
Middleware Options for the Keck Middleware Options for the Keck 
Common Services FrameworkCommon Services Framework

NGAO Control SW Team:NGAO Control SW Team:
Erik Johansson, Jimmy Johnson, Doug MorrisonErik Johansson, Jimmy Johnson, Doug Morrison

August 14, 2009August 14, 2009



2

What is Middleware?
• Middleware is communication software that allows software 

components to communicate with each other without regard to their 
physical location on the network.

• Examples of middleware:
– Channel Access (EPICS)
– Common Object Request Broker Architecture (CORBA)
– Internet Communication Engine (ICE)
– Data Distribution Service (DDS)
– Distributed Component Object Module (DCOM)



3

How is middleware used in KCSF?
• KCSF uses middleware to communication between components:

– Peer to peer command processing
– Publish-subscribe communications

• The middleware is encapsulated so the user sees only a simple interface 
and knows nothing about the underlying implementation.

• We are considering both ICE and DDS for use with KCSF.



4

Data Distribution Service (DDS)
• An OMG standard based on a publish-subscribe paradigm
• Widely used in the DoD for distributed network applications
• Available from multiple vendors in both open source and commercial 

versions. Two main vendors:
– Real-Time Innovations (RTI). Commercial versions only.
– PrismTech. Both open source and commercial versions

• Multiple language support: C, C++, Java
• Multiple platform/OS support: Windows, Linux, Solaris, VxWorks
• High throughput, low latency, low jitter
• Tunable “Quality of Service” parameters
• Supports multi-cast communication



5

How does publish-subscribe work?
• Communication via “Topics”
• Topics identified by unique name
• One or more publishers per topic
• Zero or more subscribers per topic
• Publishers and subscribers are unaware of each other
• Publishers and subscribers can be located anywhere on the network



6

Internet Communication Engine (ICE)
• Object oriented middleware for building distributed applications.
• Successor to CORBA. Faster and more efficient.
• Many of the original CORBA designers are now with ZeroC.
• Based on a client-server model.
• Publish-subscribe communications available through IceStorm.
• Only a single vendor: ZeroC, Inc.
• Available under open-source or commercial license.
• Large customer base, including Lockheed Martin, SGI, Northrop 

Grumman and HP.
• Multiple language support: C++, Java, Ruby, Python
• Multiple platform/OS support: Windows, Linux, Solaris, Mac OSX 

(no VxWorks yet).
• Reliable transport mechanism.



7

Client-server model
• Client must connect directly to server.
• Client receives a proxy through which it can execute methods on the 

remote object.
• Connections between components are tightly coupled.
• Good for command-response environments.

Ice

Client
Proxy

Ice

Server

Network Protocol



8

RTI DDS: Performance
• Test environment:

– RTI Data Distribution Service 4.3 
– Red Hat Enterprise Linux 5.0, 32-bit 
– 2.4 GHz processors – mix of Intel Core 2 Duo E6600 and Core 2 Quad 

Q6600 
– Gigabit Ethernet 
– Intel PRO/1000 NIC 
– D-Link DGS-3324SRi switch 
– UDP over IPv4 
– Reliable messaging with ordered delivery 



9

RTI DDS: Latency (one-way)

Small 
Messages

Large 
Messages



10

RTI DDS: One-to-one throughput
• For messages larger than 128 bytes, throughput is limited by 

network, not DDS



11

RTI DDS: One-to-one message rate

Small 
Messages

Large 
Messages



12

RTI DDS: One-to-many throughput scalability

• Number of subscribers has only small effect on throughput
• Single thread used to send a stream of 200 byte messages to up to 

888 subscribers
• Each subscriber running on a dedicated core, 4 subscribers per 

network interface.
• Intel Xeon processors were used for this benchmark



13

RTI DDS: Impact of throughput on latency

• Latency remains low even near network saturation conditions.



14

RTI DDS: Topic and capacity scalability
• Data points are from previous plot on latency and throughput
• Green points: single topic, Red points: 8 topics
• Capacity scales proportionately with number of topics



15

ICE Performance
• Test environment:

– Dual-core 2.2GHz Athlon, 2GB RAM, Win XP Pro, SP3
– Dual-core 2.0 GHz Mac Mini, 2GB RAM, Win Vista Ultimate SP1
– C++, C#: Visual Studio 2008
– Java: 1.60 JDK
– Ice version 3.3.0
– Code optimized for speed.
– Used 64-bit code on Vista machine
– Loopback tests done on Athlon
– Network tests: Client  Athlon, Server  Mac Mini



16

ICE Performance, Latency
Latency (round-trip), no data sent

Latency as a function of message size



17

ICE Performance, Throughput
Throughput, loopback:

Throughput, gigabit network:


	Middleware Options for the Keck Common Services Framework
	What is Middleware?
	How is middleware used in KCSF?
	Data Distribution Service (DDS)
	How does publish-subscribe work?
	Internet Communication Engine (ICE)
	Client-server model
	RTI DDS: Performance
	RTI DDS: Latency (one-way)
	RTI DDS: One-to-one throughput
	RTI DDS: One-to-one message rate
	RTI DDS: One-to-many throughput scalability
	RTI DDS: Impact of throughput on latency
	RTI DDS: Topic and capacity scalability
	ICE Performance
	ICE Performance, Latency
	ICE Performance, Throughput

