Middleware Options for the Keck
Common Services Framework

NGAO Control SW Team:
Erik Johansson, Jimmy Johnson, Doug Morrison
August 14, 2009

What is Middleware

Middleware is communication software that allows softwa
components to communicate with each other without regard tc
physical location on the network.

Examples of middleware:
— Channel Access (EPICS)
Common Object Request Broker Architecture (CORBA)

Internet Communication Engine (ICE)
Data Distribution Service (DDS)
Distributed Component Object Module (DCOM)

How I1s middleware usec

KCSF uses middleware to communication between compc
— Peer to peer command processing
— Publish-subscribe communications

The middleware is encapsulated so the user sees only a simple interfa
and knows nothing about the underlying implementation.

We are considering both ICE and DDS for use with KCSF.

Applications

Presentation
Layer

Layer

. N

Administration [NGAD Devices (RTC, TT, LBWFS, ..}]

and

Analysis| |Control

Framework
Execution
Layer

Services (Log, Alarm, Event, Connection, ..}
T ommunications N Database 3 Party Tools
\ , ticidlevare Support And Libraries

Operating System

Data Distribution Service

An OMG standard based on a publish-subscribe paradigm
Widely used in the DoD for distributed network applications

Available from multiple vendors in both open source and commercia
versions. Two main vendors:

— Real-Time Innovations (RTI). Commercial versions only.
— PrismTech. Both open source and commercial versions

Multiple language support: C, C++, Java
Multiple platform/OS support: Windows, Linux, Solaris, VxXWorks
High throughput, low latency, low jitter
Tunable “Quality of Service” parameters
upports multi-cast communication

How does publish-subs

Communication via “Topics”

Topics identified by unique name

One or more publishers per topic

Zero or more subscribers per topic

Publishers and subscribers are unaware of each other

Publishers and subscribers can be located anywhere on the network

Internet Communication Engi

Object oriented middleware for building distributed applicatio
Successor to CORBA. Faster and more efficient.

Many of the original CORBA designers are now with ZeroC.
Based on a client-server model.

Publish-subscribe communications available through IceStorm.
Only a single vendor: ZeroC, Inc.

Avallable under open-source or commercial license.

Large customer base, including Lockheed Martin, SGI, Northrop
Grumman and HP.

Multiple language support: C++, Java, Ruby, Python

ultiple platform/OS support: Windows, Linux, Solaris, Mac OSX
) VXWorks yet).

transport mechanism.

Client-server moc

Client must connect directly to server.

Client receives a proxy through which it can execute metha
remote object.

Connections between components are tightly coupled.
Good for command-response environments.

Client Server
Proxy

Network Protocol

lce Ice

RTI DDS: Performe

e Test environment:
RTI Data Distribution Service 4.3
Red Hat Enterprise Linux 5.0, 32-bit

2.4 GHz processors — mix of Intel Core 2 Duo E6600 and Core 2 Quac
Q6600

Gigabit Ethernet
Intel PRO/1000 NIC

D-Link DGS-3324SRi switch
UDP over IPv4
Reliable messaging with ordered delivery

RTI DDS: Late

L

= wth o on

= e o o
1 1 1

Small
Messages

Latency in Microseconds
R X I
L= (=] f=1 (=]
L= f=1 f=1 L=

(5]
=

=

7500 1,000 1250 1,500 1750 2,000
Message Size (bytes)

Latency in Microseconds

10,000 15000 20,000 25000 30,000 35000
Message Size (bytes)

RTI DDS: One-to-0

» For messages larger than 128 bytes, throughp
network, not DDS

=
C
=]
L]
o
w
.
o
o
o
=
O
m
o
o
=

Message Size (bytes)

RTI DDS: One-tC

1,500,000

1,250,000

1,000,000 1

750,000 -

500,000

Messages per Second

250,000

Message Size (bytes)

Small
Messages

10,000,000

100,000 1

Messages per Second

10,000 15,000 20,000 25000
Message Size (bytes)

30,000

35,000

11

RTI DDS: One-to-many thro

Number of subscribers has only small effect on thro

Single thread used to send a stream of 200 byte messac
888 subscribers

Each subscriber running on a dedicated core, 4 subscribers pe
network interface.

