Keck Adaptive Optics Note 716

DRAFT

Next Generation Adaptive Optics Preliminary Design Wavefront Error Budgets

Richard Dekany, COO

April 6, 2010

Abstract

The purpose of this note is to summarize the wavefront error and encircled energy budgets for the Next-Generation Adaptive Optics (NGAO) system at the time of the NGAO Preliminary Design Review.

These budgets are based upon a set of architecture design choices and functional requirements flowdowns consistent with the NGAO System Requirements, which are maintained in an online Requirements Management database product, Contour, developed by JAMA Software, Inc. and commercially licensed by W.M. Keck Observatory.

Revision Sheet

Release No.	Date	Revision Description
Rev. 0.1	4/5/10	Initial draft by R. Dekany
Rev 0.2	4/6/10	Added Gal Assembly Ensquared Energy curves, NGS WFS TWFS mode TT error vs. guide star mag, histogram comps to Keck 2 AO, and more text to prior sections.

Table of Contents

A	bstract		l
R	evision	Sheet	l
1	Int	roduction	4
	1.1	Acronyms and Definitions	1
	1.2	Purpose	1
	1.3	Scope	1
	1.4 Con Prev Kec Refe	Related Documents	1 4 5 5
2	NG	AO Performance Requirements	5
3	Arc	hitectural and Observational Elements	5
4	Sci	ence Case Parameters	3
5	Det	ailed Error Budget for Galaxy Assembly Key Science Case10)
	5.1	Science Path Wavefront Error Budget10	D
	5.2	TT Sharpening Budget	l
	5.3	TWFS Budget	l
6	LG	S Mode operation with 5 x 5 subaperture NGS WFS TWFS mode12	2
	6.1	Describe the mode of operation	2
	6.2	Performance Estimate	2
7	Tra	de Studies1	3
	7.1	Performance vs. Seeing	3
	7.2	Performance vs. Wind Speed	4
	7.3	Performance vs. Laser Return	4
	7.4	Seeing, Wind Speed, and Sodium Abundance Monte Carlo Results10	6
	7.5	Performance vs. Sky Fraction	9
	7.6	Performance vs. LO WFS Passband	9
	7.7	Performance vs. Spaxel Sampling	D
Ą	ppendi	x A: System Compliance Matrix2	l
A	ppendi	x B: Wavefront Error Budget Spreadsheet v2.022	2
A	ppendi	x C: Detailed Error Budgets24	4
	Input	Summary	4

Galactic Center Case	25
ExoPlanet	26

1 Introduction

1.1 Acronyms and Definitions

DAVINCI	A new science instrument under development as part of NGAO
d-IFU	Deployable IFU
EncE	Encircled Energy
EnsqE	Ensquared Energy
FoV	Field of View (the field observed by a single detector array)
FoR	Field of Regard (the technical or patrol range of a sensor)
FWHM	Full-Width at Half-Maximum = 2.355 σ , for a Gaussian distribution
HOWFS	High-order wavefront sensor
IFU or IFS	Integral Field (Unit) Spectrograph
LGS	Laser Guide Star
LO WFS	Low-Order Wavefront Sensor
mas	Milliarcseconds
NGAO	Next-Generation Adaptive Optics
NGS	Natural Guide Star
NGWFC	Next-Generation Wavefront Controller
PSF	Point Spread Function
RMS	Root Mean-Squared
TT	Tip-tilt
TWFS	Truth Wavefront Sensor
WCS	Well-corrected subaperture.
WFE	Wavefront reconstruction error
"	arcseconds
)	arcminutes

1.2 Purpose

The purpose of this document is to document the assumptions, architecture choices, performance flowdown requirements, and expected wavefront error and encircled energy performance for the NGAO science cases.

1.3 Scope

This document includes all defined NGAO science case error budgets, sample TT sharpening budgets, and several trade studies performed to capture NGAO performance.

1.4 Related Documents

Configuration-Controlled Documents

- KAON 550, NGAO System Configurations
- KAON 636, Observing Operations Concept Document
- KAON 721, Wavefront Error Budget Tool

- KAON 722, NGAO High-Contrast Error Budget Tool
- KAON 723, Performance Flowdown Budgets

Previous NGAO Performance Documents

- KAON 452, MOAO versus MCAO Trade Study Report
- KAON 465, NGAO LGS Wavefront Sensor: Type and Number of Subapertures Trade Study
- KAON 470, NGAO Sky Coverage Modeling
- KAON 471, NGAO Wavefront Error and Ensquared Energy Budgets (for System Design Phase)
- KAON 475, Tomography Codes Comparison and Validation for NGAO
- KAON 480, Astrometry for NGAO
- KAON 492, NGAO Null-Mode and Qadratic Mode Tomography Error
- KAON 497, NGAO High-Contrast and Companion Sensitivity Performance Budget
- KAON 503, Mauna Kea Ridge Turbulence Models
- KAON 504, NGAO Performance vs. Technical Field of View for LOWFS Guide Stars
- KAON 594, Plan to Address Phased Implementation and Descope Options
- KAON 601, NGAO Point and Shoot (SPIE 2008)
- KAON 621, Noise Propagator for Laser Tomography AO
- KAON 629, Error Budget Comparison with NFIRAOS
- KAON 635, Point & Shoot Study
- KAON 644, Build-to-Cost Architecture Performance Analysis
- KAON 710, Latency, Bandwidth, and Cotrol Loop Residual Relationships

Keck AO Performance Analyses

- KAON 461, Wavefront Error Budget Predictions & Measured Performance for Current & Upgraded Keck AO
- KAON 462, NGAO Trade Study: Keck AO Upgrade
- KAON 469, Effect of Keck Segment Figure Errors on Keck AO Performance
- KAON 482, Keck Telescope Wavefront Error Trade Study
- KAON 500, Keck AO Upgrade Feasibility

References

- CIN 626, PALM-3000 Error Budget Summary
- J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
- KAON 416, Atmospheric Sodium Density form Keck LGS Photometry
- KAON 477, Modeling Low Order Aberrations in Laser Guide Star AO Systems (OE 2007)
- KAON 478, Modeling Laser Guide Star Aberrations (OSA 2007)
- KAON 574, Systems Engineering Management Plan
- KAON 583, Work Breakdown Structure Definitions

2 NGAO Performance Requirements

The highest-level performance requirements for NGAO are documented in the Systems Requirements section of the NGAO Requirements Contour Database (see Appendix A), with the key requirement for wavefront and ensquared energy documented in SR-20, summarized in Table 1.

NGAO Key Science Case	High- order RMS Wavefront Error (nm)	RMS TT Error (mas)	EffectiveEnsquaredTotal RMSEnergyWavefrontwithin a 7Error (nm)mas spaxe		Observing Passband	Typical Single- Integration Time (sec)
Galaxy Assembly	163	4.9	185	74	К	1800
Nearby AGN's	163	4.7	181	26 w/in 34 mas	Z	900
Galactic Center	190	190 2.2 193 5		59	Н	10
Exoplanets	162	3.8	174	68	Н	300
Minor Planets	164	4.7	181	25	К	120
lo	115	2.1	117	83	К	10

Table 1. High-level NGAO Performance Requirements Summary from SR-20.

During the NGAO design phases, there has been a close iterative process of feedback between the technical and science teams to determine the best science return obtainable, particularly in light of the Build-to-Cost project decision documented in KAON 642. For reference the historical transition of the performance requirements, including current Keck AO Performance as documented in KAON 461, is shown in Table 2. In general, cost reductions have resulted in the performance degradation of some science cases (typically reflecting the loss of the wide-field d-IFU capability) and the performance enhancement of others.

3 Architectural and Observational Elements

The NGAO WFE budgets are developed using a common WFE budget Microsoft Excel spreadsheet tool developed at Caltech by R. Dekany and collaborators over the past 10 years. It has been extensively validated against other budgets (Wizinowich, Neyman, van Dam, others), detailed Monte Carlo simulations (Arroyo, LAOS), and across projects (see KAON 629 for one example). Fundamentally, it allows selection of an adaptive optics system configuration (such as Keck 2 AO, Keck 1 AO, or NGAO), a Science Case (such as Galaxy Assembly, Io, T Tauri objects, etc.), and a science instrument (such as DAVINCI, OSIRIS, PHARO, etc.) The architectural and observational differences between these choices are almost entirely captured on a single 'Input Parameters' worksheet of the workbook. The selection of WFS camera frame rates and offaxis NGS brightnesses and distances are typically optimized parameters that are found subject to constraints of necessary sky coverage fraction or guide star brightness, in the case of a known specific science target. Thus, each error budget for NGAO corresponding to each key science case, assumes operation at a slightly different frame rate¹.

¹ A future revision to KAON 721 may support definable, selectable WFS frame rates, but this is not currently supported.

