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An approach is presented for evaluating the performance achieved by a closed-loop adaptive-optics system that
is employed with an astronomical telescope. This method applies to systems incorporating one or several guide
stars, a wave-front reconstruction algorithm that is equivalent to a matrix multiply, and one or several de-
formable mirrors that are optically conjugate to different ranges. System performance is evaluated in terms of
residual mean-square phase distortion and the associated optical transfer function. This evaluation accounts
for the effects of the atmospheric turbulence C,%(h) and wind profiles, the wave-front sensor and deformable-
mirror fitting error, the sensor noise, the control-system bandwidth, and the net anisoplanatism for a given con-
stellation of natural and/or laser guide stars. Optimal wave-front reconstruction algorithms are derived that
minimize the telescope’s field-of-view-averaged residual mean-square phase distortion. Numerical results are
presented for adaptive-optics configurations incorporating a single guide star and a single deformable mirror,
multiple guide stars and a single deformable mirror, or multiple guide stars and two deformable mirrors.

1. INTRODUCTION

The fact that laser-guide-star adaptive optics can dramati-
cally improve the resolution of ground-based astronomical
telescopes has been demonstrated experimentally.*? The
finite range of a laser guide star implies that the degree of
turbulence compensation that is achieved decreases with
increasing telescope-aperture diameter,®* and the field of
view (FOV) that is corrected by either a laser or a natural
guide star is limited by the isoplanatic angle 6,.° More
sophisticated but undemonstrated approaches may over-
come these limitations. The use of constellations of mul-
tiple laser guide stars has been suggested as a means of
correcting atmospheric turbulence for large-aperture tele-
scopes.*” Adaptive-optics systems incorporating both
multiple guide stars and multiple deformable mirrors may
provide improved levels of turbulence compensation for
FOV’s that are larger than the isoplanatic patch.®® Since
the degree of atmospheric-turbulence correction that is
desirable for astronomical imaging applications remains a
subject of debate,’ it is important that we accurately
quantify the improvements in resolution that are feasible
with more complex adaptive-optics systems.

In this paper an analysis technique is presented that is
useful for evaluating and optimizing the performance of
many advanced adaptive-optics concepts. A representa-
tive multiconjugate adaptive-optics configuration is illus-
trated in Fig. 1. In this system the wave fronts that are
received from two laser and/or natural guide stars are
measured with wave-front slope sensors that are optically
conjugate to the telescope’s primary mirror. The guide
stars may be located at distinct ranges in one or several
directions, and the wave-front slope sensors may differ in
terms of subaperture geometry and measurement accu-
racy. Wave-front measurements that are obtained from
laser guide stars cannot be used for overall tip-tilt correc-
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tion because the position of the guide star is uncertain.
The collection of all wave-front slope sensor measure-
ments is combined into a single vector and is input into a
wave-front reconstruction algorithm that is equivalent to
a matrix multiply. The vector of deformable-mirror ac-
tuator adjustments that are produced as the output of this
multiply is then temporally filtered by a servo control law
before it is applied to one or several deformable mirrors.
Each deformable mirror is characterized by a set of influ-
ence functions and is optically conjugate to a different
range along the line of sight of the telescope. The intent
of the figure adjustments that are finally applied to the
deformable mirrors is to correct for turbulence-induced
phase errors across the telescope’s extended FOV.

The overall performance of the adaptive-optics control
loop that is illustrated in Fig. 1 is determined by a wide
range of parameters and error sources. The fitting
error'? is caused by the finite spatial resolution of the
wave-front slope sensor subapertures and deformable-
mirror actuators. Wave-front-sensor noise***® propagates
through the wave-front reconstruction algorithm and
corrupts the figure adjustment that is applied to the de-
formable mirror. So-called servo lag results from the fi-
nite bandwidth of the control loop and limits the degree of
correction that is achievable for time-varying wave-front
distortions.'®*” Anisoplanatic wave-front errors occur
when wave-front measurements are recorded with a guide
star that is displaced, either in range or in direction, from
the object that is to be imaged.”” It is important to con-
sider the combined effect of these multiple error sources,
since their integrated effect on overall adaptive-optics
performance is frequently more forgiving than their inde-
pendent values would suggest.”” The techniques that are
developed here provide integrated evaluations of the tele-
scope’s net optical transfer function (OTF) and the mean-
square residual phase error that is induced by these four
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Fig. 1. Unfolded, foreshortened optical schematic of a multiconjugate adaptive-optics system with two guide stars and two deform-
able mirrors. CP; and CP; are the atmospheric layers that are conjugate to the deformable-mirror locations DM; and DM,;. WFS’s, wave-

front sensors.

error sources. Both quantities can be computed as a func-
tion of field angle for imaging telescopes with an extended
FOV. We can optimize adaptive-optics performance by
selecting wave-front reconstructor coefficients that mini-
mize, subject to a constraint equation that is described
below, the field-averaged, mean-square residual phase
error that is due to residual atmospheric turbulence.
Minimizing this value will, in general, maximize the field-
averaged OTF of the telescope, but the relationship be-
tween the two quantities is nonlinear and is not always
monotonic. Although it is integrated, the analysis re-
mains first order in the sense that all the adaptive-optics
components illustrated in Fig. 1 are treated as entirely
linear. Turbulence-induced scintillation effects are also
assumed to be negligible.

