure
----------	---------	-----------	-----------

	External Cryo	Compressor and gas lines for cryocooler
	System	Compressed gas lines.
		Computer
		Readout Control Software
	Host Computer	Housekeeping Control Software
		Motion Control Software
		Keyword Interface
	Microgate HW Mods	Camera Interface
Dest		Camera Interface & Readout
Real-Time	Microgate	Wavefront Controller Interface Mods
Control System	Software	Wavefront Processor Mods
	Modifications	Telemetry Recorder/Server Mods
		Downlink TTM Controller Mods
		AO Bench Extension
		AO Bench Modified Cover
		Pickoff Stage Mount
	Diekoff Evebonge	Pickoff Stage
	Mechanism	Pickoff Stage Motor, Encoder & Cable
	Mechanism	Pickoff Mount
		K'-Band Dichroic
		H-Band Dichroic
0.14		Annular Mirror (option)
Opto-		Riser for Focus Stage
System		Focus Stage
Cycloni		Focus Stage Motor, Encoder & Cable
	Ecoue Machaniam	Interface Plate
	FUCUS MECHANISH	Field Lens & Mount
		Fold Mirror & Mount
		Riser for Camera
		Camera Interface Plate
	Camera tip-tilt mechansim	External pivots and screw adjustment for camera to locate internal pupil at cold stop.
	AO Modifications	Modifications to Support Camera System
		Pickoff Stage Motion Control Hardware
	OBS Modifications	Pickoff Stage Motion Control Software
	ODO MOUNCATIONS	Camera System Hardware Implementation
		Camera System Control Software
		Modifications to RTC Interface
Controls System		DAR Compensation Modifications
	SC Modifications	Focus Compensation Modifications
		Non-Sidereal Tracking Modifications (goal)
		Rotator Control Modifications (long term)
	RTC Modifications	Wavefront Controller Command Processor Mods
Operations		Acquisition Planning Tool Software
Software	Pre-Observing	Acquisition Planning Documentation
System	Tools	Performance Estimation Tool Software
		Performance Estimation Documentation

	OBS Setup Software							
Observation Setup	SC Setup Software							
Software	Camera System Setup Software							
	RTC Setup Software							
Collibration	Camera Calibration Software							
Software	Focus Calibration Software							
Soltware	Distortion Mapping Software							
l leor Interfaces	Engineering GUI Additions/Modifications							
User interfaces	Observing UI Additions/Modifications							
	Acquisition Software							
	MAGIQ Software Modifications							
	Nodding Script Modifications							
Observing Teels 8	Dithering Script Modifications							
Sequences	Repositioning Script Modifications							
Cequences	Background Measurement Script Mods							
	FITS Header Modifications							
	Telemetry Data Recording Modifications							
	TT Control Loop Parameter Optimization							

Figure 2: Block diagram summary of major NIR TTS subsystems and their key components

4. Project Plan and Schedule

4.1 Work Breakdown Structure

The top-level work breakdown structure is shown in Figure 3. WBS 1.3 to 1.6 correspond to level 1 of the PBS with one exception; since the real-time control system is sub-contracted this is included under the umbrella of the controls WBS.

Figure 3: Top-level work breakdown structure

4.2 Project Plan

A rolled up version of the project plan showing key milestones and work estimates is provided in Figure 4. The rolled up project plan for the NIR TTS camera to be built at COO is also shown at the bottom of Figure 4. Both of these project plans are expanded in section 9. The schedule has not been updated from the project plan included with the proposal. The dates were considered to be sufficient for the SDR.

The COO labor estimates in WBS 1.3 have been updated to reflect the contingency reduction required to meet the revised NSF budget, some work transferred to WMKO and Microgate, the work already completed during the system design which was charged to NGAO and the addition of a filter mechanism. The WMKO labor estimate has not been updated for the SDR since the dollars removed to meet the revised NSF budget were taken from labor dollar contingency, not labor hours.

During the system design phase a more detailed preliminary design phase plan was developed and is presented in section 4.3. A revised project plan, based on a better understanding of the project, will be produced for the PDR.

ID	WBS	Task Name	Work		1	2011			2012			2013			
4		Keel LTTC Feellin	7.240 1	Qtr	4	Qtr1 Qt	r2 Qtr3	Qtr 4	Qtr 1	Qtr 2	Qtr3 Qtr4	Qtr 1	Qtr2	Qtr3 G	⊋tr4
	1	Neck I I IS Facility	7,210 hrs												<u> </u>
2	1.1	Project Management	1,650 hrs												
1	1.1.1	Management & Departing	200 nrs	5 											8
5	1.1.2	Traval	500 ms	5 1											8
0	1.1.3	Milestenes & Design Paviews	750 hr		_										_
10	114	Decign Boyiou Support	250 hrs												•
11	1.1.4.1	Design Review Support	200 hrs	2											
12	1.1.4.2	Hendouer Deview Support	100 hrs	2										8	
13	1.1.4.3	Discipat Start			8/2									8	
14	1.1.4.4	Sustem Design Deview	0 hrs	<u> </u>		▲ 11/8									
15	1.1.4.5	Bystern Design Review	0 hrs			• · · · ·	1/31								
16	1.1.4.0	Detailed Design Review	0 hrs	2		•		▲ 7/1	1						
17	1.1.4.7	TTE Sensor Dro Shin Boviow	Ohr	2				•			▲ 7/9				
18	1.1.4.0	Dro Summit Doviow	Ohr	2							•		11/9		
19	1.1.4.5	Handover Deview	Ohr	2								l ¥			7/3
20	1 / 11	TAC allocated Science Starte	Ohrs	2											▲ 8
20	12	Systeme Engineering	600 brs											, [`	•
26	1.2	NIR TT Sensor Camera	000 ms	- T									•		
40	1.5	Onto-mechanics	890 brs		1						•				
57	15	Controls	760 hrs	- T						-					
76	1.5	Operations Software	960 hrs		T					•			-		
86	1.7	Integration, Test & Commissioning	2.030 hrs	-		` 							•		,
87	1.7.1	Laboratory I&T	570 hrs			•				_					
100	1.7.2	AO Facility Modifications	300 hrs			-				•		÷.	,		
106	1.7.3	Telescope I&T	1.160 hrs			•						-	•		,
119	1.8	Operations Handover	320 hrs								-			━━━	
					:				:						_
	WBS	l ask Name	Work		20	011			2012			2013			_
1	13	NIR TT Sensor Camera	6.022.4 hre	Utr 4	<u> </u>	tri jutr	2 QTF 3	utr 4	utri	JTr Z U	tr3 Utr4	utr 1	Utrziu	utr 3 Qti	r 4
2	131	Project management meetings & reviews	834 hrs	<u> </u>											
54	1.3.2	Systems engineering	128 hrs	ě.							•				
64	1.3.3	Design	1.012 hrs	•	`.										
95	1.3.4	Procurement and Fabrication	2.684.4 hrs		1	Ť	-		-						
155	1.3.5	System integration and test at Caltech	1,060 hrs				•	-	•	-					
178	1.3.6	Commisioning support at Keck	304 hrs							·					

Figure 4: Full project plan excluding the TTS camera (top figure). TTS camera plan (bottom)

WMKO's standard development process will be followed. This includes system, preliminary and detailed design phases for the new elements. Modifications to existing hardware and software will be handled through the Observatory's engineering change control process. An iterative approach will be taken to the software development with coding occurring throughout the design and implementation phases.