Error budgets are summarized on the 'Optim' worksheet, as this is location of the optimization parameters. (Optim is commonly used for the generation of trade study results, as well.) Separate error budgets are maintained for the science path, the sharpening of field TT stars, and for the wavefront error residual sensed by the TWFS (if applicable). For patrolling LGS TT sharpening systems, the camera frame rates of corresponding HO LGS WFS's are separately optimized. Additional description of this tool is provided in Appendix C.

NGAO Kov	2006 Keck 2 AO	Expected Keck 1 AO	NGAO Requirements in Median Seeing						
Science Case	75 th Percentile Best Seeing (approx.)	rcentile Seeing prox.) (approx.) Performance in Median Seeing (approx.)		SDR	B2C	Current (PDR)			
Galaxy Assembly	557 ⁴	529 ⁵	197 ⁶	257	204	185			
Nearby AGN's	557 ⁴	529 ⁵	197 ⁶	N/A	182	181 ⁷			
Galactic Center	N/A	387 ⁸	182	184	189	193			
Exoplanets	378 ⁹	311 ¹⁰	N/A	155 ¹⁰	171	174			
Minor Planets	557 ⁴	529 ⁵	131	175	177	181 ¹¹			
lo	258 ¹²	210 ¹³	125	148 ¹³	N/A	117			

Table 2. Progression of AO Performance Requirements to Date (N/A = Not available).

² Slight revisions to the Key Science Cases have been made during PD phase. See McGrath and Max, "Science Case Parameters for Performance Budgets" for more details.

³ June 20, 2006 NGAO Design and Development Proposal, Table 13.

⁴ KAON 461, Table 1 for LGS mode with 18th magnitude TT star.

⁵ KAON 461, Appendix 3 for LGS mode with 18th magnitude TT star.

⁶ June 20, 2006 NGAO Design and Development Proposal, Figure 49, for 30% sky coverage, z = 30 deg, having 173 nm HO error and

⁷ Performance increase driven by reduced FoR for this science case brought on by Build-to-Cost decision to eliminate a d-IFU instrument from the NGAO program.

⁸ Jessica Lu, private communication, who reports NGWFC median performance of 401 nm RMS. Here, we assume Keck 1 LGS will provide the same improvement as shown in KAON 461, Table 2, for LGS with 10^{th} magnitude TT star, namely the subtraction of 105 nm in quadrature, so sqrt($401^2 - 105^2$) = 387 nm.

⁹ KAON 461, Table 1 for LGS mode with 10th magnitude TT star.

¹⁰ KAON 461, Appendix 2 for LGS mode with 10th magnitude TT star.

¹¹ Performance decrease driven primarily by simplification to laser asterism and reduction in laser power.

¹² KAON 461, Table 1 for NGS 'bright star' performance.

¹³ KAON 461, Appendix 1 for NGS mode with 8th magnitude TT star. Note, NGWFC should have similar performance, as the Keck 1 LGS upgrade will not affect NGS science performance.

The NGAO system architecture choices are documented in the configuration region of the Input Summary tab of the Wavefront Error Budget Tool, KAON 721. The key elements of this table are summarized in Table 5. Not shown here, but a critical to budget fidelity is an area of the Input Summary that selects optical pass-bands for each WFS camera. (Also not shown are optical transmission models that track expected photon transmission through each AO system configuration.)

4 Science Case Parameters

Science Case parameters for NGAO have been updated by Max and McGrath during the NGAO preliminary design phase. The updated parameters are shown for convenience in Table 3.

				Required	Galactic					NGAO	
	Zenith			sky	latitude,			Max Single		Кеу	
	Angle		NGS	coverage	b	Science	Evaluation	Exposure	LGS/NG	Science	Applicable to
Science Case Name	(Deg)	Guide stars	color	(%)	(deg)	Filter	Filter	Time (Sec)	S	Case	NGAO (Yes/No)
Galaxy Assembly, e.g. Extended Groth	30	Field Stars	М	30	≥60	Z, J, H, K	К	1800	LGS	Y	Key Science Driver
Nearby AGNs	30	Field Stars	М	30	≤60	Z, <mark>J, K</mark>	Z	900	LGS	Y	Key Science Driver
Galactic Center	50	IRS 7, 9, 12N	N/A	N/A	N/A	Н, К	н	<10 (image) 900 (spectra)	LGS	Y	Key Science Driver
Exo-planets	30	Field Stars	М	30	≤30	Ј, Н	Н	300	LGS	Y	Key Science Driver
Minor Planets	30	Field Stars	М	30	≤60	Z	Z	120	LGS	Y	Key Science Driver
lo	30	Science Object	G	N/A	N/A	Н	н	10	NGS	N	
Vesta	30	Science Object	G	N/A	N/A	I, Z, J, H, K	. I'	10 (image) 30 (spectra)	NGS	Ν	
Exo Jupiter NGS	30	Science Object	М	N/A	N/A	H	н	2 ??	NGS	Ν	
MIRA Vars	30	Science Object	М	N/A	30	H	н	2	NGS	Ν	
Faint NGS	10	Science Object	К	N/A	30	К	К	30	NGS	N	
T Tauri	30	Field Stars	М	N/A	N/A	К	К	300	LGS	N	Science Driver
Transients	30	Field Stars	М	30	40	Z, J, H, K	Z	900	LGS	Ν	Science Driver
Astrometry	30	Field Stars	М	30	40	н	н	30?	LGS	N	Science Driver
Debris Disk	30	Field Stars	М	N/A	20	Ι', <mark>Ζ</mark>		300	LGS	N	Science Driver

 Table 3. Science Cases Parameters for NGAO PD phase.

The performance summary of the NGAO PD phase design for all these Science Cases is summarized in Table 4.

XXX Need to compile the full performance matrix for all the science cases in Table 3. XXX

Table 4. Summary of NGAO Science Case Performance.

Input Par	ameter Summary					
Model		Performance Sum	nmary			
AO System	NGAO LGS	HO Error	163	nm		
Science Case	Galaxy Assembly	TT Angular Error	4.9	mas		
Instrument	DAVINCI	Total Effective Error	185	nm		
					×	
Worksheet	Parameter	<u>Current</u> Parameter Value	Units		<u>Galaxy</u> Assembly	NGAO LGS
Telescope	Name	Keck				Keck
Atm	Declination					20
	Zenith Angle Cn2(h) Model	30.0 Mauna Kea Ridge	deg	-	30 Mauna	Kea Ridge
	r0 at Zenith	0.160	m			0.160
	Wind speed Outer Scale	9.5	m/s m			9.5
HO Flux	Guide Star Spectral Type	LGS	(NGS/LGS)		LGS	
	HOWFS NGS Spectral Type	LGS	mv			
	Num LGS Subaps Across	63				63
	HO Integration time	0.00113	sec			
	HO WFS CCD Read Time	0.50	frame time(s)	_		0.5
	PnS RTC Compute Latency	0.00050	seconds			0.0005
LCS Elux	HOWFS Detector	CCID74	atoms/cm/2			CCID74
LOS FIUX	Pulse Format	CW	atoms/cmr2			CW
	Laser Power	50.00	Watts (Measured/Theoretical)			50.0
	Laser-thru-LLT Transmission	0.60	(weasureur Ineoretical)			0.60
HO Cent	Num Pixels per Subap Across Pixel IFoV	4	arcsec			4
	Range Gating?	1.6 NO	arcatt			1.6 NO
	Intrinsic HOWFS GS diameter Perfect Uplink AO2	0.0	arcsec		LGS	0.0
	Aberrations in Uplink Beam	0.9	arcsec			0.90
	LLT Off-axis Projection Distance Use Max LGS Elongation in Calculation?	0.0	m			0.0
	Downlink Aberrations	0.25	arcsec			0.25
	Charge Diffusion	0.25	pixels			0.25
FA Tomo	Number of Laser Beacons	4				4
	LGS Beacon Height above Telescope	90	km arcmin	_		90
	Single Laser Backproj FA Reduction Factor	0.8	diomit			0.8
Na H Fit	Vertical Velocity of Na Layer Physical Actuator Pitch	30.0	m/s m			0.004
Alias	Use Anti-aliasing in HOWFS?	NO				NO
Stroke	Aliasing Reduction Factor Number of Woofer Actuators Across Pupil	0.67				20
onone	Number of Tweeter Actuators Across Pupil	64				64
	Woofer Peak-to-Valley Stroke	4.0	microns			4.0
	Woofer Interactuator Stroke	1.2	microns			1.20
	Tweeter Interactuator Stroke	0.5	microns			0.50
	Tweeter Conjugate Height	0.0	meters			0.0
Go-To	Static Surface Errors to be Corrected Science Mode	1.0 MOAO	microns (SCAO/MOAO/MCAO)			1.0 MOAO
Dig	Number of Controller Bits	16	bits			16
TT Flux	TT Guide Star Brightness TT NGS Spectral Type	19.0 M	mV	_	м	
	Subaperture Shape	circular	(circular/square)			
	Num TTFA Sensors Used for TT	2				2
	Num 3x3 Sensors Used for TT	0				0
	TT Integration Time	0.0049	sec			0
	TT Compensation Mode	Indep PnS	(SCAO/MOAO/MCAO/	MOA	O Point and	Indep PnS
TT Meas	TT Sensor Type	H2RG	(Pyramid/SH)			H2RG SH
	TT Star Sharpened by AO?	YES				YES
	Assume Fermenia 11 Sharpening? ADC in TT sensor?	NO				NO
	Num TT Pixels Across Subap	2				2
	TT Pixel IFoV	0.02	arcsec			0.015
	Intrinsic TT GS diameter	0.0	arcsec		0.0	
TWES Flux	TWFS Guide Star Brightness TWFS NGS Spectral Type	19.0 M	mv	-	M	_
	Num TWFS Subaps Across	5				5
	TWFS Pixels Across Subap TWFS Integration Time	8 2.8280	sec			8
	TWFS Compensation Mode	SCAO	(SCAO/MOAO/MCAO)			SCAO
	TWFS Pixel IFoV TWFS Detector	0.40 CCD39	arcsec			0.4 CCD39
Bandwidth	Kappa	1.0				1.0
	TT Servo Decimation Factor	20				20
	Telescope Input TT Reduction Factor	0.25	(TWES/TT)			0.3
Aniso	Optimize LGS Off-pointing	NO	(19/F3/11)			IWFS
	HO GS to Target for Sci Aniso WFE	1.00	arcsec		1.0	
	HU GS to 11 GS for TT Aniso WFE	41.14	arcsec	-		_
	TWFS GS to Target (for Truth Anisoplanatism	42.14	arcsec			
CA	CA Rejection Factor	20				20
Aut Dispersion	Science Disperson Correction Factor	20				TES
Cal	Instrument	DAVINCI	nm		DAVINCI	20
	Dynamic WFS Zero-point Calibration Error	33	nm			33
	Leaky Integrator Zero-point Calibration Error	10	nm			10
	DM-to-lenslet Scale Errors	25	nm			25
Margins	High Order Wavefront Error Margin	45	nm			45
Sky Coverage	TT Star Density Model	2.0 Spagna		-		2.0
-	Required Sky Coverage Fraction	30%			30%	
	Required TWFS Sky Coverage Fraction	Bachall 30%				
Seiones Filter	Galactic Latitude, b	60	deg	_	60	_
Science Hitter	Max Science Exposure Time	K 1800	sec		1800	
Westel	Beremeter	Current	Unite		Cal	Note
worksheet	<u>raiameter</u>	Parameter Value	UIIIIS		Galaxy Assembly	NGAO LGS