An important feature of the adaptive-optics configura-
tion illustrated in Fig. 1 is the placement of the wave-front
slope sensors relative to the deformable mirrors. Each
wave-front slope sensor measures the net phase distortion
along the path to its guide star after compensation by the
current set of deformable-mirror figures. The actuator
command vector that is computed by the wave-front re-
construction matrix is consequently an incremental ad-
justment that is to be summed with the current set of
actuator commands. The closed-loop behavior of the
adaptive-optics system is quite complex for an arbitrary
set of wave-front reconstructor coefficients, and I was
forced to introduce linear constraints on the coefficient
values either to evaluate or to optimize adaptive-optics
performance. Qualitatively, these constraints require
the wave-front reconstructor to predict the current
deformable-mirror actuator command vector correctly in
the ideal case of no atmospheric turbulence or wave-front
slope sensor noise. The least-squares estimator that is
considered by Wallner'? is an example of a reconstructor’s
satisfying this condition, but it is not the sole exampie.
Standard optimization techniques can be used to deter-
mine the closed-loop reconstructor that will minimize the
telescope’s mean-square residual phase error subject to
this constraint. Given the characteristics of actual wave-
front sensors and deformable mirrors, accepting the
closed-loop reconstructor constraint is prudent even if this
constraint is not required by the analysis.

In Section 2 of this paper we develop our basic formulas
for evaluating and optimizing adaptive-optics system

performance. This derivation begins with a description
of the Hilbert-space methods that are used to characterize
the telescope’s instantaneous mean-square residual phase
distortion for a specific turbulence-induced phase profile
and a specific set of deformable-mirror actuator com-
mands. Subsection 2.B summarizes our first-order model
for the wave-front reconstruction algorithm and the tem-
poral dynamics of the adaptive-optics control loop. This
linear model implies a highly nonlinear relationship be-
tween the reconstruction matrix coefficients and the
control system’s response to a particular time history of
wave-front slope sensor measurements. Imposing closed-
loop constraints on the wave-front reconstruction matrix
linearizes this expression and yields a quadratic relation-
ship between the reconstruction matrix and the adaptive-
optics system’s mean-square residual phase error. This
quadratic formula can be used to evaluate the mean-square
performance of any (constrained) reconstruction matrix
and also to compute reconstructors that minimize the
mean-square phase error that is subject to the required
constraints.

Because the constrained wave-front reconstructor must
precisely predict the deformable-mirror command vector
in the hypothetical case of no atmospheric turbulence or
wave-front slope sensor measurement noise, attempting to
control poorly sensed deformable-mirror modes can de-
grade overall adaptive-optics system performance. Sub-
section 2.C describes how to identify these modes from the
second-order statistics of the system’s residual turbulence-
induced phase error. The closed-loop constraints on the
wave-front reconstruction matrix can then be modified to
suppress control of these inaccurately sensed modes.

The models and results that are presented in Section 2
are expressed in terms of abstract deformable-mirror
influence functions, wave-front slope sensor measure-
ments, and turbulence-induced phase-distortion profiles.
Geometric-optics models and computational formulas for
these quantities are presented in Section 3. Subsec-
tion 3.A describes phase-distortion profiles and slope
sensor measurements in terms of integrals over the atmo-
sphere’s turbulence-induced refractive-index profile. Op-
tical deformable-mirror influence functions are then
computed from these expressions, from the mirror’s physi-
cal influence functions, and from the position of the
deformable mirror within the telescope’s optical train.
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Subsection 3.C derives the second-order statistics of
turbulence-induced phase profiles and wave-front slope
sensor measurements as are required for the formulas of
Section 2. These covariance matrices are computed for
a Kolmolgorov turbulence spectrum with an infinite
outer scale.

Section 4 presents sample numerical results that were
computed for adaptive-optics systems of varying levels of
complexity. Subsection 4.A parameterizes the effect of
the fitting error and the wave-front-sensor noise for sys-
tems incorporating a single natural guide star and one
deformable mirror that is conjugate to the telescope-
aperture plane. Subsection 4.B evaluates the expected
overall performance of representative single-guide-star
systems. These cases have been selected to investigate
the feasibility of compensating large-aperture astronomi-
cal telescopes at visible wavelengths under good seeing
conditions. Subsection 4.C considers adaptive-optics sys-
tems with multiple guide stars but with only a single de-
formable mirror. The addition of a dim natural guide
star or a high-altitude laser guide star can greatly en-
hance the performiance of a system that is based on a
single low-altitude laser guide star, even when this dim
guide star is sensed with only a few large wave-front-
sensor subapertures. Subsection 4.D considers a repre-
sentative multiconjugate adaptive-optics configuration
that employs two deformable mirrors and five natural
and/or laser guide stars. Square FOV’s as large as 56, in
width can be well compensated with this sample system.
Appendixes A and B discuss technical details of the
derivations that are contained in Sections 2 and 3, and
Appendix C summarizes the numerical integration tech-
niques that were used to compute the results that are
given in Section 4.