The implementation phase will include fabrication and testing of the NIR TTS camera at CIT before a preship review and fabrication of the new hardware and software to implement this camera with the AO system at WMKO. Most of the CIT and WMKO hardware and software components will be integrated for a laboratory testing phase at WMKO headquarters prior to moving the system to the telescope. Modifications to the Keck I AO facility to support the installation will be performed during the fabrication and laboratory testing phases. A readiness review will be held prior to installing the new TTS system at the telescope. The telescope integration and testing phase will include performance characterization and some initial shared-risk science support. Operations personnel will participate in the laboratory and telescope integration and test, and especially the commissioning phase, in support of knowledge transfer to the people with operational responsibility. Operational system changes will go through engineering review by the AO configuration control board.

4.3 Preliminary Design Phase Plan

A spreadsheet listing the preliminary design phase tasks and effort estimates is shown in Table 3. The relevant WBS number and name is provided in the first two columns. The specific tasks are listed in column 2. The initials of the person leading each task are provided in the 3rd column. The effort estimate (hours) for each WMKO and COO participant, identified by initials, is listed beside each task, followed by the overall total hours. The last two columns show the number of hours identified in the proposal plan for each high level WBS element.

A few calculations are done near the bottom of the spreadsheet. For each individual the number of work hours and weeks is totaled. The percentage of each individual's time is then calculated assuming 12 weeks for the preliminary design. The number of hours by individual during the SD phase is a sum of the actuals worked through October plus an estimate through the SDR.

This estimate of the hours for the preliminary design is compared to the proposal estimate in the bottom right hand corner of the spreadsheet. The total WMKO and COO design hours in the proposal plan is listed first (2257 and 1478 hours, respectively). The percentage of these total hours spent on the SD phase and estimated for the PD phase is then calculated, with the remainder left for the DD phase. This is intended as a sanity check on our PD estimate and to determine whether a reasonable distribution of hours is being spent on the three design phases. WMKO appears to be relatively heavy in the PD phase and COO a little light in the SD phase. This seems reasonable given the nature of the work. WMKO needs to be sure to define the task well in the SD and PD phases and to largely complete the optical design and the software definition in the PD phase. COO will still have a lot of detailed fabrication drawings to prepare in the DD phase, whereas WMKO has few of these to prepare.

The WMKO personnel for the PD phase have been changed somewhat versus the FY11 plan shown in section 6 due to personnel availability. Since Stalcup (TS) needs to stay focused on the K1 LGS free space transport effort he has largely been replaced by a combination of Neyman (CN) and Wizinowich (PW) for the PD phase. For similar reasons, Wetherell (EW) has been replaced by Cooper (AC) for the PD phase. Conrad is departing WMKO and he has been replaced with Lyke (JL).

The Microsoft project plan for the PD phase at WMKO is shown in Figure 5. The same personnel as shown in Table 3 have been input into this plan and these personnel have been adequately leveled. The PDR date with this schedule is shown as March 23, 2011. This corresponds to a 2 month slip with respect to the proposal schedule; an additional month to the 1 month of slip at the SDR.

Table 3: Preliminary	design pl	hase tasks &	& personnel	estimates
----------------------	-----------	--------------	-------------	-----------

					WMKO									C	00			Proposal				
WBS	Task	Lead	EJ	SK	SL	JL	CN	TS	PS	СТ	PW	AC	RB	JC	RD	DH	GR	RS	Total	Due Date	WMKO	C00
1.1	Project Management	5111						_													475	234
	Weekly Engineering Meetings (~10)	PW			5	4	10	5			20	3			10			10	67	3/18/11		
	Quarterly Science Meeting (~1)	PW	4			1	1				4							0	6	1/18/11	-	
	Sebedule Lindete	PW/KS	4		4		4				16	4			4			0	44	3/11/11		
-	Rick Indate		- 4		4		2				8	2			4			2	40	3/14/11		
	SEMP LIndate	PW			2		2				24	2			8			2	40	3/15/11		
	PDR preparations	PW	4		4		4			4	16	4			4			16	56	3/22/11		
-	PDR	PW	4		6		6	6		4	6	6			6			6	50	3/23/11		
1.2.1	System Architecture Design	· · ·	<u> </u>		Ŭ		Ŭ	Ť		· ·	Ŭ	Ŭ			Ŭ			Ŭ	00	0/20/11	280	
	Tip-tilt Performance Predictions	MvD/PV	v								10								10	1/28/11		
	Thruput/Emiss/SNR Budget Updates	CN	Ì				16				1								17	2/11/11		
	Error Budget Update	RD					4				1				36				41	2/25/11		
	Design Manual Update	PW	2		16	2	4	8			40	16			8			16	112	3/4/11		
1.2.2	Requirements Definition																				120	
	System Requirement Updates	CN					4												4	1/21/11		
	Observing Operations Concept Documen	CN				16	16				4								36	1/7/11		
	Camera Functional Requirements Update	RS/CN					2								2			2	6	1/28/11		80
	Opto-Mechanics Functional Reg Update	CN					2	2											4	1/28/11		
	Controls Functional Req Update	SL/EW			2		2					2							6	1/28/11		
	Operations Software Req Update	CN			2	2	2	2											8	1/28/11		
1.2.3	Interface Definition																				120	
	Camera to AO ICD Updates	PW/RS			2		2					2				8		8	22	1/28/11		192
1.2.4	Engineering Change Control																				20	
	AO ECR - draft	PW					4			4									8	2/11/11		
	Electrical ECR - draft	EW								4		4							8	2/11/11		
	Software ECR - draft	SL			4					4									8	2/11/11		
1.3	NIR TT Sensor Camera Design																					972
	Self Heating Testing	RS														4		2	6	12/15/10		
	Timing Board Fiber Link Testing	RS														16		4	20	1/5/11		
	Dewar Design Modifications	RS											80					16	96	1/30/11		
	Dewar Snout Design	RS											80					16	96	2/15/11		
	Filter Mechanism Design	RS											20					4	24	1/30/11		
	Optics Mount Design	RS											40					4	44	2/28/11		
	Thermal Control System Design	RS											32					4	36	2/28/11		
	Dewar Electronics Design	RS															40	4	44	2/28/11		
	Camera Control Software Design	RS												60		150		4	214	2/28/11		
1.4	Opto-mechanics Design																				632	
	Optics Design Updates	TS						40											40	12/31/11		
	Optics Design Tolerancing	IS						40											40	1/28/11		
	Dichroic Quotes	PW								6	2								8	1/28/11		
	Optics Quotes	IS					8	2		8	10								18	2/25/11		
	Alignment Plan Details	PW	40								16								16	2/11/11		
	Optical Pickoff Mech Design	EJ	40								2								42	1/7/11		
	Camera Assembly Mech Design	EJ	40								2								42	2/4/11		
1 5	AO Bench Wods Mech Design	EJ	40								2								42	1/28/11	200	
1.5	ORS Motion Control Hardware	A.C.										40							40	1/1/11	290	
-	OBS Motion Control Software	AU SI			20							40							40	1/14/11		
	OPS Device Control Hardware				20							20							20	2/4/11		
-	OBS Device Control Software	AC SI			60							20							60	1/28/11		
	Differential Atmospheric Refraction Mods	SI			8				16										24	1/20/11		
-	Encus Compensation Mods	SI			8				16										24	1/21/11		
	Non-Sidereal Tracking (goal)	<u>SI</u>			0				10										0	1/21/11		
<u> </u>	Rotator Control (long term goal)	SI	1			-	-	<u> </u>	-			<u> </u>	<u> </u>	1	<u> </u>	-	-	-	0			1
	Wavefront Controller Command Proc Mo	SI			2														2	1/28/11		
1	Microgate Contract Design Support	SL	1	1	120	i –	4	2		1	8	2	i –	1	i –	8		20	164	3/18/11		1
1.6	Operations Software Design										-					-					320	
<u> </u>	Acquisition Planning Tool	JL	1	2	1	12	8	1		1		1	1	1	1	1			22	1/14/11		
-	Performance Estimation Tool	CN				4	40												44	2/4/11		
-	Setup Tool Mods	CN				2	8												10	2/4/11		
	Camera Calibrations	CN				2	8												10	1/7/11		
	Focusing Calibration	CN					4												4	1/7/11		
	Distortion Mapping	CN				2	8												10	1/7/11		
	User Interfaces	JL				16	8												24	2/11/11		
	Acquisition	CN		8		4	4												16	1/21/11		
	Nodding, Dithering, Repositioning	JL				4	8												12	1/28/11		
	Background Measurement	CN				2	16												18	1/28/11		
	FITS Header	JL				2							L		L				2	2/4/11		
	Telemetry Recorder System	SL			16		2					L							18	2/18/11		
1.7	Integration, Test & Commissioning																					
	Draft Plan	PW	Γ	1	1					1	16	Γ	I	Γ	I				16	1/28/11	Ľ	Γ
1.8	Operations Handover																					
	Draft Plan	PW				4					4								8	1/28/11		
			EJ	SK	SL	JL	CN	TS	PS	СТ	PW	AC	RB	JC	RD	DH	GR	RS			WMKO	C00
	Tota	al (hrs) =	136	10	287	79	215	107	32	34	218	109	252	60	84	186	40	164	2013	Proposal est.	2257	1478
	Tota	I (wks) =	3.4	0.3	7.2	2.0	5.4	2.7	0.8	0.9	5.5	2.7	6.3	1.5	2.1	4.7	1.0	4.1	50.3	SD estimate	25%	10%
	% assuming 12 work weeks (14 cal	lendar) =	28%	2%	60%	16%	45%	22%	7%	7%	45%	23%	53%	13%	18%	39%	8%	34%		PD plan	54%	53%
L	SD estimate tota	aı (hrs) =	158	0	44	4	40	92	0	8	201	20	10	10	58	4	0	73	I	UU remainder	21%	36%