Table 5. Architectural decisions and key parameters for NGAO for the Galaxy Assembly Science Case.

5 Detailed Error Budget for Galaxy Assembly Key Science Case

5.1 Science Path Wavefront Error Budget

Kee	ck Wav	efront Erro	r Budg	jet Sur	mmary	Version 2.0									Scie	ence l	Band			
Mode	c	NGAO LGS										u'	g'	r'	ï	Ζ	Y	J	Н	K
Instru	ment:	DAVINCI									λ (μ m)	0.36	0.47	0.62	0.75	0.88	1.03	1.25	1.64	2.20
Sci. 0	Observation:	Galaxy Assembly					_				δλ (μ m)	0.06	0.14	0.14	0.15	0.12	0.12	0.16	0.29	0.34
										λ/	D (mas)	6.7	8.8	11.6	14.1	16.6	19.4	23.5	30.8	41.4
						Wavef	ront								Stre	hl Rat	io (%)			
Sci	ence Hi	gh-order Err	ors (LG	S Mod	le)	Frror (rms)		Para	meter	r				00					
	Atmospheri	c Fitting Error				5	0 nm	60	Subap	s										
	Bandwidth I	Error				6	3 nm	46	Hz (-3	db)										
	LGS Tomos	araphy Error				3	7 nm	4	sci bea	acon(s)										
	Asterism D	eformation Error				1	6 nm	0.50	m LLT											
	Chromatic E	Error					1 nm		Upper	limit										
	Dispersion	Displacement Error					1 nm		Estima	ate										
	Multispectra	al Error				2	5 nm	30	zen; s	ci wav										
	Scintillation	Error	_	к		1	2 nm	0.34	Scint i	ndex at	0.5um									
	WF3 30IIII	Illation Enor			117 nm		Jim		Alloca	lion										
	Uncorrectat	le Static Telescope	Aberration	s	117 1111	4	3 nm	64	Acts A	cross P	upil									
	Uncorrectat	ole Dynamic Telesco	pe Aberrat	ions		3	B nm		Deken	s Ph.D										
_	Static WFS	Zero-point Calibrati	on Error			2	5 nm		Allocat	tion										
	Leaky Integ	rator Zero-point Calib	bration Error	or		1	0 nm		Alloca	tion										
	Stale Record	nstructor Error				1	5 nm		Alloca	tion										
\vdash	Go-to Contr Residual No	oi ⊨rrors a Laver Focus Chan	0e			3	unm 9 nm	30	Alloca m/s Na	uon a laver v	el		-							
	DM Finite S	Stroke Errors				-	6 nm	5.3	um P-I	P stroke										
	DM Hystere	Aliasing Error				1	3 nm 7 nm	P	from T	MT mode	el									
	DM Drive Di	igitization					1 nm	16	bits											
	Uncorrectat	ole AO System Aber	rations			3	3 nm		Alloca	tion										
	DM-to-lensi	et Misregistration	ations			3	0 nm 5 nm		Allocat	tion										
	DM-to-lensl	et Pupil Scale Error				1	5 nm		Alloca	tion										
	Angular Ani	contonation Error			101 nm			10												
	HO Wavefro	ont Error Margin				4	5 nm	1.0	Alloca	tion										
	Total H	igh Order Wa	vefron	t Error	154 nm	162	? nm	Hig	h Orc	ler St	rehl	0.00	0.01	0.07	0.16	0.27	0.39	0.53	0.69	0.81
					A.,	Enviro									04==	h l n m ti	(0/)			
Sci	ence Ti	p/Tilt Errors			Angular		lient		Para	meter	r				Strei	ni rati	05 (%)		
				Sci Eiltor	Error (rm	5) WFE (1	ms)		-					_						
	Tilt Measure	ement Error (one-axi	s)	SCI FILLEI	1.92 mas	3	3 nm	19.0	mag (r	nV)										
	Tilt Bandwid	th Error (one-axis)	vie)		1.30 mas	2	2 nm	9.5	Hz (-3	db)										
	Residual Ce	entroid Anisoplanatis	m		0.55 mas	5	9 nm	42.0	x redu	ction	.1									
	Residual At	mospheric Dispersio	n	к	0.12 mas		2 nm	20	x redu	ction										
-	Non-Comm	on-Path Tip-Tilt Erro	ns 'S		1.60 mas	2	7 nm	3.2 mas/	Alloca	tion										
	Residual Te	elescope Pointing Jit	ter (one-ax	is)	1.22 mas	2	1 nm	29	Hz inp	ut distur	bance									
_	TT Error Ma	irgin			2.00 mas	19	5 nm		Alloca	tion										
\vdash	Total T	in/Tilt Error (000.07	ic)	40 m	c 01	nm	<u>т</u>	in/Til	+ Stro	hl	0.27	0.20	0.52	0.62	0.70	0.76	0.02	0.00	0.04
	TULATI		Une-ax	15)	4.3 116	3 3	1011		ip/11	l Sire		0.27	0.59	0.55	0.02	0.70	0.70	0.02	0.09	0.94
Tot	al Effec	tive Wavefro	nt Erro	r		184	nm	То	tal S	trehl	(%)	0.00	0.00	0.04	0.10	0.19	0.29	0.43	0.61	0.76
								-					10.1	40.0	110	17.0	00.0	044	04.0	44.7
							_	F	WHIN	i (ma	s)	8.3	10.1	12.6	14.9	17.3	20.0	24.1	31.2	41.7
					Snavo		Diar	neter (mae	41	22	24	70	00	120	240	650	800		40
End	quarad	Enoray		v	орале	r/ Aperture	Diai	lieter (mas	0.45	0.79	0.26	0.74	0.00	0.92	0.95	0.01	0.01		40
LIIG	squareo	Lifergy	-	K		-		Opering		0.43	0.70	0.00	0.74	0.00	0.02	0.00	0.31	0.01		0.50
						_		Seeing-	Limited	0.01	0.02	0.00	0.02	0.03	0.05	0.20	0.79	0.90		
Sky	/ Covera	age			Galactic Latitud	9 6) dea													
	Corres	ponding Sky	Cover	age		30%	5	This frac	tion of s	ky can l	be correct	ted to the	Total Ef	fective W	FE show	m				
-						_														
Ass	sumptio	ns / Paramet	ers			_														
_	Atmospher	ric / Observing Para	meters		Syst	em Parameters						LO WFS	Magnitu	udes						
		Zenith Angle	30	deg		LGS Asteris	m Radiu	s	0.17	arcmin		20.0	19.3	18.4	17.5	17.2	16.8	16.3	15.2	14.1
		r0 theta0_eff	0.147	m arcsec		BTO Transm	ission		0.60			Derived	Values							
		Wind Speed	10.97	m/s		HO WFS Tra	ansmissi	on	0.38	3			HO WF	S Rate		913	Hz			
\vdash		Outer Scale	50	m x 10 ⁹ cm ⁻⁹	2	HO WES NO	pe		SH	using	CCID74		Detecte	d PDE/s	ubap/exp	59				
		- Jaram Aburrudi lot				HO WFS Ar	ti-aliasir	g	NC)										
	AO Modes	of Operation	MOAG			LO WFS Tra	nsmissi	on	0.29) Junior	HODO		LO WF	S Rate	uhon/ou	210	Hz			
\vdash		LOWFS AO Mode:	Indep Pns	S		LO WES IN	ise		3.2	e- rms	nzrtu		Derecte		осар/ехр	152				
						LO WFS Sta	ar Type:	- 4 - 7 - 44	N	1										
	Number of	WFS's for TT meas	urement 2			Max TT Reje	ction Ba	Indwidth	100	Hz										
		TTFA	1		Obs	ervation Param	eters													
		3x3	0			Max Exposu	re Time		1800) sec										
\vdash		10/010	0				-													