2. SYSTEM MODELS AND RESULTS

Figure 2 is a schematic control-system block diagram
corresponding to the adaptive-optics system that is illus-
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trated in Fig. 1. The input y(#) to this diagram is the
open-loop vector of wave-front slope sensor measurements
recorded at time £ This vector includes wave-front-
sensor measurement noise and the effects of laser-guide-
star position uncertainty but not the adjustment to the
measured slopes that is caused by the current position of
the deformable-mirror actuators. The closed-loop wave-
front-sensor measurement vector that accounts for this
effect is of the form y(¢) — Ge(2), where c(¢) is the
deformable-mirror actuator command vector at time ¢ and
G = dy/dc is the Jacobian matrix of first-order derivatives
of y with respect to ¢. The wave-front reconstruction
algorithm operates on this closed-loop sensor vector and
takes the form

e(t) = M[y@®) — Ge(®)], @.n
where M is the matrix of wave-front reconstruction coeffi-
cients and e(?) is the vector of deformable-mirror actuator
adjustments that are output by the reconstructor at time ¢
This vector of adjustments is temporally filtered before it
is applied to the deformable mirror. A representative fil-
ter is given by the expression

de _ ke(?t),

& 2.2)

where % is the gain of the filter in units of radians per
second. Generalizations to this special case are consid-
ered below.®

The bottom third of Fig. 2 describes the degree of
atmospheric-turbulence compensation that is achieved by
the adaptive-optics system. The phase-distortion profile
that is to be corrected is the function ¢(x, 8) and is a func-
tion of both coordinates in the aperture plane x and of the
point @ within the telescope’s FOV for which the distortion
profile is evaluated. The residual phase-distortion profile
€(x, 0) that remains after the profile ¢(x,0) has been
compensated by the telescope’s deformable mirrors is de-
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Fig. 2. Adaptive-optics system control-loop dynamics.
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scribed by
€%, 0) = $(x,0) — 2 ciri(x,0), 2.3)

where r;(x, 6) is the influence function for the deformable-
mirror influence function i. Since deformable mirrors
may not be conjugate to the telescope’s aperture plane, ac-
tuator influence functions are not, in general, independent
of 8. The mean-square value of the residual profile e(x, 6)
with low-order modes removed will be abbreviated €2
The precise definition of 2 is given further below in this
section.

The overall goal of this section is to evaluate the ex-
pected value of €% for a given adaptive-optics control
system and reconstruction matrix M and to determine
reconstruction coefficients that will minimize this
error.”® Much of the development that is necessary for
these results is most easily described in terms of Hilbert-
space inner products and projection operators, and Sub-
section 2.A briefly reviews these concepts and introduces
the associated notation. Subsection 2.B evaluates the
closed-loop dynamics of the adaptive-optics control loop
and demonstrates that obtaining a linear relationship be-
tween the coefficients of M and the deformable-mirror ac-
tuator command vector ¢(¢) requires linear constraints on
the reconstruction matrix M. These constraints are ex-
pressed in terms of an orthogonal projection operator @
operating on the vector space of deformable-mirror actua-
tor commands. The resulting linear relationship between
M and c(t) that is achieved with these constraints leads to
the desired evaluation and minimization formulas for the
residual mean-square phase error €2 Subsection 2.C de-
scribes how the constraints on reconstruction matrix
coefficients may be adjusted to suppress the control of
deformable-mirror modes that are inaccurately sensed
and thus highly sensitive to wave-front slope sensor fit-
ting error and measurement noise.

A. Hilbert-Space Preliminaries

The phase-distortion profile ¢(x,6) and the actuator in-
fluence function r;(x, 6) are both examples of real-valued,
square-integrable functions that are defined on the space
of pairs of points (x, 6) from the telescope’s aperture plane
and FOV. The collection of all such functions is a vector
space under the operations of pointwise addition and
scalar multiplication. This vector space becomes a
Hilbert space through the introduction of an inner product
[, ] that is defined by

[feg]l= f dOWx(6) f dxW,(x)f(x, 0)g(x, 0). 2.4

Here Wy(x) and Wx(0) are two weighting functions that
define the clear aperture and the FOV of the telescope.
Note that the inner-product operation [f, g] is linear in
both of its arguments. It is convenient to assume that the
functions W, (x) and Wx(0) have been scaled to satisfy the
conditions

fdeA(x) =1, (2.5)

f dowr(6) = 1. (2.6)
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The aperture weighting function W,(x) will be zero out-
side the clear aperture of the telescope and typically will
be a single, constant value within this clear aperture.
The FOV weighting function Wr(#) may assume a broader
range of values depending on the relative importance
that the observer ascribes to different points in the tele-
scope’s FOV.