Figure 5: Preliminary design phase project plan

5. Budget

5.1 Revised Proposal Budget

The original proposal amount was \$1966k. At NSF's request this budget was revised downward to \$1716k; a total reduction of \$250k. The WMKO Director agreed to a cost share of \$15k in year 3 and \$28k in year 4, and to cover the 483h of support astronomer time (\$47k with indirect). The remainder was achieved with a \$62k reduction in WMKO labor (an 8.5% reduction) and a \$98k reduction in COO labor (a 12.5% reduction). These reductions essentially used the total contingency in the original proposal (10% at WMKO and ~\$100k at COO).

5.2 Budget Actuals

Only WMKO charged to this account in FY10 since a purchase order was not yet in place at Caltech. Caltech personnel (18h of Dekany and 33h of Smith) charged to the NGAO technical risk reduction budget. The FY10 actuals included 153 hours of labor (57h James, 1h Johansson, 14h LaVen, 12h Stalcup, 10h Wetherell and 60h Wizinowich). The total FY10 labor dollars was \$11,916 or 78% of the budgeted \$15,298 for WMKO labor. In addition there was \$100 for supplies, \$231 for phone calls and \$6,865 for indirect costs.

The FY11 actuals include 138 hours of WMKO labor in October (56.5h James, 4.5h LaVen, 52h Stalcup, 2h Wetherell and 22.5h Wizinowich). The total October labor dollars was \$10,369 or 6% of the total dollars budgeted for WMKO labor in FY11. In addition there was \$250,000 to Teledyne for the H2RG detector and \$5,703 for indirect costs. In October Caltech personnel worked 25.5 hours on this project (10.5h Dekany and 15h Smith), again charged to the NGAO technical risk reduction budget.

One additional procurement has been placed and the parts have been received: \$6000 to ARC for a dual transmit ARC-22 timing board and an ARC-64 PCI interface board. The ARC procurement represents a \$500 cost increase since the timing board had to be modified for dual channel output.

5.3 COO Budget Changes

We have revised the COO labor hour estimate and budget, as shown in WBS 1.3 of Figure 4. The hours were reduced by 1550 hours to 6022.4 hours as discussed in section 4.2, for a reduction in labor costs of \$117, 698. The procurement costs were increased by \$1,500 for the filter mechanism, while the H2RG and the ARC procurement that have already been made, plus the dewar optics procurements were transferred from COO to WMKO. Travel was reduced to two trips from four.

5.4 WMKO Budget Changes

We have not redone the WMKO revised proposal labor hour estimate for the SDR because it was already considered to be at a system design level, with the exception of inadequate contingency. For the updated budget we have simply subtracted the actual labor dollars from the revised plan labor dollars to determine the remaining labor dollars. We will work to identify some clear savings during the preliminary design phase in order to carry adequate contingency for the remainder of the project. In the meantime all requirement goals will be assumed not to be deliverables unless they have no budget impact or an overall PDR-level budget is developed that can include specific goals with sufficient project contingency. We will also continue to leverage our collaborations (e.g. GMT) to perform some of the required analysis tasks.

The WMKO procurement budget has been updated to reflect the procurement transfers from COO.

We have received a fixed price quotation from Microgate for \$67.8k that has been included in the updated budget. This represents a \$44.7k increase over the revised proposal budget but this is largely due to interface work moving from COO to Microgate.

5.5 Budget at SDR

The overall project budget at SDR is presented in Table 4 by year. The total budget (row J) is \$1,717k. Again, there is an additional \$43k and 483h of support astronomer time provided by WMKO toward offsetting the NSF budget reduction; the support astronomer time is assigned to tasks already and is not available as contingency. This only leaves \$42k of contingency (or 3.0% contingency on remaining costs).

Table 6 is the COO project budget which is listed as a subaward in the overall project budget.

The dollars by year for the senior personnel is shown in section A of Table 4 and Table 6. Table 5 and Table 7 provide the same detail for the other personnel on the project.

The equipment purchases over \$5k are listed in section B of Table 4 and Table 6 by year. Similar detail for the materials and supplies shown in section G are provided in Table 8 and Table 9.