Table 6. Galaxy Assembly Case Wavefront and Ensquared Energy Budget

5.2 TT Sharpening Budget

Keck	LOWFS	Wavefront	Error	Budae	t Sum	marv		Version 2.	D					Scie	nce B	and			
Modo		NGAOLOS				,					11	a'	r'	P	7	Y		н	ĸ
noue.		DAVINCI								2.6.00	0.26	9	0.62	0.75	0.00	1.02	1.25	1.64	2.20
nstrumeni		DAVING								λ (μΠ)	0.30	0.47	0.02	0.75	0.00	1.03	1.20	0.00	2.20
SCI. Ubse	Nation:	Galaxy Assembly	/							δλ (μΠ)	0.06	0.14	0.14	0.15	0.12	0.12	0.16	0.29	0.34
										λ/D (mas)	7	10	13	15	18	21	26	34	46
							Wayof	ront						Streb	Rati	0 (%)			
LOWF	S High-o	rder Errors ((Mode)	42.0	arcsec	off-axis	Fare		Pa	rameter	-			ouen	Ttati	0 (70)			
							Error	rms)											
	Atmospheric	Fitting Error					85	5 nm	32	Acts Across									
	Bandwidth E	rror					64	nm	44	Hz (-3db)									
	High-order M	easurement Error					71	nm	8.33	W									
	LGS Tomogr	aphy Error					150) nm		SCAO									
	Asterism De	ormation Error					16	nm	0.50	m LL I									
	Chromatic E	TOF					1	nm		Upper limit									
	Dispersion D	in placement Error						000		Estimate for IP TT									
	Multispectral	Error					24		20	zon: flux waht wow									
	multispectial	LIIO					2.	, 1011	50	zen, ilux-wyni wav									
	Scintillation I	rror		н			20) nm	0.34	Scint index at 0.5um									
	WFS Scintill	ation Error					10) nm		Allocation									
					203	nm													
	Uncorrectabl	Static Tolongono	Aborrations		200		50	000	22	Acto Across									
	Uncorrectabl	a Dynamic Telescope	nucridii0115	ne			30	hom	32	AUG AU088									
	Static WES	Zoro point Colibratio	pe Aberratio	115				i nm		Allocation									
	Duramia WD	C Zara aniat Calibratio	aties Cress				2.			Allocation									
	Dynamic vvr	5 Zero-point Calibia					25	s nim		Allocation									
	Stale Record	ator Zero-point Gallo	nation Entri				16	i nm		Allocation									
	Calle Record						20			Allocation									
	Go-to Contro	Lenois					30) nm	20	Allocation									
	DM Einito St	cayer Focus Chang	e				35	nm nm	1.6	III/S Na layer ver									
	DM Hystore	ic Linuis					1.		from LAO		-								
	High Order A	lioning Error					17	l nm	1011 LAO	Subane									
	DM Drive Dia	itization					11	000	16	bite									
	Divi Drive Dig	IUZALION	at land					nm	10	Allegation									
	Uncorrectabl	e AO System Aberra	tions				20	0.000	DAV/INC	Indep PpS									
	DM to locale	Missociatestica	luons						DAVING	Allegation									
	DM-to-lensie	Misregistration					25	o nm		Allocation									
	DM-to-lensie	Pupil Scale Error			400		25	nm		Allocation									
	A service A size	an lanatia an Cana			123				40.07										
	Angular Anis	opianausm Enor						nm	40.97	alcsec									
	HO waverror	t Error Margin					45	nm		Allocation									
	Total Hi	ah Order Wa	vefront	Error	237	'nm	237	nm	Hiah (Order Strehl	0.00	0.00	0.00	0.02	0.05	0.12	0.23	0.43	0.6
Assum	nptions /	Parameters																	
	Atmospheri	/ Observing Dece				Custom D													
	Achospheri	Zenith Angle	20	den		System P	Effective Pro	GS radius		0.24	arcmin								
		m	0.147	m			PoSLGS Po	Nor		0.34	W								
		theta0_eff	2.147	arcsec			BIO Iransmi	ssion		0.53			Derive	d Values					
		Wind Speed	10,97	m/s			PnS HO WES	5 Transmiss	ion	0.38			Denve	PnS HO	WFS Ra	te	883	Hz	
		Outer Scale	50	m			PnS WFS Ty	pe		SH	using	CCID74		Detected	PDE/su	bap/exp	136	-	
		Sodium Abundanc	3	x 10 ⁹ cm ⁻³			PnS WFS No	ise		1.7	e- rms			LGS retu	rn per be	acon	280	ph/cm*	/sec
							PnS HO WFS	S Anti-aliasi	ng	NO									
	AO Modes a	f Operation																	
		Science AO Mode	MOAO																
		LOWFS AO Mode	Indep PnS																
							Max TT Rejec	tion Bandwi	idth	100	Hz								
						Obronet	ion Paramete	~											
						Observat	Mox Exposed	o Timo		4000	500								
							max LXposul	e mind		1000	200								

Table 7. Galaxy Assembly TT Sharpening Budget

5.3 TWFS Budget

Truth Wavefront Sensor High-order Errors	Wavefront Error (rms)	Wavefront Error Focus Only(rms)	Parameter
TWFS Measurement Error Residual Na Layer Focus Change	62 nm	12 nm 34 nm	19.0 Mv
Time averaged total anisoplanatism Error Time averaged focus anisoplanatism Error	120 nm	14 nm	5.1 Integration time (secs)
Total High Order Wavefront Error	135 nm		
Residual Na Layer Focus Change		39 nm	
Sky Coverage Galactic Lat. 60 deg			
Corresponding Sky Coverage	30%		

Table 8. Galaxy Assembly TWFS Budget

6 LGS Mode operation with 5 x 5 subaperture NGS WFS TWFS mode

6.1 Describe the mode of operation

There are two NGAO modes of operation that require use of the visible-light NGS WFS in a 5x5 subaperture pupil sampling mode: Pupil Fixed mode operation (typical of exoplanet searches and characterization) and in Image Fixed mode when the availability of field NGS for LO WFS sensing of TT and blind mode sensing is not favorable compared to use of the science target itself for both TT and blind mode information.

6.2 Performance Estimate

In theory, it may be possible to combine information from the NGS WFS in TWFS mode with information from the LO WFS, to further optimize performance, but this will not be investigated here. Instead, we would like to understand the TT performance (only) of the NGS WFS in TWFS mode, as a function of science target brightness, and more specifically we're interested in knowing how the red-wavelength NGS WFS cutoff choice affects performance in the NGS WFS TWFS mode. The results of just such a trade study are shown in Figure 4.

Figure 1. Performance of the NGAO NGS WFS for TT measurement, when operating in 5x5 subaperture TWFS mode, for NGS passband approximately 500 – 900 nm, compared to passband approximately 500 – 700 nm. These curves are optimized for best TT performance, and do not include the degradation of TWFS sensing of the laser tomography blind modes as the NGS WFS frame rate is slowed. The indicated optimal NGS WFS frame rate corresponds to the 500 – 900 nm passband case.