Intel Xeon processors were used for this benchmark

00,000

300,000 1

400,000 7

(]
=
o)
=
=
=

Messages per Second
per Subscriber (200 Bytes)

400 60a
Mumber of Subscribers

RTI DDS: Impact of throuc

« Latency remains low even near network satura

100,000 200,000 300,000 400,000 500,000
200-Byte Messages per Second

RTI DDS: Topic and cap:

Data points are from previous plot on latency anc
Green points: single topic, Red points: 8 topics
Capacity scales proportionately with number of topics

—+1 topic + & topics

10,000,000
4,505,730 MPS

1,000,000
363937 MPS

—_
w
"
o
)
i
o
o
<1
R

=
C
o
L]
o
w
{ .
i
o
w
i
=]
m
wn
w
i
=
=t
_y
o
[
o

100,000 T T T T T r T
75 100 125 150 175 200 225 250 275

Latency in Microseconds

|ICE Performan

e Test environment:
Dual-core 2.2GHz Athlon, 2GB RAM, Win XP Pro, SP3
Dual-core 2.0 GHz Mac Mini, 2GB RAM, Win Vista Ultimate SP1
C++, C#: Visual Studio 2008
Java: 1.60 JDK
Ice version 3.3.0
Code optimized for speed.
Used 64-bit code on Vista machine
Loopback tests done on Athlon
Network tests: Client > Athlon, Server > Mac Mini

|ICE Performa

Latency (round-trip), no data sent

Requests/second | Ice for .NET Ice for Java Ice for C++
Loopback 6,900 8,000 10,500
Gigabit network 2,300 2,300 2,300

Latency as a function of message size

1.2

1

0.8

0.6

= Ryte sequence

Time per request (ms)

10000 20000 30000 40000 20000 60000

Sequence Length

|ICE Performance,

Throughput, loopback:

Throughput (loopback)

Ice for .NET

Ice for Java

Ice for C++

Byte seq (send)

630Mbit/s

800Mbit/s

1,200Mbit/s

Byte seq (recv)

610Mbit/s

720Mbit/s

960Mbit/s

Fixed seq (send)

380Mbit/s

140Mbit/s

620Mbit/s

Fixed seq (recv)

300Mbit/s

110Mbit/s

530Mbit/s

Variable seq (send)

68Mbit/s

65Mbit/s

190Mbit/s

Variable seq (recv)

62Mbit/s

70Mbit/s

150Mbit/s

Throughput, gigabit network:

Throughput (gigabit network)

Ice for .NET

Ice for Java

Ice for C++

Byte seq (send)

520Mbit/s

660Mbit/s

740Mbit/s

Byte seq (recv)

410Mbit/s

590Mbit/s

655Mbit/s

Fixed seq (send)

300Mbit/s

250Mbit/s

525Mbit/s

Fixed seq (recv)

205Mbit/s

150Mbit/s

470Mbit/s

Variable seq (send)

55Mbit/s

180Mbit/s

255Mbit/s

Variable seq (recv)

55Mbit/s

75Mbit/s

145Mbit/s

	Middleware Options for the Keck Common Services Framework
	What is Middleware?
	How is middleware used in KCSF?
	Data Distribution Service (DDS)
	How does publish-subscribe work?
	Internet Communication Engine (ICE)
	Client-server model
	RTI DDS: Performance
	RTI DDS: Latency (one-way)
	RTI DDS: One-to-one throughput
	RTI DDS: One-to-one message rate
	RTI DDS: One-to-many throughput scalability
	RTI DDS: Impact of throughput on latency
	RTI DDS: Topic and capacity scalability
	ICE Performance
	ICE Performance, Latency
	ICE Performance, Throughput