Table 4: Overall	project	budget
------------------	---------	--------

	1			1	project		aagee	m	1	.	70	.			m ()
				Y	CTUAL		Year	TW	'0	Y	ear Three	Y	ear Four		Total
		Dorcon		P	2/1/10	1	10/01/10		1/22/10		0/01/11	1	10/01/12		Pavisad
		Monthe	N		0/1/10		11/01/10		0/20/11		0/01/11		0/01/12		Devised
Expenses		wonths	Notes		9/30/10		11/21/10		J9/30/11	(J9/30/12	U	19/30/13		Budget
A. Senior Personnel	Title														
P. Wizinowich	Principal Investigat	2.4		\$	4,239	\$	8,145	\$	15,809	\$	7,830	\$	8,717	\$	44,740
T. Stalcup	Project Manager	15		\$	670	\$	6,258	\$	26,201	\$	35,702	\$	47,555	\$	116,386
(2) Total Senior Personnel		18	1	\$	4,909	\$	14,403	\$	42,010	\$	43,532	\$	56,272	\$	161,126
B. Other Personnel															
(0) Post Doctoral Associates				\$	-			\$	-	\$	-	\$	-	\$	-
(9) Other Professionals		23	1	\$	4,922	\$	5,995	\$	88,192	\$	66,630	\$	35,339	\$	201,078
(0) Graduate Students				\$	-			\$	-					\$	-
(0) Undergraduate Students				\$	-			\$	-					\$	-
(1) Secretarial - Clerical (If Charged Directly)			1	\$	-			\$	-	\$	-	\$	-	\$	-
(0) Other				\$	-									\$	-
Total Salaries and Wages				\$	9,831	\$	20,398	\$	130,202	\$	110,162	\$	91,611	\$	362,204
C. Fringe Benefits			2	\$	2,320	\$	5,263	\$	33,592	\$	28,091	\$	23,332	\$	92,599
Total Salaries, Wages and Fringe Benefits				\$	12,151	\$	25,661	\$	163,794	\$	138,253	\$	114,943	\$	454,803
D. Equipment															
H2RG detector				\$	-	\$	250,000					\$	-	\$	250,000
ARC SDSU-III readout electronics				\$	-	\$	6,000							\$	6,000
Microgate RTC modifications				\$	-			\$	27,120	\$	40,680			\$	67,800
Dewar optics				\$	-			\$	10,000	\$	13,000			\$	23,000
Dichroic beamsplitter				\$				\$	-	\$	11.000			\$	11.000
Host computer				s	-			s	5,500	s	-			s	5,500
Single board computer				ŝ	-			ŝ	5,500	ŝ	-			ŝ	5,500
Focus stage				ŝ				ŝ	-	ŝ	6 600	\$	-	s	6,600
Total Equipment				\$		\$	256.000	\$	48,120	\$	71.280	\$		\$	375.400
E Travel			U 1	Ψ		Ψ	200,000	Ψ	10,120	Ψ	/1,200	Ψ		Ψ	0.0,100
Domestic			3	\$	-	I		S	2.066	\$	4 000	\$		\$	6.066
Foreign			5	\$	_			ŝ	2,000	ŝ	.,000	\$	_	ŝ	0,000
F Other Supplies				¢				ŝ		¢		¢		ŝ	
C. Other Direct Costs				φ	-			φ	-	φ		φ		φ	-
1 Materials and Supplies			1	¢	331	¢	44	¢	13 375	¢	14 300	¢	2 200	ŝ	30.250
2 Publication Costs/Documentation/Discominet	ion			¢	551	φ	44	¢	15,575	¢	14,500	φ ¢	2,200	ф С	50,250
2. Fubication Costs/Documentation/Disseminat	1011			ф Ф	-			ф С	-	ф ¢	-	ф ¢	-	ф С	-
4. Computer Services				ф Ф	-			ې د	-	ф ¢	-	ф ¢	-	ф с	-
4. Computer Services	CIT		4	ф с	-	¢		ۍ د	405 105	ф с	140 720	ф Ф	-	ې د	== 1 025
5. Subawards	CII		4	ф с	-	ф	-	\$	405,105	ф ¢	149,750	ф ¢	-	э с	334,833
6. Other				\$		¢	44	\$	-	\$	-	\$	2 200	\$	-
Total Other Direct Costs				\$	12 492	\$	201 705	\$	418,480	\$	104,030	\$ ¢	2,200	\$	585,085
H. Total Direct Costs				\$	12,482	\$	281,705	\$	632,460	\$	3/7,503	\$	117,143	\$	1,421,354
I. Indirect Costs (F & A)			-	¢	10,400	¢	25 505		170.004	<i>c</i>	156 550	¢	117 140	6	401.110
Modified total direct costs (Base)		10.000	5	\$	12,482	\$	25,705	\$	1/9,236	\$	156,553	\$	11/,143	\$	491,119
Rate		60.00%		\$	6,865	\$	17,438	\$	106,150	\$	93,932	\$	70,286	\$	294,671
Total Indirect Costs				\$	6,865	\$	17,438	\$	107,541	\$	93,932	\$	70,286	\$	296,062
J. Total Direct and Indirect Costs				\$	19,347	\$	299,143	\$	740,002	\$	471,495	\$	187,429	\$	1,717,417
WMKO cost share										\$	15,000	\$	28,000	\$	43,000
Revised Proposal Funding Profile				\$	314,511	Ι.		\$	715,613	\$	498,447	\$	187,429	\$	1,716,000
Budget (Proposal + WMKO) - Plan				\$	295,164	\$	(299, 143)	\$	(24, 389)	\$	41,952	\$	28,000	\$	41,583

Notes

 Notes

 1. Salaries are based on WMKO fiscal year 2011 rates with 2.0% inflation added in each subsequent year.

 2. Fringe benefits are based on WMKO fiscal year 2011 rate of 25.8%.

 3. 3 trips - 1 week each

 4. Caltech subaward

 5. MTDC base calculated from total direct costs minus Total Equipment and minus Subawards (except for the first \$25k of the CIT subaward).

 Table 5: Other WMKO Professionals

	Person-					
	Months	FY10	FY11	FY12	FY13	Totals
Mechanical Engineer	1.3	\$ -	\$ 4,066	\$ 7,256	\$ -	\$ 11,322
Support Astronomer	0.0	\$ -	\$ -	\$ -	\$ -	\$ -
Software Engineer	10.4	\$ 2,824	\$ 40,439	\$ 32,206	\$ 15,718	\$ 91,187
Bell-Mechanical Eng	4.2	\$ 498	\$ 31,233	\$ 4,607	\$ 294	\$ 36,632
Wetherell-Electronics	1.5	\$ -	\$ 10,731	\$ 1,628	\$ 999	\$ 13,358
Campbell-AO Ops Mgr	0.8	\$ -	\$ 4,692	\$ 2,126	\$ -	\$ 6,818
L Chock-Software Eng	1.0	\$ -	\$ 2,259	\$ 1,723	\$ 5,287	\$ 9,270
Cooper-Electronics Eng	0.5	\$ -	\$ -	\$ -	\$ 4,112	\$ 4,112
Martin-AO Eng	0.8	\$ -	\$ -	\$ 2,170	\$ 4,817	\$ 6,987
Elec support	2.4	\$ -	\$ 2,366	\$ 14,914	\$ 4,112	\$ 21,393
Total =	22.8	\$ 3,322	\$ 95,787	\$ 66,630	\$ 35,339	\$ 201,078