In generating Figure 1, we assume that the NGS WFS frame rate is optimized to provide the best TT measurement, without regard to the potential impact on its ability to accurately measure the laser tomography blind modes. If we assume that the need for accurate blind mode measurement requires us to operate the NGS WFS in TWFS mode no slower than 200 Hz (an admittedly arbitrary number), the quality of NGS WFS TT sensing breaks down considerable faster, as shown in Figure 2.

Figure 2 Performance of the NGAO NGS WFS for TT measurement, when operating in 5x5 subaperture TWFS mode, for NGS passband approximately 500 – 700 nm, with a minimum frame rate limit of 200 Hz. This may be more indicative of TT operation when the NGS WFS is required to read out relatively fast to maintain good blind mode measurement.

7 Trade Studies

7.1 Performance vs. Seeing

NGAO will have to operate in a wide range of natural seeing conditions, so it is interesting to understand the sensitivity of performance to changes in the Fried parameter, r₀. This is shown for the Galaxy Assembly Science Case in Figure 3.

7.2 Performance vs. Wind Speed

The 3-dimensional wind profile of the atmosphere above Mauna Kea can vary dramatically. Although we adopt as our median a value of 9.5 m/s, we would like to understand how performance degrades with increasing turbulence-weighted wind speed, and how it might improve under calmer conditions. Figure 4 demonstrates the sensitivity of performance, which is rather benign for the Galaxy Assembly Science Case, even for wind speeds treble our median assumption. As the wind speed is increased, the corresponding HO WFS frame rate increases (and recall, in the current KAON 721 model, this also simultaneously increases the HO WFS CCD pixel readout rate.) For a fixed pixel read rate, NGAO will have somewhat more performance sensitivity to high wind speeds, as the rejection bandwidth of atmospheric turbulence may not be able to keep up so optimally with increasing frame rate.

Figure 4. K-band performance for the Galaxy Assembly Science Case as a function of turbulence-weighted wind speed. The open marker indicates the median 9.5 m/s wind speed condition.

7.3 Performance vs. Laser Return

Experience with the first-generation sodium D2-line resonant excitation LGS at Lick, Keck, and Palomar Observatories has shown that measured sodium photoflux can vary widely due to be sodium abundance fluctuations (see §7.4), but also because of variability in laser power and degradations in optical transmission in beam transfer uplink or AO system downlink optical systems.

We are interested in understanding the sensitivity of NGAO to variations in the expected sodium return photoflux. The results of two trade studies are shown in Figure 5 and Figure 6. In the first of these, we consider the impact of different levels of laser (spigot) power in absolute terms (assuming our usual "SOR-like" laser return) while in the second, we describe it as a percentage of the expected laser return

(typically 55 photodetection events (PDE) / exposure time / subaperture, or 57 / (.1825^2) / 0.0011 = 1.55×10^6 PDE/sec/m² or ~155 PDE/sec/cm², for each of the 12.5W (spigot) fixed asterism LGS¹⁴).

Figure 5 K-band performance for the Galaxy Assembly Science Case as a function of fixed asterism laser power, holding patrolling asterism laser power constant at 25W (e.g. 3 x 8.33 W each.) The open marker indicates the baseline 50W of fixed asterism laser power (spigot).

Figure 6. K-band performance for the Galaxy Assembly Science Case as a function of fixed asterism laser return, relative to the expected return using our baseline conditions model (e.g. 3 x 109 atoms/cm2 sodium density, SOR-laser-like return,

¹⁴ We assume 75 ph/sec/cm²/W return from a 3 x 10⁹ atoms/cm² sodium layer (itself from Denman's reported 150 ph/sec/cm² from Albuquerque with 4 x 10⁹ atoms/cm² – see KAON 721), with 50W/4*.6 (BTO)*.88 (Atm) = 6.6 W per beacon delivered to mesosphere (495 ph/sec/cm² at mesosphere), followed by T=0.35, QE=0.85 on the downlink results in about 155 ph/sec/cm² detected by the WFS.

delivered and return transmission assumptions, etc.), holding patrolling asterism laser power constant at 25W (e.g 3 x 8.33 W each.) The robustness of NGAO to less-than-expected laser return is clear for this science case.

7.4 Seeing, Wind Speed, and Sodium Abundance Monte Carlo Results

Although practically useful in understanding the sensitivities of NGAO performance to both seeing and turbulence-weighted wind speed variations, in practice NGAO will see on any given night seeing and wind speed values that are random variables drawn from some statistical distributions. In fact, there exists considerable detail on the statistics of these parameters at Mauna Kea. For my current purpose, however, an approximate form of these distributions will suffice to indicate the typical distribution of performance we might expect from a large number of observing nights. To quickly model this, I can assume that both r_0 and wind speed are drawn from Gaussian probability distributions. Following the technique in 'Numerical Recipes in C, 2nd Ed', page 289, we generated in Excel draws of the form:

	Mean	Standard Deviation, σ
r ₀ at 0.5 microns	0.16 m	0.025 m
Wind speed	9.5 m/s	4 m/s

where the distribution standard deviations, σ , are coarse estimates based on KAON 303. (A detailed determination of σ Is unlikely to improve these results, as I contend we are within the uncertainty level of the model¹⁵.)

The results of 252 random draws (and frame rate optimizations) from this joint probably distribution is shown in Figure 7, for the case of mesospheric sodium abundance held constant at the below-median level of 3 x 10⁹ atoms/cm². Note, unlike the current Keck 2 AO system, NGAO is seen to vary rarely deliver performance less than about 60% K-band Strehl ratio. Moreover, the system is expected to deliver K-Strehls within a few percent of 78%, across varying different atmospheric conditions, a rather remarkable qualitative difference over current AO that we expect to improve both photometric accuracy and astrometric precision.

¹⁵ For these Gaussian distributions, we also truncate the distribution to avoid negative values. Although not strictly valid, in practice it has little effect on the results shown here (e.g. we're not primarily interested in these rare outlier events.)

Figure 7. Predicted performance distribution for NGAO based upon 252 r₀ and wind speed draws, holding sodium abundance constant at 3e9 atoms/cm^{2,}, for the Galaxy Assembly Science Case.

Because sodium abundance can also vary, we repeated this random draw experiment, adding it as a third joint random variable:

	Mean	Standard Deviation, σ						
Sodium abundance	3.6 x 10 ⁹ atoms/cm ²	1.0 x 10 ⁹ atoms/cm ²						

Where the mean is take from KAON 416 and the standard deviation estimated from the fact that experience has shown the large majority (~90%) of time density is thought to be between 1.6×10^9 and 5.6×10^9 atoms/cm² (e.g. +- 2σ). This result, for 394 random draws, is shown in Figure 8. Not surprisingly, this histogram is shifted to somewhat higher performance compared to our earlier sub-median sodium abundance curve. Because sometimes the abundance can fall, even in conjunction with good seeing and slow winds, the (relatively) poorer performance tail is now seen to be extended, though still almost always above 60% K-Strehl.

Figure 8. Predicted performance distribution for NGAO based upon 394 r₀, wind speed, and sodium abundance draws for the Galaxy Assembly Science Case.

To better appreciate the advantage of NGAO over current Keck 2 AO, we repeated the experiment described in Figure 8 with a mirror experiment, using the same parameter distributions, for our model of the Keck 2 AO system (previously validated as described in KAON 461). This result is shown in Figure 9. The first obvious benefit of NGAO is an approximately 3x improvement in K-band Strehl ratio over current Keck 2 AO, which direct improves telescope sensitivity for background-limited imaging. The difference in results distribution width is also quite striking, particularly if one considers the *relative* stability of the predicted results, with NGAO showing perhaps +- 4% variation around a 78% peak (+- 5% relative), while the Keck 2 AO result shows +- 10% around a 30% median, which is more like +- 33% relative variation.

The skewness of these distributions is also worth noting. For Keck 2 AO, the longer tail is toward good performance, so it is more likely that an observer will have heard of someone at some time having a particularly good result with Keck 2 AO, but the median performance, they're average experience with AO, tends to fall short of this. For NGAO, on the other hand, we expect the user experience to be more often consistent with the maximum capability of the system. The occasional unfortunate night for an NGAO observer will doubtless draw heartfelt condolences from their colleagues.

More practically, NGAO instrument development will also benefit from this tendency to deliver more predictable image quality, perhaps by reducing the number of configurations, such as plate scales, that is typically necessary when delivered performance is widely variable.

Figure 9 Predicted performance distribution for the current Keck 2 AO system based upon 150 r₀, wind speed, and sodium abundance draws for the Galaxy Assembly Science Case. Note the change in Strehl Bin scale compared to the NGAO predictions.