The input phase-distortion profile ¢(x, 0) is defined only
modulo an arbitrary constant. The aperture-averaged
value of ¢(x, 6) has no effect on the images that are pro-
duced by the telescope and should be nulled before evalu-
ation of the adaptive-optics system performance in terms
of the mean-square residual phase error €2.. Additionally,
the full-aperture tilt components of the function ¢(x,6)
are not significant when the object of interest is smaller
than the isoplanatic angle and bright enough to be imaged
with short exposures. Both the piston-removed and the
tilt-and-piston-removed phase-distortion profiles can be
represented by

b(x,0) = ¢(x,0) ~ Zfix) f AW, fi(K)$(K, 0). (2.7)

The functions f;(x) are the full-aperture piston mode and
possibly the full-aperture tilt modes to be removed from
the phase profile ¢(x,0). They are assumed to be scaled
to satisfy the relationship

1 ifi=j

0 otherwise 2.8)

j W, (x)f:(x)f;(x) = {

The notation ¢ is intended to suggest the higher-order
component of the phase profile ¢. Equation (2.7) can be
abbreviated with operator notation in the form

é = Po. 2.9)

Because of Eq. (2.8), the operator P is the orthogonal pro-
jection operator onto the subspace of functions with the
full-aperture piston mode and possibly the full-aperture
tilt modes removed. It may be verified that it satisfies
the conditions P? = P and [Pf, g] = [f, Pg] for any two
square-integrable functions f and g that are defined on
the telescope’s aperture and FOV.

In addition to turbulence-induced phase-distortion pro-
files, a second class of functions that are defined on pairs
of points from the telescope’s aperture and FOV are the
phase corrections that are applied by the adaptive-optical
system’s deformable mirrors. By linearity, the correction
that is applied for a given actuator command vector ¢ is
of the form 3;c;r;(x, 6), where r;(x, 0) is the influence func-
tion corresponding to a unit adjustment to actuator i.
This correction will also be abbreviated with operator
notation in the form

(He)(x,0) = 2 eiri(x, 6). (2.10)

It is natural to view the length and the direction of an
actuator command vector ¢ in terms of its effect on the
phase-distortion profile ¢(x, ). This motivates us to de-
fine an inner product [¢,c'] on the space of deformable-
mirror actuator commands by

[e,e¢'] =[PHe, PHc']. (2.11)
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The inner product appearing on the right-hand side of this
definition has been defined in Eq. (2.4), and the quantities
PHe and PH¢' are the corrections obtained with the actua-
tor command vectors ¢ and ¢’ with full-aperture piston
removed and possibly full-aperture tilt removed. By once
more invoking linearity, one can evaluate the inner prod-
uct [e, ¢'] by using the expression

[e,e¢'] = ¢'Re’, (2.12)

where ¢” denotes the transpose of the vector ¢ and the
matrix R is defined by

Rij = [P"i, Pr,]

= f doWx(6) f dxW, ()7 (x, O)7;(x, 6) . (2.13)

This value for the matrix R generalizes previous defini-
tions to the extended-FOV case.”™® Associated with the
above inner product is a corresponding collection of projec-
tion operators. A matrix @ operating on the vector space
of deformable-mirror actuator commands is an orthogonal
projection operator for this inner product if it satisfies the
conditions @% = @ and [Qe,c'] = [¢,Qc’] for any pair of
actuator command vectors ¢ and ¢’. The second condition
is equivalent to the requirement that Q"R = RQ.

The results of this research require that the actuator
cross-coupling matrix R be positive definite so that the
condition ¢’Re = 0 implies that ¢ must be the zero vector.
This condition will not be satisfied in the usual case, in
which the full-aperture piston and full-aperture tilt modes
can be obtained as linear combinations of actuator in-
fluence functions. As in previous research,' the set of
permissible deformable-mirror actuator command vectors
must be restricted to a linear subspace for which the
matrix R is positive definite. One possible subspace is
obtained when we simply remove the required number of
redundant degrees of freedom from the actuator command
vector. A second subspace is the span of eigenvectors of R
with positive eigenvalues. The range of phase profile cor-
rections corresponding to these subspaces is identical, and
the two choices are equivalent for the first-order analysis
that is developed here.

The adaptive-optical system’s mean-square residual
phase error € may now be defined more precisely. The
residual-phase-distortion profile e(x, ) itself may be ab-
breviated in the form

e=¢ — He, (2.14)

and the mean-square value of € with the full-aperture
piston mode and possibly the full-aperture tilt modes re-
moved is simply

€2 = [Pe, Pe]. (2.15)

The utility of the above Hilbert-space formalism will be-
come apparent in the equations that are developed below
to evaluate and to minimize the expected value of €2

B. Evaluating and Optimizing Closed-Loop
Adaptive-Optics Performance

It follows from Egs. (2.1) and (2.2) that the steady-state
closed-loop performance of the adaptive-optics control loop
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for a specified time history y(¢) of open-loop wave-front
slope sensor measurements is given by

c@®) = f drk exp(—k™MG Myt — 7). (2.16)
0

Adaptive-optics system performance is a nonlinear func-
tion of the wave-front reconstruction matrix M. It ap-
pears to be difficult to proceed beyond Eq. (2.16) either to
evaluate or to optimize expected adaptive-optics system
performance in this general case.