		Person		'	Year One 8/1/10	1	Year Two	Ye	ear Three	Year Four		Total
Expenses		Months	Notes		9/30/10		09/30/11	0	9/30/12	09/30/13		
A. Senior Personnel	Title											
R. Dekany	Systems Engineer	2		\$	-	\$	24.684	\$	8,799	s -	\$	33,484
R. Smith	NIR TTS Camera Lead	8		ŝ	-	ŝ	43,533	ŝ	43.617	\$ -	ŝ	87.149
(2) Total Senior Personnel		11	1	\$	-	\$	68.217	\$	52,416	s -	\$	120.633
B. Other Personnel				Ŧ		Ŧ	,	Ŧ	,	Ŧ	Ŧ	,
(0) Post Doctoral Associates		1		\$	-	\$	-	\$	-	s -	\$	-
(7) Other Professionals		30	1	\$	-	\$	178,369	\$	51.134	\$ -	\$	229.504
(0) Graduate Students				\$	-	\$	-		,		\$	· -
(0) Undergraduate Students				\$	-	\$	-				\$	-
(0) Secretarial - Clerical (If Charged Directly)			1	\$	-	\$	-	\$	-	s -	\$	-
(0) Other				\$	-						\$	-
Total Salaries and Wages		•		\$	-	\$	246,586	\$	103,551	\$ -	\$	350,137
C. Fringe Benefits			2	\$	-	\$	62,879	\$	26,405	\$ -	\$	89,285
Total Salaries, Wages and Fringe Benefits				\$	-	\$	309,466	\$	129,956	\$-	\$	439,422
D. Equipment							· · · · ·		· · · · ·			· · · · ·
Cryocooler						\$	15,000	\$	-		\$	15,000
Lakeshore controller				\$	-	\$	6,000	\$	-		\$	6,000
ARC SDSU-III readout system						\$	22,500	\$	-		\$	22,500
Total Equipment				\$	-	\$	43,500	\$	-	\$-	\$	43,500
E. Travel												
Domestic			3	\$	-	\$	-	\$	3,960		\$	3,960
Foreign				\$	-	\$	-	\$	-	\$ -	\$	-
F. Other Supplies				\$	-	\$	-	\$	-	\$ -	\$	-
G. Other Direct Costs												
1. Materials and Supplies				\$	-	\$	14,100	\$	10,000	\$ -	\$	24,100
2. Publication Costs/Documentation/Disseminat	ion			\$	-	\$	-	\$	-	\$ -	\$	-
3. Consultant Services				\$	-	\$	-	\$	-	\$-	\$	-
4. Computer Services				\$	-	\$	-	\$	-	\$-	\$	-
5. Subawards				\$	-	\$	-	\$	-	\$ -	\$	-
6. Other - shop fees for Fabrication				\$	-	\$	30,096	\$	-	\$ -	\$	30,096
Total Other Direct Costs				\$	-	\$	44,196	\$	10,000	\$-	\$	54,196
H. Total Direct Costs				\$	-	\$	397,162	\$	143,916	\$-	\$	541,078
I. Indirect Costs (F&A)												
Modified total direct costs (Base)						\$	-	\$	-	\$-	\$	-
Rate		62.00%		\$	-	\$	-	\$	-	\$ -	\$	-
Total Indirect Costs				\$	-	\$	-	\$	-	\$-	\$	-
J. Total Direct and Indirect Costs				\$	-	\$	397,162	\$	143,916	\$-	\$	541,078
Revised Proposal Funding Profile				\$	275,034	\$	379,103	\$	209,462	\$ -	\$	863,599

Table 6: Detailed CIT Project Budget (incorporated on line G.5 of Table 4)

 Table 7: Other CIT Professionals

	Person-					
	Months	FY10	FY11	FY12	FY13	Totals
Gustavo Rahmer	5	\$0	\$24,505	\$30,450	\$0	\$54,955
David Hale	6	\$0	\$40,915	\$4,026	\$0	\$44,941
John Cromer	7	\$0	\$59,260	\$11,335	\$0	\$70,595
Ernest Cromer	1	\$0	\$10,573	\$0	\$0	\$10,573
Khanh Bui	3	\$0	\$35,027	\$3,038	\$0	\$38,065
Viswa Velur	1	\$0	\$4,571	\$2,285	\$0	\$6,856
Jason Fucik	0	\$0	\$3,519	\$0	\$0	\$3,519
Total =	23	\$0	\$178,369	\$51,134	\$0	\$229,504

Table 8: WMKO Materials and Supplies (unit cost under \$5k)

WBS	ltem	FY11	FY12	FY13	Totals
1.4.3.1	Annular mirror		\$2,200		\$2,200
1.4.3.1	Pickoff fab	\$3,300			\$3,300
1.4.3.1	Pickoff stage	\$4,400			\$4,400
1.4.3.3	Dewar mount		\$1,650		\$1,650
1.4.3.2	Field lens assembly	\$1,100			\$1,100
1.4.3.4	Telescope simulator optics/mounts	\$2,750	\$2,750		\$5,500
1.4.3.1	Servo amp	\$550	\$0		\$550
1.4.3.3	Servo amp	\$550	\$0		\$550
1.5.1.5	Electronic cabling		\$275		\$275
1.5.2.4	Electronic cabling		\$275		\$275
1.7.1.1.3	Camera/computer interface		\$1,100		\$1,100
1.4.3.1	Vxworks BSP		\$3,300		\$3,300
1.7.2.2	AO facility power, cooling, mechanical fab		\$1,100		\$1,100
1.7.2.4	Motion Control Bulkhead mods		\$550		\$550
	Miscellaneous	\$1,100	\$1,100	\$2,200	\$4,400
	Total =	\$13,750	\$14,300	\$2,200	\$30,250

	FY11	FY12	FY13	Totals
Pupil mask design & procurement	\$ 400			\$ 400
fabricate optics mounts	\$ 1,000			\$ 1,000
Install optics in mounts	\$ 200			\$ 200
Procure vacuum gauge and controller	\$ 2,000			\$ 2,000
Procure hermetic connectors	\$ 800			\$ 800
Purchase sensors and heaters	\$ 1,200			\$ 1,200
Procure circular connectors fro cables to dewar	\$ 1,000			\$ 1,000
Procure D connectors within controller	\$ 500			\$ 500
Purchase Linux server, rack mount	\$ 4,000			\$ 4,000
Purchase Terminal server, rack mount	\$ 1,000			\$ 1,000
Purchase Remote power switch	\$ 500			\$ 500
Pack and ship shipping of hardware		\$ 10,000		\$ 10,000
Total =	\$ 12,600	\$ 10,000	\$-	\$ 22,600

 Table 9: CIT Materials and Supplies (unit cost under \$5k)

6. Staffing

The completion of the Keck I laser free space transport system has been impacting the availability of WMKO personnel for the NIR TTS project, especially Stalcup and Wetherell. Wizinowich has been filling in for Stalcup and will need to continue to do so through ~ February 2011. Similarly, the completion of other projects at Caltech has also distracted the Caltech personnel who are now ramping up on this project.