7.5 Performance vs. Sky Fraction

Figure 10. K-band performance for the Galaxy Assembly Science Case as a function of sky coverage percentage, representing the likely of finding three NGS of sufficient brightness to achieved the indicated performance, within the FoR of the LO WFS. The residual TT error varies from about 4 mas to about 9 mas as the sky coverage fraction is increased.

7.6 Performance vs. LO WFS Passband

Figure 11. Residual TT error for the Galaxy Assembly Science Case as a function of sky coverage percentage, for three different choices of LO WFS passband. Inclusion of the design-complicating K-band is comparable to the uncertainty in our models, excepting perhaps at the highest sky fraction, where the advantage of including K-band would probably be real. Note, KAON 721 does not currently account for inter-filter-band sky emissions. Thus, these results should be considered for e.g. J + H, not the full range J through H. As such, the relative advantage of including K-band is probably overstated here.

7.7 Performance vs. Spaxel Sampling

Figure 12. K-band Ensquared Energy vs. Spaxel Dimension for the Galaxy Assembly Science Case for NGAO correction and, for comparison, a seeing-limited PSF in median seeing conditions. (The relative transmission loss of NGAO compared to a Nasmyth-mounted seeing-limited instrument is not represented here – these curves reflect PSF shape only.)

Appendix A: System Compliance Matrix

XXX This matrix is completed and posted to the TWiki. Should it or parts of it be included here? XXX

Appendix B: Wavefront Error Budget Spreadsheet v2.0

XXX These are only snippets of text – will be cleaned up later XXX

KAON 721 consists of a Microsoft Excel spreadsheet encoding the following for the purposes of developing adaptive optics system error budgets and evaluating as-built adaptive optics system performance:

- AO system architectures and design choices
- Atmospheric turbulence models
- Telescope parameters and as-built optical performance metrics
- Astronomical detector properties, such as quantum efficiency, dark current, and read noise
- Numerous adaptive optics error budget terms, specific to any of several distinct AO system architectures (e.g. SCAO, MCAO, MOAO) for both NGS and LGS guide star modes
- Atmospheric dispersion
- Calibration and systematic error terms, such as thermally induced non-common-path flexure
- Several astronomical stellar density models for the evaluation of AO sky coverage

The spreadsheet also computes ensquared energy fractions using a core/halo model for the point spread function, and calculates sky coverage estimates for tip tilt guide stars employed in laser guide star architectures from common star density models.

XXX Include a paragraph on validation activities here XXX

The terms in the previously presented tables are largely self-explanatory, although their quantitative implementation requires reference to KAON 721 itself. All the same, a few items in Table 5 are worthy of additional explanation here:

- HO Flux, Number of Subapertures Across: NGAO has high-order wavefront sensors designed to sample the telescope pupil with ~60 subapertures across the 10.949 m maximum diameter. Our WFS's, however, are designed for 63 x 63 subaperture format (e.g. oversizing the pupil somewhat) to handle known pupil nutation in the Keck telescopes. See Keck Drawing 1410-CM0010 for more detail.
- HO Flux, HO WFS CCD Read Time is currently given as a fraction of the HO WFS frame rate, which is typically an optimization variable. In the future, this will be replaced with an amplifier dwell time or equivalent parameter to specify the detector read time.
- LGS Flux, Na Column Density of 3e9 atoms/cm² is below median density (approximately 25th percentile). See Figure XXX for a trade study of performance vs. sodium density.
- TT Flux, TT Compensation Mode is a complex choice that supports traditional single-conjugate AO correction, MCAO, single-LGS MOAO correction, and multiple patrolling LGS (aka 'Point and Shoot') architectures. Changes to this parameter must be carefully understood by the KAON 721 user.

- Atm Dispersion, Science Dispersion Corrector Factor uses a crude multiplicative (divisive, actually) factor to estimate the residual performance, if a science ADC is used. In the future, KAON 721 will allow for definition of more realistic, design-informed residual dispersion.
- Margins (e.g. performance margins) are held apart from physical error terms and constitute the difference between use of KAON 721 as an error budget (including margins) and as a performance prediction or system diagnostic tool (assuming margins are not invoked.)

Appendix C: Detailed Error Budgets

XXX This is only a draft example of the screen captures for the ExoPlanets and Gal Center. These will be replaced in the final draft XXX