Equation (2.16) can be simplified to a more useful
expression by the imposition of linear constraints on the
reconstruction matrix M. These constraints are the
equalities

MG = Q, @17
QM = M, 2.18)

where the matrix @ is the orthogonal projection operator
onto a given linear subspace of the space of deformable-
mirror actuator commands. These two constraints are
equivalent to the following qualitative requirements:

® The range space of M is contained within the range
space of @ [Eq. (2.18)],

® Actuator command vectors within the range space
of @ are estimated precisely by the reconstructor in the
absence of wave-front-sensor noise and atmospheric tur-
bulence [Eq. (2.17)], and

® Actuator command vectors that are orthogonal to the
range space of @ yield the zero vector as reconstructor
output [Eq. (2.17)].

The projection operator @ and the associated actuator
command subspace that are selected for the above con-
straints are arbitrary for the present discussion. In Sub-
section 2.C we describe how to select a projection operator
@ to optimize adaptive-optics system performance.

Recall from Subsection 2.A that any orthogonal projec-
tion operator @ satisfies the condition @ = @ Taken to-
gether, the relationships Q% = @, MG = @, and @M = M
imply the simplification

exp(—kTMGEM

exp(—kT@Q)M
_ [E (—k;rQ)’]M

i=0 i
o (—k7)
—quy £

=0 ¥

= M exp(—Fk7). (2.19)
Substituting this formula into Eq. (2.16) yields

ct) = Ms(@®), (2.20)
where the vector s(¢) is defined by
s(t) = J drk exp(—kn)yt — 7). (2.21)
0

The vector s(#) is the convolution of the open-loop wave-
front slope sensor vector y(¢) with the closed-loop impulse-
response function of a single-input, single-output control
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system described by scalar-valued analogs of Egs. (2.1) and
(2.2). This conclusion holds if Eq. (2.2) is replaced by any
ordinary differential equation with constant coefficients.

Equation (2.20) provides a linear relationship between
wave-front reconstructor coefficients and closed-loop
actuator commands. The form of this relationship is
similar to that of the open-loop case that was previously
evaluated.”? Substituting Eqs. (2.14) and (2.20) into
Eq. (2.15) yields

€? = [P(¢p — HMs), P(p — HMS)]

= [Pd), P¢] - 22[P¢, Pl‘,‘]Mij + 2 zRii'MjMi’j’Sjsj’
iJj LJ g
(2.22)

for the instantaneous value of the field-averaged mean-
square residual phase error €. One obtains the second
equality by using the linearity of the inner product. The
ensemble-averaged value of €2 may now be written in
the form

(52) = <502) - 2EMJAU + 2 ERii'MjM'j'SJj', (2.23)
iJ iL“j iy
where () represents ensemble averaging over the statistics
of phase-distortion profiles ¢(x,6) and wave-front slope
sensor measurements s and the quantities {¢?), 4, and S
are defined by

(e®) = ([P, Pg)), (2.24)
A = ([P, Prsj), (2.25)
Sy = (ss))- (2.26)

This notation was again selected to conform with previous
results.”? Assuming that the quantities A, S, R, and {g?)
have been computed for a given adaptive-optics configura-
tion and a given set of atmospheric-turbulence statistics,
Eq. (2.23) may be used to evaluate the expected perfor-
mance of any wave-front reconstruction matrix M that
satisfies the constraints given by Egs. (2.17) and (2.18).

Equation (2.23) for the expected mean-square residual
phase error (¢2) is quadratic in the coefficients of the re-
construction matrix M, and the constraints on M that are
imposed by Egs. (2.17) and (2.18) are linear. The value of
M that minimizes (¢) subject to the specified constraints
can be determined with Lagrange multiplier techniques.
The constrained minimum-variance reconstructor must
satisfy the relationship

—-A; + %METRWSJT = ;‘,Ajj'G,j, + 2 v (@ — Dy, (2.27)
where I is the identity matrix. In matrix notation this
relationship becomes
—A+ RMS = AG" + QT — II. (2.28)
Solving Egs. (2.17), (2.18), and (2.28) yields
M = Q[RT'AS™ + (I - R'AS™'G)(G"S'@)'G"S™]
(2.29)

for the constrained minimal-variance wave-front recon-
structor.? One may then determine the minimized
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mean-square field-averaged residual phase error by sub-
stituting this value of M back into Eq. (2.23).

Equation (2.29) for M uses the assumption that the ac-
tuator cross-coupling matrix R is invertible. The first
term within the brackets in Eq. (2.29) is similar to the
formula for the minimal-variance reconstructor in the
open-loop unconstrained case,”? but the definitions of
the matrices S and A are subtly different. The second
term within the brackets guarantees that the constraint
in Eq. (2.17) is observed, and the factor @ ensures that
Eq. (2.18) is also satisfied.

C. Optimizing the Reconstructor Range Space
One constraint that is imposed on the closed-loop wave-
front reconstruction matrix M is that it must correctly
estimate all deformable-mirror actuator command vectors
within a specified subspace in the absence of wave-front-
sensor noise and atmospheric turbulence. This constraint
may degrade adaptive-optics system performance if some
actuator command modes in this subspace are poorly
sensed because of wave-front-sensor noise or anisopla-
natism. In this case it is desirable to reduce the range
space of the wave-front reconstruction matrix to avoid
inaccurately sensed modes. Formulas for identifying
such modes and for removing them from the reconstruc-
tor’s range space are developed presently.