The personnel shortage has delayed the SDR by 1 month. A collaboration with GMT has helped the schedule by providing Marcos van Dam to perform some of the required performance simulations.

The WMKO FY11 plan has the following personnel hours assigned to this project (as noted in section 4.3 some changes have been made at least for the preliminary design phase):

- AO support astronomers: R. Campbell 83h & A. Conrad 77h (we need to have a separate account for this charging since WMKO will cover these costs)
- Mechanical: E. James 572h, M. Pollard 62h
- Electronics: E. Wetherell 232h
- Software: A. Honey 40h, S. LaVen 667h, K. Tsubota 100h
- Optical Systems: T. Stalcup 873h, P. Wizinowich 83h

Dekany has confirmed that the COO personnel required for the preliminary design phase will be available at the levels indicated at the bottom of Table 3.

7. Configuration Control

Documents will be maintained as Keck Adaptive Optics Notes (KAONs) in the KeckShare database. Drawings will be maintained in the mechanical and electronics databases, which are also available through KeckShare.

Engineering change requests (ECRs) will be submitted in order to protect the operational system. Separate ECRs will be submitted through the <u>SEED</u> database with a note indicating which change control boards (CCBs) are affected. The primary CCB review will be the AO CCB but there will be minor items for the telescope and instrument CCBs to review.

One or more software ECRs will also be submitted for review through the <u>MANTIS</u> database, again making sure to note the affected CCBs.

We intend to submit ECRs for initial review during the preliminary design phase.

8. Risk Assessment

The JPL risk evaluation matrix approach used for the Keck Interferometer and NGAO was selected to track the significant programmatic and technical risks. This matrix ranks each risk by the consequences and likelihood of the risk occurring. A scale of 1 to 5 is used with higher numbers representing higher risk.

	Likelihood of Occurrence.									
Level		Definition								
5	Very High	> 70%, almost certain								
4	High	>50%, more likely than not								
3	Moderate	>30%, significant likelihood								
2	Low	>1%, unlikely								
1	Very Low	<1%, very unlikely								

Likelihood of Occurrence:

Consequence of Occurrence – Programmatic Risks

(J	(JPL's usage of "launch" replaced with "schedule")								
Level Implementation Risk Definition									
5	Overrun budget & contingency. Cannot deliver.								
4 Consume all contingency, budget or schedule									
3	Significant reduction in contingency or schedule slack								
2	Small reduction in budget or schedule slack								
1	Minimal reduction in budget or schedule slack								

Consequence of Occurrence – Technical Risks

(JPL's usage of "mission return" replaced with "science return"):

Level	Performance Risk Definition
5	Project Failure
4	Significant reduction in science return
3	Moderate reduction in science return
2	Small reduction in science return
1	Minimal or no impact to science return

The JPL-format risk matrices using these definitions are shown in the next section. In this risk matrix red represents high risks that require implementation of new processes or a change in the baseline plan, yellow represents medium risks that need to be aggressively managed including considering alternative approaches, and green represents relatively low risks that should at least be monitored.

The risk matrix is shown in Figure 6. Table 10 lists the significant technical and programmatic risks that were identified during the system design.

Figure 6: Programmatic and technical risk matrix

			Ta	ble 10: Significant risk areas	
#	Conse- quence	Like- lihood	Description	SDR Status	PDR Proposed Mitigation
1	3	3	Tip-Tilt measurement accuracy requirement not achieved working off null	The selected approach (to allow the use of 3 stars, & to compensate for differential atmospheric refraction & to allow small positional adjustments) requires good tip-tilt performance even when the tip-tilt star is located up to 25 mas in x & y from the intersection of 4 pixels. The proposed correlation algorithm achieves the required performance.	 a) Do additional analysis of the correlation algorithm approach to ensure it will meet the requirements. b) Further develop the backup centroiding approach, also being implemented, which would require seeing disk background subtraction &/or Strehl estimation. c) Ensure that the fold mirror in the tip-tilt sensor path could be upgraded with a tracking device to keep 1 star positioned on a quad cell.
2	4	2	Advantages of NIR tip-tilt sensing not achieved	Many groups have predicted improvements with this technique but this is an unproven concept on the sky.	Perform additional checks on performance analysis.
3	2	4	Schedule delays due to personnel non-availability	The SDR is 1 month late, & the PDR will likely be ~ 6-8 weeks late, due to personnel still being involved in other projects. Caltech involvement in preparing SDR has been limited. At WMKO issue will extend through ~ Feb/11.	 a) At WMKO, more PI involvement & bringing in Neyman. b) At WMKO project priority will significantly increase as K1 free space transport & center launch system are completed in FY11. c) Collaborate with GMT for analysis
4	3	3	Inadequate contingency (project requires more resources than budgeted)	Project already had effectively a \$160k reduction. Microgate fixed price quote assumes modification of an existing interface.	 a) Perform a more careful cost evaluation for PDR. b) Only accept goals after sufficient budget clearly identified. c) Ensure PD phase stays in budget. d) Test out Microgate interface during PD. e) Review COO SW estimate by mid-Jan.
5	3	2	Detector failure	(\$250k) component.	could be used as a backup
6	2	3	Conflicts with observing schedule impact delivery schedule	The observing schedule is defined in 6 month increments with some TBD engineering	Not an issue to be addressed in PDR. Longer term we will request adequate implementation gaps & engineering nights. A quick switch back to the operational system is practical

9. Project Plan Details

The project plans shown in Figure 4 have been expanded in the following figures.