Input Summary

Worksheet	Parameter	<u>Current</u> Parameter Value	Units		<u>lo</u>	<u>Vesta</u>	Exo Jup NGS	<u>Mira</u> Vars	Faint NGS	Gal Cen	Gal Cen Spectra	<u>Exo-</u> planets 1	Tauri 1	Transients	Astrometry	Debris Disks	Minor Planets	Galaxy Assembly	Nearby AGN	NGAO NGS	NGAO LGS
Telescope	Name	Keck	k																	Keck	Keck
Atm	Declination Zonith Apple	60 () dog	-	-10 Doc	-10 Doc	20	20	10	-30 Dog	-30 Doc	20	20	10	10	10	-12 Doc	20	20	20	20
	Cn2(h) Model	Mauna Kea Ridge	e		Dec	Dec	30	30	10	Dec	Dec	30	30	10	10	10	Dec		Mauna I	(ea Ridge	Kea Ridge
	r0 at Zenith	0.160	0 m																	0.160	0.160
	Outer Scale	9.5	om/s 0m																	9.5	9.5
HO Flux	Guide Star Spectral Type	LGS	(NGS/LGS)		NGS	NGS	NGS	NGS	NGS	LGS	LGS	LGS	LGS	LGS	LGS	LGS	LGS	LGS	LGS		
	Guide Star Brightness	LGS	5 mV		5.0	8.0	0.0	10.0	16.0												
	Num LGS Subaps Across	63	3	-	0	0	m	m	K												63
	Num NGS Subaps Across	(D																	63	
	HO Integration time HO WFS CCD Read Time	0.00104	4 sec 0 frame time(s)																	0.5	0.5
	HO RTC Compute Latency	0.00050	0 seconds																	0.0005	0.0005
	PnS RTC Compute Latency HOWES Detector	0.00050	0 seconds																	0.0005 CCID74	0.0005
LGS Flux	Na Column Density	3E+09	9 atoms/cm/2	3E+09																CCID/4	001074
	Pulse Format	CW	V																		CW
	Laser Power Return Calculation Basis	50.00 Measured	u watts d (Measured/Theoretical)	Measured																	50.0
	Laser-thru-LLT Transmission	0.60	0																	_	0.60
HO Cent	Num Pixels per Subap Across	16	4 6 or co co																	4	4
	Range Gating?	NC	Darcsec																	1.0	NO
	Intrinsic HOWFS GS diameter	0.0	0 arcsec		1.1	0.3	0.0	0.0	0.0	LGS	LGS	LGS	LGS	LGS	LGS	LGS	LGS	LGS	LGS		0.0
	Perfect Uplink AO? Aberrations in Uplink Beam	NC 0.5	9 arcsec																		0.90
	LLT Off-axis Projection Distance	0.0	0 m																		0.0
	Use Max LGS Elongation in Calculation?	NC		NO																0.05	0.05
	Charge Diffusion	0.25	5 pixels																	0.25	0.25
	ADC in HOWFS?	NC	2																	NO	NO
►A Iomo	Number of Laser Beacons LGS Beacon Height above Telescope	4	4 0 km																		4
	LGS Asterism Radius	0.17	7 arcmin																		0.17
	Single Laser Backproj FA Reduction Factor	3.0	B																		0.8
nia H Fit	Physical Actuator Pitch	30.0	5 m	30.0																0.004	0.004
Alias	Use Anti-aliasing in HOWFS?	NC	5																	YES	NO
Charles	Aliasing Reduction Factor	0.67	7	0.67																20	20
SLIUKE	Number of Tweeter Actuators Across Pupil	64	4																	64	64
	Woofer Peak-to-Valley Stroke	4.0	0 microns																	4.0	4.0
	Tweeter Peak-to-Valley Stroke	1.3	3 microns 2 microns																	1.3	1.3
	Tweeter Interactuator Stroke	0.5	5 microns																	0.50	0.50
	Woofer Conjugate Height	0.0	0 meters																	0.0	0.0
	Static Surface Errors to be Corrected	0.0	0 meters 0 microns																	0.0	0.0
Go-To	Science Mode	MOAC	SCAO/MOAO/MCAO	5																SCAO	MOAO
Dig	Number of Controller Bits	16	6 bits				1.00	10.0	40.0	10.0	10.0	40.0	10.0	17.0						16	16
11 Flux	TT Guide Star Brightness TT NGS Spectral Type	12.2 IRS2	mV 7		5.0 G	8.0 G	LGS	10.0 M	16.0 K	12.2 IRS7	12.2 IRS7	18.3 M	18.0 M	17.0 M	19.0 M	16.0 M	M	м	м		
	Subaperture Shape	circula	r (circular/square)	circular		0															
	Num TT Sensors Used for TT	2	2																	0	2
	Num 11FA Sensors Used for TT	1	D																	0	1
	Num HOWFS Used for TT	(D																	1	0
	TT Integration Time	0.0005	5 sec	MOAO Roint on	d Shoot In	don BnS)															Indon RoS
	TT Detector	H2RG	GCROINOROINICRO			uep Filo)															H2RG
TT Meas	TT Sensor Type	SF	H (Pyramid/SH)																		SH
	Assume Fermenia TT Sharpening?	YES	5	NO																NO	YES
	ADC in TT sensor?	NC	5	110																	NO
	Num TT Pixels Across Subap	2	2																		2
	TT Pixel IFoV	0.02	1 2 arcsec																		0.015
	Intrinsic TT GS diameter	0.0	0 arcsec		1.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TWFS Flux	TWFS Guide Star Brightness	12.2	2 mV		0.0	0.0	0.0	0.0	0.0	12.2	12.2	18.3	18.0	17.0	21.0	16.0					
	IWES NGS Spectral Type Num TWES Subans Across	P S	5		G	G	м	м	ĸ	к	к	м	м	м	M	м	м	м	м		5
	Num TWFS Pixels Across Subap	8	B																		8
	TWFS Integration Time	0.0093	3 sec																		6040
	TWES Pixel IFoV	0.40	0 arcsec	2																	SCAU 0.4
	TWFS Detector	CCD39	9																		CCD39
Bandwidth	Kappa	1.0	D																	1.0	1.0
	TT Servo Decimation Factor	20	D																	20	20
	Telescope Input TT Reduction Factor	0.25	5																	0.5	0.3
Aniso	LGS Focus Sensor Optimize LGS Off-pointing	TWFS	s (IWFS/TT)	NO																	TWFS
Aniso	HO GS to Target for Sci Aniso WFE	1.00	arcsec	NO	0.5	0.1	1.0	2.0	5.0	1.0	2.0	1.0	1.0	1.0	28.2	1.0	0.0	1.0	1.0		
	HO GS to TT GS for TT Aniso WFE	5.60	arcsec							5.6	5.6	0.0									
	TT GS to Target (for TT Anisoplanatism)	5.60	arcsec		0.0	0.0	0.0	0.0	0.0	5.6	5.6	0.0	1.0	27.0	27.0	45.0	ł				
CA.	TWFS GS to Target (for Truth Anisoplanatism	5.60	arcsec		0.0	0.0	0.0	0.0	0.0	5.6	5.6	0.0	0.0	25.0	25.0	25.0					20
Atm Dispersion	CA Rejection Factor Science ADC?	YES	S																	YES	YES
	Science Disperson Correction Factor	20	D	20																	
Cal	Instrument	DAVINC	2		DAVINCI	DAVINCI	DAVINCI	DAVINCI	DAVINCI	DAVINCI	DAVINCI	DAVINCI	AVINCI	DAVINCI	DAVINC	DAVINCI	DAVINCI	DAVINCI	DAVINCI	26	22
	Dynamic WFS Zero-point Calibration Error	33	5 nm																	25	25
	Leaky Integrator Zero-point Calibration Error	10	0 nm																	10	10
	DM-to-lenslet Misregistration Errors	25	5 nm 0 nm																	15	25
Margins	High Order Wavefront Error Margin	45	5 nm												_			_		45	45
	Tip-tilt Error Margin	2.0	0 mas																	2.0	2.0
Sky Coverage	Required Sky Coverage Fraction	Spagna N/A	8 A	Spagna	NGS	NGS	NGS	NGS	NGS	N/A	N/A	30%	N/A	30%	30%	30%	30%	30%	30%	_	
	TWFS Star Density Model	Bachal		Bachall								55.73		5576	50%	3078		5076	5578		
	Required TWFS Sky Coverage Fraction	N/A	1			~			A.				1.000								
Science Filter	Primary Science Filter	(u aeg		60 H	60 I'	30 H	30 H	30 K	0 H	0 H	30 H	LGS	10	30 H	30	60 7	60 K	60		
	Max Science Exposure Time	10	Dsec		10	10	2	2	30	10	900	300	300	900	30	300	120	1800	900		
Workshee*	Parameter	Current	Units		lo	Vesta	Ero	Mira	Faint	Gal Cen	Gal Can	Exo: 7	Tauri 1	Transiente	Astrometro	Debric	Minor	Galary	Nearby	NGAO	NGAO
		Parameter Value	<u></u>				Jup	Vars	NGS	Jui Vell	Spectra	planets				Disks	Planets	Assembly	AGN	NGS	LGS
1			1				NGS										1				

Galactic Center Case

Keck Wa	vefront Erro	Budget	Sumr	marv	Version 2.0									Scie	ence	Band					
Mode:	NGAOLOS	Buuget	Jaim	inal y	VCI3I011 2.0							a'	r'	i'	7	V		н	ĸ		
Instrument:										λ (um)	0.36	0.47	0.62	0.75	0.88	1.03	1 25	1.64	2 20		
Sci Observation	Gal Cen								5	λ (μm)	0.06	0.14	0.02	0.15	0.00	0.12	0.16	0.29	0.34		
Oci. Obscivatio	. Gai cen								λ/Ε	D (mas)	6.7	8.8	11.6	14.1	16.6	19.4	23.5	30.8	41.4		
														_							
Science H	ligh-order Erro	ors (LGS N	lode))	Wavef Error (ront rms)		Para	meter	•				Stre	hl Ratio (%)						
Atmosphe	ric Fitting Error				5	6 nm	63	Subap	s												
Bandwidth	Error				9	1 nm	48	Hz (-30	db)												
LGS Tom	oraphy Error				6	onm 1 nm	50	l vv Lsci bea	acon(s)												
Asterism	Deformation Error				2	5 nm	0.50	m LLT													
Chromatic	Error					2 nm		Upper	limit												
Disporsion						6 nm		Ectimo	ato												
Multispect	tral Error		_		3	4 nm	50	zen: so	ci wav												
Sciptillatio					2	0 nm	0.50	Scint i	ndox at () 5um											
WFS Scir	tillation Error		1		1	0 nm	0.59	Allocat	tion	J.Sum											
				157 pm			-	/ 110004													
Lincorrect	able Static Telescope	Aberrations		137 1111	4	3 nm	64	Acts A	cross Pi	unil											
Uncorrect	able Dynamic Telesco	pe Aberrations			3	6 nm		Deken	s Ph.D	up.i											
Static WF	S Zero-point Calibratio	on Error			2	5 nm		Allocat	tion												
Dynamic V	WFS Zero-point Calibr	ation Error			2	5 nm		Allocat	tion												
Leaky Inte	egrator Zero-point Calit	oration Error			1	0 nm		Allocat	lion												
Go-to Con	trol Errors				3	0 nm		Allocat	tion												
Residual N	Na Layer Focus Chang	je				3 nm	30	m/s Na	a layer ve	el											
DM Finite	Stroke Errors					8 nm	5.3	um P-F	stroke		1	r	•	•	r	•	•	•	·		
DM Hyste	resis				1	3 nm		from TI	MT mode	əl											
High-Orde	r Aliasing Error				1	9 nm 1 nm	63	Subap:	S												
Uncorrect	able AO System Aber	rations			3	3 nm		Allocat	tion												
Uncorrect	able Instrument Aberra	ations			3	0 nm		DAVIN	CI												
DM-to-len:	slet Misregistration				1	5 nm		Allocat	tion												
DM-to-len:	slet Pupil Scale Error			02	1:	5 nm		Allocat	tion												
Angular A	nisoplanatism Error			93 nm	2	4 nm	1.0	arcsec													
HO Wavef	ront Error Margin				4	5 nm		Allocat	tion												
Total I	High Order Wa	vefront Er	ror	182 nm	190) nm	Hig	h Orc	ler St	rehl	0.00	0.00	0.02	0.08	0.16	0.26	0.41	0.59	0.75		
Salanaa T	in/Tilt Erroro			Angular	Equiva	Equivalent		Devemator					Stre	hl rati	os (%)					
Science I			E	Error (rms) WFE (r	ms)		Parameter													
		Sci	Filter		<u> </u>																
Tilt Measu	irement Error (one-axi	5)		0.13 mas		2 nm	12.2	mag (n	nV)												
Tilt Bandw	vidth Error (one-axis)	vic)		0.21 mas	-	4 nm	50.0	Hz (-30	db) from sci												
Residual (Centroid Anisoplanatis	m		0.64 mas	1	9 mm 1 nm	20	x reduc	tion sci												
Residual /	Atmospheric Dispersio	n /	1	0.53 mas	1	0 nm	20	x reduc	ction			r	r	•	r	•	r.		*		
Induced P	late Scale Deformatio	ns		0.00 mas		0 nm	0	m conj	height												
Non-Comr	non-Path Tip-Tilt Error	S (one ovie)		0.01 mas	-	unm 4 nm	3.2 mas/	Allocat	ion ut dioturk												
TT Error M	largin	er (one-axis)		2.00 mas	14	4 mm	29	Allocat	tion	Jance											
						-															
Total	Tip/Tilt Error (one-axis)		2.2 mas	s 42	2 nm	T	ip/Til	t Stre	hl	0.64	0.76	0.84	0.89	0.92	0.94	0.96	0.97	0.99		
Total Effe	ctive Wavefro	nt Error			194	nm	То	tal St	trehl ((%)	0.00	0.00	0.02	0.07	0.15	0.25	0.39	0.58	0.74		
							F	WHM	l (mas	5)	7.1	9.1	11.8	14.3	16.8	19.6	23.7	30.9	41.5		
				Snavel	/ Anerture	Diar	neter ((mae)	31	62	34	70	90	450	500	650	800		44		
Ensouare	d Energy		-	-punol		141	South	are	0 33	0.57	0.38	0.50	0.60	0.74	0.76	0.80	0 83		0.50		
Linsquare	a Energy		,				- Ju		0.00	0.01	0.00	0.09	0.00	0.74	5.70	0.00	0.00		0.50		
Sky Cove	rage		Ga	alactic Latitude		0 deg															
Corres	sponding Sky	Coverage			7%)	This frac	tion of s	ky can b	e correct	ted to the	Total Ef	fective W	FE show	'n						