For this derivation it is convenient to rewrite Eq. (2.23)
for the expected mean-square residual phase error (¢?) in
the matrix form

€2 = (e) — tr(MAT + AMT — MSMTR).  (2.30)

Here tr(V) denotes the trace of a square matrix V. The
following discussion will frequently use the identity

tr(UVY) = tr(V7U), (2.31)
which is valid for any two matrices V and U of common
dimensions. This identity permits Eq. (2.30) to be rewrit-
ten as

(€% = (e*) — tr(BR), (2.32)
where the matrix B is defined by

B = MA'R™ + RT'AMT — MSMT", (2.33)

The matrix B is symmetric. It follows that the

matrix RYBR' is also symmetric* and admits of an
eigenvector—eigenvalue decomposition of the form

RYBR'Y = 0TAO. (2.34)

The matrix O of orthonormal eigenvectors satisfies the
relationship

00" =0"0 =1, (2.35)

and the matrix A is a diagonal matrix consisting of the
eigenvalues of R¥>BRY%;

A = diag(Aq,...,An). (2.36)

Invoking Egs. (2.31) and (2.35) yields
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€?) = (&”) — tr(BR)
= (g2} — tr(OTAO)
= {e?) — tr(O0TA)

= (&") — tr(A) 2.37)
for the value of the expected mean-square residual phase
error (€2). The net effect of the adaptive-optics con-
trol system is to reduce the telescope’s mean-square
phase error by the trace of the matrix A. Controlling
deformable-mirror actuator command modes with nega-
tive eigenvalues A; increases the value of {¢?).

We can improve adaptive-optics system performance by
reducing the range of the wave-front reconstruction ma-
trix M to a new subspace that is orthogonal to all the
eigenvectors of the matrix RV2BR? that have negative
eigenvalues. This subspace is the range of the orthogonal
projection operator @+, defined by the formulas

if A <
b= {(1) z)ftl):t;rwiose’ 2.38)
L = diag(ly,...,1,), (2.39)
@« = R70LOR™*. (2.40)
The associated reconstructor Mx is defiﬁed as
M: = Q+M. (2.4

Before evaluating the new mean-square residual phase
error {€2) for the reconstruction matrix M+ we must verify
that the matrix @« is indeed an orthogonal projection op-
erator and that the reconstructor M= satisfies the con-
straints that are given in Egs. (2.17) and (2.18), with the
projection operator @ being replaced by @+. To be an
orthogonal projection operator, the matrix @+ must satisfy
the conditions

QR+ = @+, (2.42)
Q+"R = RQ-. (2.43)

These relationships follow immediately from Eq. (2.35)
and the definition of @+. Together, Egs. (2.41) and (2.42)
yield the relationship @+Mx = @+Q+M = Q+M = M=,
which is the equivalent of Eq. (2.18) for the reconstruction
matrix M=. Appendix A derives the result @+Q = @,
which, when combined with Egs. (2.41) and (2.17), yields
M+G = @+MG = @+@Q = @+. This is the analog of
Eq. (2.17) for the reconstructor M= and is the last result
that is necessary for verification that the matrices M«
and @+ satisfy the required conditions.

Substituting the reduced range reconstructor Mx for M
in Eq. (2.30) results in the expression

€2) = (e?) — tr(M+A”T + AM+T — M+SM+"R)
= (&) — tr[OTLOR*(MATR™ + R'AMT
— MSM™)RY?]
= (&%) — tr(OTLOOTAO)
= (e’) — tr(LA) (2.44)
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for the expected mean-square residual phase error (e2).
By Eq. (2.39), the trace of the matrix LA is the sum of the
positive eigenvalues A;. The range space of the modified
reconstructor M= is orthogonal to all inaccurately sensed
modes that would degrade the time-averaged performance
of the adaptive-optics control loop.

3. COMPONENT MODELS AND
EVALUATION FORMULAS

The adaptive-optics evaluation and optimization formulas
that are developed above are for an abstract adaptive-
optics system. These results are expressed in terms of
matrices depending on deformable-mirror influence func-
tions (G, R, and A), wave-front slope sensor subaperture
geometries (S, A, and G), and the statistics of atmospheric
turbulence and sensor noise (S and A). This section de-
rives evaluation formulas that describe these matrices for
specific adaptive-optics configurations. The results that
are obtained are applicable for either a Hartmann sensor
or a shearing interferometer, either a continuous deform-
able mirror or a segmented mirror, and a variety of wave-
front-sensor-subaperture deformable-mirror-actuator
configurations.’>®* All the results, however, are based
on first-order models for these components that neglect
diffraction effects. For a Hartmann sensor this assump-
tion does not apply if the wave-front distortions within
individual subapertures are large enough to aberrate the
subaperture guide-star images significantly. The linear-
ity of a shearing interferometer wave-front sensor is also
degraded by large wave-front distortions within individual
subapertures unless the shear width is kept small relative
to the atmospheric-turbulence correlation length. Either
sensor is susceptible to so-called 27 ambiguities if it is
used with a segmented mirror and monochromatic light.