ID	WBS	Task Name	Work	2011 2012 2013
1	1	Kook I TT Facility	7.210 hrs	Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4
2	11	Project Management	1,210 hrs	
2	1.1		1,000 hrs	
4	1.1.1	Management & Deporting	200 firs	
5	1.1.2		120 hrs	
	1.1.3	Milestenes & Design Deviews	750 hrs	
10	1.1.4	Design Deview Support	750 hrs	
10	1.1.4.1	Design Review Support	300 hrs	
10	1.1.4.2	Pre-Snip Review Support	300 nrs	
12	1.1.4.5	Discost Stort	100 nrs	▲ 8/2
14	1.1.4.4	Project Start	U nrs	▲ 11/8
14	1.1.4.5	System Design Review	U nrs	▲ 1/31
10	1.1.4.0	Preliminary Design Review	Unrs	▼ 1/01
10	1.1.4.7	Detailed Design Review	Unrs	▼ 7/0
17	1.1.4.8	TTF Sensor Pre-Ship Review	Unrs	↓ 11/9
10	1.1.4.9	Pre-Summit Review	Unrs	▼ 11/3
19	.1.4.10	Handover Review	Unrs	↓ 1/3 ▲ 8/
20	.1.4.11	IAC-allocated Science Starts	U hrs	• • •/
21	1.2	Systems Engineering	600 hrs	
22	1.2.2	System Architecture Design	280 hrs	
23	1.2.3	Requirements Definition	120 hrs	
24	1.2.4	Interface Definition	120 hrs	
25	1.2.5	Engineering Change Control	80 hrs	
ID	WBS	Task Name	Work	2011 2012 2013
				Ottr 4 Ottr 1 Ottr 2 Ottr 3 Ottr 4 Ottr 1 Ottr 2 Ottr 3 Ottr 4 Ottr 1 Ottr 2 Ottr 3 Ottr 4
40	1.4	Opto-mechanics	890 hrs	
41	1.4.1	Optical Design	260 hrs	
42	1.4.1.1	Plate scale trade study	40 hrs	
43	1.4.1.2	Camera optics	100 hrs	
44	1.4.1.3	Optics drawings for fab / get quotes	40 hrs	
45	1.4.1.4	Telescope simulator	80 hrs	
46	1.4.2	Mechanical Design	372 hrs	
47	1.4.2.1	Pickoff	120 hrs	
48	1.4.2.2	Field Lens	40 hrs	
49	1.4.2.3	Dewar Interface / Focus Mechanism	112 hrs	
50	1.4.2.4	Telescope simulator	100 hrs	
51	1.4.3	Fabrication, Assembly & Testing	258 hrs	
52	1.4.3.1	Pickoff	40 hrs	
53	1.4.3.2	Field Lens	16 hrs	
54	1.4.3.3	TT Mechanical Interface	30 hrs	
55	1.4.3.4	Pupil Simulator	92 hrs	
56	1.4.3.5	As-Built Documentation	80 hrs	
57	1.5	Controls	760 hrs	v v v v v v v v v v v v v v v v v v v
58	1.5.1	Motion Control	240 hrs	
59	1.5.1.1	Electronics Design	60 hrs	
60	1.5.1.2	Software design	40 hrs	
61	1.5.1.3	Software (PMAC, OBS, SC)	40 hrs	
62	1.5.1.4	Software - DAR	20 hrs	
63	1.5.1.5	Build cables	40 hrs	
64	1.5.1.6	As-built Documentation	40 hrs	I
65	1.5.2	Device Control	220 hrs	
66	1.5.2.1	Electronics Design	80 hrs	
67	1.5.2.2	Camera control software design	30 hrs	
68	1.5.2.3	Camera Control Software	30 hrs	
69	1.5.2.4	Build cables	40 hrs	
70	1.5.2.5	As-built Documentation	40 hrs	
71	1.5.3	Real-time Control	300 hrs	
72	1.5.3.1	RTC Software Design	80 hrs	
73	1.5.3.2	RTC Software coding	80 hrs	
74	1.5.3.3	RTC Modifications Contract	80 hrs	
75	1.5.3.4	As-built Documentation	60 hrs	

ID	WBS	Task Name	Work		2011		2012		2013			
				Qtr 4	Qtr '	1 Qtr2 Qtr3 Qtr4	Qtr1 Q	tr 2 Qtr 3 Qtr 4	Qtr 1	Qtr 2	Qtr 3 Qt	tr 4
76	1.6	Operations Software	960 hrs							•		
77	1.6.1	Design	320 hrs									
78	1.6.2	Setup & Calibration Tool Modifications	20 hrs									
79	1.6.3	Acquisition Tool	120 hrs									
80	1.6.4	Planning Tool Modifications	120 hrs				1					
81	1.6.5	Observing Script Modifications	30 hrs									
82	1.6.6	FITS Header Modifications	30 hrs									
83	1.6.7	User Interface Modifications	80 hrs									
84	1.6.8	As-built Documentation	80 hrs									
85	1.6.9	Testing & Optimization with Summit Sy	160 hrs									
86	1.7	Integration, Test & Commissioning	2,030 hrs		٦						_	
87	1.7.1	Laboratory I&T	570 hrs					-				
88	1.7.1.1	Lab System Setup	150 hrs									
89	1.7.1.1.1	RTC crate with WFS & STRAP	50 hrs									
90	1.7.1.1.2	Motion Control	40 hrs									
91	1.7.1.1.3	Camera	60 hrs									
92	1.7.1.2	Lab System I&T	420 hrs					-				
93	1.7.1.2.1	Motion Control	80 hrs						•			
94	1.7.1.2.2	Camera Control	60 hrs						.			
95	1.7.1.2.3	RTC with carnera sim	40 hrs									
96	1.7.1.2.4	RTC with Camera	80 hrs						.			
97	1.7.1.2.5	RTC Full test	40 hrs						.			
98	1.7.1.2.6	Optical Performance Testing	40 hrs									
99	1.7.1.2.7	Documentation	80 hrs									
100	1.7.2	AO Facility Modifications	300 hrs		٦.	/				•		
101	1.7.2.1	Design power, cooling, mechanical interfac	100 hrs									
102	1.7.2.2	Fabrication	40 hrs									
103	1.7.2.3	Implement power, cooling, mechanical inter	80 hrs									
104	1.7.2.4	Install motion control	40 hrs									
105	1.7.2.5	Install electrical cables	40 hrs						1			
106	1.7.3	Telescope I&T	1,160 hrs						-			
107	1.7.3.1	Installation	160 hrs									
108	1.7.3.1.1	Pickoff, field lens, dewar	50 hrs									
109	1.7.3.1.2	Telescope Simulator	30 hrs									
110	1.7.3.1.3	Motion control electronics/software	20 hrs									
111	1.7.3.1.4	Camera electronics/software	30 hrs									
112	1.7.3.1.5	RTC	30 hrs									
113	1.7.3.2	Daytime Functionality & Scale Factor Testin	100 hrs						1			
114	1.7.3.3	Daytime Closed Loop Testing & Optimizatior	80 hrs									
115	1.7.3.4	On-sky Functionality & Closed Loop Testing	300 hrs									
116	1.7.3.5	On-sky Performance Characterization	220 hrs									
117	1.7.3.6	On-sky multiple tip/tilt optimization	200 hrs									
118	1.7.3.7	System Performance Document	100 hrs									
119	1.8	Operations Handover	320 hrs								_	
120	1.8.1	Operations Documentation	160 hrs					LI				
121	1.8.2	Operations Training	160 hrs									