ExoPlanet

Ke	ck Wav	efront Erro	r Budg	get Sur	nmary		Version 2.0									Scie	ence	Band			
Mod	le:	NGAO LGS											u'	g'	r'	i'	Ζ	Y	J	Н	K
Instr	ument:	DAVINCI										λ (μ m)	0.36	0.47	0.62	0.75	0.88	1.03	1.25	1.64	2.20
Sci.	Observation:	Exo-planets									i	δλ (μ m)	0.06	0.14	0.14	0.15	0.12	0.12	0.16	0.29	0.34
											λ/[D (mas)	6.7	8.8	11.6	14.1	16.6	19.4	23.5	30.8	41.4
							Wayofr	ont								Stro	hl Rai	io (%)			
Science High-order Errors (LGS Mode)						Error (r	ms)	1 1	Parai	meter	•				oue	in ita					
	Atmospheri	c Fitting Error					48	8 nm	63	Subaps	5										
	Bandwidth I	Error					64	nm	45	Hz (-3d	ib)										
	LGS Tomoc	raphy Error					37	nm		sci bea	icon(s)										
	Asterism D	eformation Error					16	6 nm	0.50	m LLT											
	Chromatic E	Fror					2	2 nm		Upper I	limit										
	Dispersion	Displacement Error					2	2 nm		Estima	ite										
	Multispectra	al Error					25	5 nm	30	zen; so	ci wav										
	Scintillation	Error		Н			12	2 nm	0.34	Scint in	ndex at (0.5um									
-	WFS Scinti	liation Error			447		10	nm		Allocat	ion										
	Uncorrectat	le Static Telescope	Aberratio	าร	117	nm	43	3 nm	64	Acts A	cross P	upil									
	Uncorrectat	ole Dynamic Telesco	pe Aberra	tions			39) nm	0.	Dekens	s Ph.D	- april									
	Static WFS	Zero-point Calibratio	on Error	_			25	nm		Allocat	ion										
	Leaky Integ	rator Zero-point Calibr	ation Erro pration Err	r or			25) nm		Allocat	ion ion										
	Stale Recor	nstructor Error		1			15	5 nm		Allocat	ion										
	Go-to Contr	ol Errors	10				30) nm	20	Allocat	ion										
\vdash	DM Finite S	troke Errors	μα	-			1 8	8 nm	5.3	um P-F	n ayerve Pstroke										
	DM Hystere	sis					13	8 nm		from Th	MT mode	el									
	High-Order	Aliasing Error					16	6 nm	63	Subaps	6										
-	Uncorrectat	ble AO System Aber	rations				33	8 nm	10	Allocat	ion										
	Uncorrectat	ble Instrument Aberra	ations				30) nm		DAVIN	CI										
	DM-to-lensi	et Misregistration et Pupil Scale Error					15	snm Snm		Allocat	ion										
					93	nm															
	Angular Ani	soplanatism Error					16	6 nm	1.0	arcsec	ion										
-	HO waverro	Int Error Margin					40	nm		Allocat	ion										
	Total H	igh Order Wa	vefro	nt Error	150	nm	157	nm	Hig	n Ord	ler St	rehl	0.00	0.01	0.08	0.18	0.29	0.41	0.54	0.70	0.82
		,							Ĵ												
Sc	ience Ti	n/Tilt Errors			Angu	Ilar	Equiva	lent		Para	motor					Strel	nl rati	os (%))		
00					Error (rms)	WFE (r	ms)			neter										
				Sci Filter																	
	Tilt Measure Tilt Bandwid	ement Error (one-axis)	s)		0.02	mas mas	4) nm I nm	8.0	mag (m Hz (-3d	nV) lb)										
	Tilt Anisopla	anatism Error (one-a	kis)		0.00	mas	C) nm	0.0	arcsec	from sc	i									
	Residual Ce	entroid Anisoplanatis	m	L	0.55	mas	9	nm	20	x reduc	ction										
	Induced Pla	te Scale Deformation	ns		0.00	mas	0) nm	0	m conj	height										
	Non-Comm	on-Path Tip-Tilt Error	s		0.27	mas	5	5 nm	3.2 mas/	Allocat	ion										
	TT Error Ma	rain	er (one-a)	(IS)	2.00	mas	4	nm nm	29	HZ INPL Allocat	ut aisturi ion	bance									
		gin			2.00	indo	110			/ incodi											
	Total T	ip/Tilt Error (one-a>	(is)	2.1	mas	40	nm	Ti	ip/Tilt	t Stre	hl	0.67	0.78	0.86	0.90	0.92	0.94	0.96	0.98	0.99
То	tal Effec	tive Wavefro	nt Erro)r			160	nm	То	tal St	rehl	(%)	0.00	0.01	0.07	0.16	0.27	0.30	0.52	0.68	0.81
10				/			100		10			(70)	0.00	0.01	0.07	0.10	0.21	0.00	0.02	0.00	0.01
									F	WHM	l (mas	s)	7.0	9.1	11.8	14.2	16.8	19.5	23.6	30.9	41.5
					_																0.2
L	<u> </u>	_			Spa	axel/	Aperture	Diar	neter (mas)	31	62	34	70	90	450	500	650	800		36
En	squared	Energy		Н					Squ	are	0.39	0.67	0.46	0.70	0.71	0.80	0.81	0.84	0.85		0.50
CI-	V Cover	200			Coloctic	4141.101-		dor													
JA	y cover	age			Galactic La	titude	30	deg													
	Corres	ponding Skv	Cover	age			0%		This fract	ion of sl	ky can b	be correct	ted to the	Total Ef	fective W	FE show	n				
_																					
As	sumptio	ns / Paramet	ers																		
-	Atmosphere	ric / Observing Para	meters			System	Parameters						LO WES	Magnitu	ıdes						
		Zenith Angle	3	0 deg			LGS Asterisr	n Radiu	s	0.17	arcmin		9.0	8.3	7.3	6.5	6.2	5.8	5.3	4.2	3.1
		r0 theta0_eff	0.14	7 m 5 arcsec			LGS Power BTO Transmi	ssion		50	W		Dorivod	Values							
		Wind Speed	10.9	7 m/s			HO WFS Tra	nsmissi	ion	0.38			Derived	HO WF	S Rate		891	Hz			
		Outer Scale	5) m			HO WFS Typ	be		SH	lusing	CCID74		Detecte	d PDE/s	ubap/exp	55				
-	Sodium Abundance		: :	3 x 10 ⁹ cm ⁻²	-		HO WFS Noi HO WFS Ant	se ti-aliasir	a	1.7 NO	e- rms										
	AO Modes	of Operation					LO WFS Tran	nsmissi	on	0.29				LO WFS	S Rate		2000	Hz			
		Science AO Mode:	MOAO				LO WFS Typ	e		SH	using	H2RG		Detecte	d PDE/s	ubap/exp	468688				
-		LOWES AU Mode:	indep Pr	13			LO WES Not	se r Tvpe:		3.2 M	e-rms										
	Number of	WFS's for TT measu	urement				Max TT Rejec	ction Ba	andwidth	100	Hz										
		TT TTFA	1	2		Obsor	ation Parama	ators													
		3x3		C		SUSEIN	Max Exposur	re Time		300	sec										
		HOWFS	(0																	
1																					