Subsection 3.A reviews standard first-order formulas for
turbulence-induced phase-distortion profiles and wave-
front slope sensor measurements. Both quantities are
represented in a common form to simplify the computa-
tional expressions for the covariance matrices S and A.
The formulas for slope sensor measurements reflect the
effect of laser-guide-star position uncertainty. Sub-
section 3.B expresses the actuator optical influence func-
tions r;(x, 6) and the associated matrices R and G in terms
of actuator physical influence functions, the position of
the deformable mirror within the telescope’s optical train,
and the range and the direction of each guide star. Sub-
section 3.C contains a detailed derivation of evaluation
formulas for the covariance matrices S and A. These ex-
pressions are for the case of the Kolmogorov turbulence
spectrum, for specified atmospheric turbulence C,%(h)
and wind-speed profiles, and for random, uniformly dis-
tributed wind directions at each altitude.

A. Wave-Front and Wave-Front-Sensor Models
The turbulence-induced phase-distortion profile in which
the piston mode and possibly the tilt modes have been re-
moved, ¢(x, 0,t), is defined in Section 2 by

36,0, = 9x,0,0) — D) [ AxW,0)fiG)(x, 0,0,

(3.1
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Recall that x is a point in the aperture plane of the tele-
scope, @is a point in the telescope’s FOV, the functions f;(x)
are the orthonormal piston mode and possibly the ortho-
normal tilt modes that are to be removed from the phase
profile, and Wy(x") is the aperture function of the tele-
scope. Our model for ¢(x, 6, £), the phase-distortion pro-
file that includes low-order modes, assumes that the
strength and the distribution of atmospheric turbulence
are such that diffraction and scintillation effects can be
neglected. The phase distortion that is encountered by a
ray as it propagates from the direction 8 to the point in the
aperture plane with coordinates x is given by the integral

o(x,0,t) = 2777-] dzn(x + 20,z,¢). 3.2)
0

Here A is the wavelength of the light, z denotes the range
along the optical axis of the telescope, and n(x, z,¢) is the
turbulence-induced variation in the refractive index of the
atmosphere at range z, at transverse coordinates x, and at
time ¢&. Equation (3.2) implicitly introduces the paraxial
approximation sin(f) = 6 for the magnitude of all angles 8
within the telescope’s FOV. The assumed temporal dy-
namics of the refractive-index profile n(x, z,¢) are based
on the Taylor hypothesis:

n(x,zt) = no(x — tv,2), 3.3

where v is the transverse velocity vector of the wind at
range z and ny(xX, 2) is the refractive-index profile at time
t = 0. The upper bound of integration z, in Eq. (3.2) can
be any range that is greater than the limit of atmospheric
turbulence. For purposes of this paper it is convenient
to assume that this integration limit is significantly
greater, so the separation between the points x + 26 and
[1 — (2/2z0)]x + 20 is negligible for all points x within the
telescope aperture and all ranges z within the atmosphere.

One must know the distribution of the wind-velocity
vector v and the second-order statistics of the refractive-
index profile n, to calculate the covariance matrices A and
S. For isotropic Kolmogorov turbulence with a zero inner
scale and an infinite outer scale, the power spectrum @,
of refractive-index variations is given by

q)n(K’ Z) = <|ﬁ‘0(Kr Z)|2>
= 969 X 107°C,2(2)x 113, 3.4

where « is the spatial wave number, fiy(k, 2) is the Fourier
transform of ny(x, z) with respect to x, and C,%(z) is the
refractive-index structure function at range z. In this
paper we assume that the wind speed v is a fixed, known
function of altitude and that the direction of the wind is a
uniformly distributed random variable in the coordinate
system of the telescope aperture. The latter condition
will be satisfied regardless of the geographical wind direc-
tion if performance predictions are averaged over all pos-
sible orientations of the telescope’s azimuth gimbal.

The vector s(#) of temporally filtered wave-front slope
sensor measurements will also be modeled with geometric-
optics approximations. Recall from Section 2 that this
vector is defined by the integral
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s(t) = f drk exp(—kn)y( — 1, (3.5)
0

where y is the instantaneous wave-front slope sensor
measurement vector and % is the bandwidth of the
adaptive-optics control loop in radians per unit time.
Each component of the vector y is a noisy wave-front slope
sensor measurement of the wave-front that is received
from either a natural or a laser guide star. For a natural
guide star this measurement is modeled as the average tilt
of the wave front over a particular wave-front-sensor sub-
aperture. Tilt measurements from laser guide stars are
modeled similarly, except that the angular position error
of the guide star, because of its projection through
atmospheric turbulence, must be subtracted from the
subaperture-averaged wave-front slope. Either case may
be represented by an expression of the form

7t = f AW, ) + as(d), 36)

where «; is the additive noise that is included in the mea-
surement, ¢'(x, ¢) is the wave front that is received from
the guide star, and W;*(x) is a distribution representing a
line integral in the aperture plane of the telescope. For a
natural guide star the path of this line integral is around
the boundary of the given subaperture.® For a laser
guide star a second line integral around the boundary of
the illuminator’s projection aperture must be included in
the definition of W;*(x) to account for guide-star position
error. The noise term «;(¢) is assumed to be temporally
white and uncorrelated between separate guide stars
and subapertures. Its second-order statistics are de-
scribed by

(i@ () = 8::8¢ — )P, 3.7

The wave fronts ¢’(x,¢) that are received from each
guide star are modeled geometrically by

Hi(x, ) = 27" f " den [x + <i>(pi - x), 2, t], 3.9
| .