ID	WBS	Task Name	Work	2011 2012 2013
1	12		C 022 4 h	Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4
2	1.3	NIR 11 Sensor Camera	0,022.4 hrs	
2	1.3.1	Project management, meetings & reviews	834 nrs	
3		Management and requirements control	180 firs	
4		Teomina ieau	360 ms	
5		Fear meetings	198 nrs	
48		Schedule contingency, for SDR	U nrs	
49		System Design Review @ Caltech	0 nrs	ή
50		Schedule contingency for DR	Uhrs	
51		Design Review @Caltech	48 hrs	
52		Schedule contingency for PSR	0 hrs	
53		Preship Review @Caltech	48 hrs	
54	1.3.2	Systems engineering	128 hrs	
55		Refine functional perfromance requirements	60 hrs	
56		Interface Control Documents	68 hrs	
57		Space envelope	8 hrs	
58		AO bench interface	24 hrs	
59		Optical performance	8 hrs	
60		Cooling system, compressor or He gas lii	4 hrs	
61		Electronics location, power, comms	8 hrs	
62		Data and command flow	16 hrs	
63		System Review Preparation	0 hrs	
64	1.3.3	Design	1,012 hrs	
65		Optics	328 hrs	
66		- Window FEA	24 hrs	
67		Design relay optics	120 hrs	
68		Design ontics mounts	160 hrs	
69		Ontics mount write up and PDR presptati	24 hrs	
70		Dewar	476 brs	
70		Dewar layout & concentual design	178 hrs	
70		Devian layout & conceptual design	F6 bro	
72		Design vacuum enclosure	34 bro	
7.5		Design Interface to AO bench	24 IIIS 06 bro	
74		Design detector mount	90 mis	
70		Design getter enclosure	20 11/5	
76		Design cold baffles	48 nrs	1
70		Design radiation shields	40 mrs	
78		Design litter wheel, onve and housing	40 mrs	
79		Dewar design doc & PDR presentation	24 hrs	
80		Thermal control system	64 hrs	
81		l hermal modelling & design	40 hrs	
82		Cryocooler selection	8 hrs	
83		Thermal design document and PDR pres	16 hrs	
84		Electronics	72 hrs	
85		Design wiring inside dewar	24 hrs	
86		Design cables from dewar to controller	16 hrs	<u>6</u>
87		Design wiring within controller	16 hrs	<u>6</u>
88		Electonics design write up and PDR pres	16 hrs	
89		Software	48 hrs	
90		Define DSP command and data flow, cod	0 hrs	
91		Define detector host, command and data	0 hrs	
92		Design temperature and pressure loggin	0 hrs	
93		Software write up and PDR presentation	48 hrs	
94		Design Review preparation	24 hrs	
95	1.3.4	Procurement and Fabrication	2,684.4 hrs	
96	1	Detector purchase	0 hrs	
97		Detector delivery	0 hrs	🍾 11/1
98		Optics	304 hrs	
99		Relay optics procurement	40 hrs	
100		Pupil mask design & procuremnt	8 hrs	
101		Filter procurement	16 hrs	
102		Fabricate optics mounts	160 hrs	
103		Install optics in mounts	80 hrs	
104		Dewar	592.4 hrs	
105		Procure vacuum daude and controller	16 hrs	
106		Procure other dewar parts: valve, press re	8 hrs	
107		Procure hermetic connectors	2 hrs	
108		Fabricate vacuum enclosure	80 hrs	
109		Fabricate front flange and window frame	00 hre	
110		Fabricate radiation shields	48 hre	
111		Fabricate cold haffles	48 hre	
112		Fabricate cold partice	40 m3	
112		i apricate gener enclosure	401115	

ID	WBS	Task Name	Work		201	1	2012		2013
44.0		E - baile also also also and a such as all backs be a	00 h	Qtr 4	Qtr	1 Qtr 2 Qtr 3 Qtr 4	Qtr 1 G	tr 2 Qtr 3 Qtr 4	Qtr 1 Qtr 2 Qtr 3 Qtr 4
113		Fabricate detector mount and hatches	80 nrs			•			
114		Fabricate filter wheel, drive parts and nou	48 nrs			•			
115		Assembly and fit check	48 nrs			÷			
116		l est filter drive warm	20 hrs			÷			
117		Clean, bake and reassemble	40 hrs			•			
118		Install temperature sensors, heaters and	24 hrs			1			
119		Fabricate wiring inside dewar and ohmic	8 hrs						
120		Install and align optics warm	56 hrs			L.			
121		Check and fix leaks	12 hrs			Ĺ.			
122		Pump and bake dewar	2.4 hrs		1	<u>L</u>			
123		Pressure rise tests	12 hrs			ľ			
124		Thermal control system	56 hrs						
125		Crycooler purchase	4 hrs		1				
126		Lakeshore controller purchase	8 hrs			l 🖞 📗			
127		Purchase sensors and heaters	8 hrs	1		L L			
128		Fabricate cable form dewar to temp contr	20 hrs	1					
129		Test sensors, heaters and servo while w:	16 hrs	1					
130		Detector Electronics	242 hrs	1		┝┳━━━╋	1		
131		Procure circular connectors fro cables to	2 hrs	1		н 🛛			
132		Procure D connectors within controller	4 hrs						
133		Procure 16ch IR Leach controller	8 hrs	1		👗 📗			
134		6 slot housing	8 hrs	1		i I			
135		Large power supply	0 hrs	1		♦ 5/11			
136		PCI card	0 hrs	1		5 11			
137		Timing board	0 hrs		1	5 5/11			
138		IR Clock driver	0 hrs	1		▲ 5/11			
130		8ch IR video board	0 hrs	-		▲ 5/11			
140		8ch IR video board	0 hrs	-		▲ 5/11			
140		Test leach controller	76 hrs	-		• •			
142		Eabricate and obmic check cables from d	49 hrc			" <mark> </mark>			
142		Fabricate and ohmic theth tables from a	40 hrs	-					
143		Fabricate and ohmin check winny withing	ou nis	-		₽			
144		Electrical sheek of signals in soble of dou	0 1115 16 bro	-		-			
140		Electrical check of signals in caple at dev	101115						
140		Purchase Linux server, rack mount	4 rirs			+			
147		Purchase Terminal server, rack mount	4 nrs	-		+			
148		Purchase Remote power switch	2 ms	-					
149		Software development	1,480 hrs	-					
150		DSF cooling for detector readout and coat	240 m/s	-		--			
101		Soliware interface to temperature control	80 mrs						
152		Interface Leach controller to AO system	400 m/s			*			
153		Operators manual	80 hrs			↓			
154	105	Reliability testing / software contingency	600 nrs	-				_	
155	1.3.5	System integration and test at Caltech	1,060 hrs					•	
156		vacuum and thermal tests	104 hrs			T	1		
157		Vacuum gauge and pressure logging vali	16 hrs			1			
158		Assemble & test with cryocooler	16 hrs			4			
159		Log temperature through1st cooldown	16 hrs			ų 🖞			
160		Adjust thermal servo	8 hrs			ļ Ļ			
161		Log temperature through1st warm up	8 hrs			<u>í</u>			
162		Tune thermal links	16 hrs			<u>í</u>			
163		Pump, repeat thermal cycle, servo tuning	12 hrs			<u>í</u>			
164		Pump, repeat thermal cycle, servo tuning	12 hrs			ľ	Į.		
165		Test filter mechanism cold	20 hrs			F	1		
166		Detector testing	504 hrs						
167		Electrical check of signals at detector mo	8 hrs				*		
168		Detector installation	16 hrs				51		
169		Detector acceptance testing	240 hrs				ŭ.		
170		Detector noise perfomance characterizati	240 hrs]			Ĭ		
171		Align & test optics cold	40 hrs]			h, h,		
172		Communication test to AO controller simulato	32 hrs	1			K		
173		Spot/pinhole centroiding tests in lab	120 hrs	1			- 4		
174		Test reports (performance verification)	80 hrs	1			K		
175		Maintenance procedures and diagnostics	80 hrs	1			i i		
176		System integration contingency, no longer fur	0 hrs	1				,	
177		PreShip Review Preparation	80 hrs	1				T	
178	1.3.6	Commisioning support at Keck	304 hrs	1					
179		Pack ship shipping of hardware, incl insuranc	48 hrs	1				Ь	
180		Detector team lead, no longer funded	0 hrs	1				1	
181		Electrical engineer	128 hrs	1				1	
182		Detector system programmer, no longer fund	0 hrs	1				1	
183		Host laver programmer	128 hrs	1				4	
-								N2	