1

where z; is the range to the guide star and p’ is the coordi-
nate of the guide star in the plane that is perpendicular to
the telescope’s line of sight.

It is convenient to combine Egs. (3.1) and (3.2) for the
phase-distortion profile ¢(x, 6, f) and Egs. (3.5), (3.6), and
(3.8) for the slope sensor measurement s;(¢) into a common
representation. This representation is the triple integral

u= J:d'rw('r){f dx'v(X’)(sz)
X f:dg‘n[x’ + (z—g;)(p - x4t ~ 'r] + alt — 7)}-

3.9)

The generalized temporal weighting function w(r), the
aperture weighting function v(x'), the wave-front source
coordinate p, and the noise term « are defined by
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") = {6(7)
WA=\ k exp(—kr)

if u=¢(x,0,8)
ifu =50 ’ (3.10)
v(x')

M(x’)[&(x -x) - Eﬁ(x)fi(X’):l if u = $(x,6,8)

W) ifu= s
(3.11)
_Jz0  ifu= $x,0,t)
P= {Pi if u = s;(t) ’ (3.12)
_ 10 if u = $(x,0,8)
o = {ai(r) if u = s (3.13)

Equation (3.12) invokes the assumption that the separation
between the points x + z@and [1 — (2/29)]x + 2z0is negli-
gible for all points x in the telescope aperture and ranges
z within the atmosphere. Note for our discussion below
that both possible definitions of the function v(x) that are
given in Eq. (38.11) satisfy the condition

j dxv(x) = 0. (3.14)

The aperture weighting function v(x) should not be con-
fused with the wind-velocity vector v.

B. Deformable-Mirror Models

As is illustrated in Fig. 1, each deformable mirror in the
adaptive-optics system is optically conjugate to a plane
in the atmosphere at some range from the aperture of
the telescope. Let this range be denoted d; for the
deformable-mirror actuator i, and let the function A;(x)
represent the physical influence function of this actuator
imaged onto the conjugate plane. The optical influence
function for actuator i will be modeled by

ri(x, 0 = hi(x + d;0). (3.15)

This equation assumes the paraxial approximation
sin(@) = @ for all angles @ within the FOV of the telescope
and also assumes that the aberrations in the telescope are
negligible for imaging between each deformable mirror
and its conjugate plane.

Substituting Eq. (3.15) into Eq. (2.13) yields the compu-
tational formula

Rij= [Pri,Prj]

= f doWx(6) f dxW, (x)

x | hix + di0) — D, fi®) f dx' W, (x) f3 (x)
k

X h;(x' + diﬂ)]

X | hix + d;0) — th(x)jdx’WA(x’)fk(x’)
k

X h;(x + d,O)] , (3.16)

for the actuator cross-coupling matrix R. Removing the
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piston mode and possibly the tilt modes from the optical
actuator influence function r;(x, #) independently in each
direction @ in the FOV of the telescope is not equivalent to
removing the same modes from the physical influence
function h;(x).

The matrix coefficient G;; that describes the first-order
coupling between the deformable-mirror actuator i and
the guide-star measurement j is a function of the actuator
influence function 4;(x) and of the range and the direc-
tion of the guide star. Combining Egs. (3.6) and (3.8)
and substituting the influence function 4;(x) for the
refractive-index layer n(x, d;) gives

G, = g)?fdxms(x)hi[x + <(if>(pj - x)] . 3.17)

Zj

C. Covariance Calculations

We must also compute the covariance matrices A and S
and the open-loop mean-square phase error {(&°) to evalu-
ate adaptive-optics system performance with the expres-
sions that are derived in Section 2. Using Egs. (2.4),
(2.24)-(2.26), and (3.15), we describe these quantities by

(€®) = ([P, Pp))
= fdl)WF(O)deWA(X)([d;(X, 0,01, (3.18)
A = ([P, Pr]s;(t))

= f L0 AC), f axW, (x)((x, 6, D)s; ()
X [hi(x +d0) - D fi®) f dx'W, ()£ ()
k

X h;(x' + d,~0)j| , 3.19)

Sij = (s,-(t)sj(t)) . (320)

‘We now develop evaluation formulas for these quantities,
using our geometric-optics models for the phase-distortion
profile ¢(x, 6,¢) and the wave-front slope sensor measure-
ment vector s(f).

The three statistical terms that are to be evaluated in
Egs. (3.18)-(3.20) are of the form (u;u;), where u; and u; are
either wave-front slope sensor measurements or values of
turbulence-induced phase-distortion profiles. The com-
mon integral representation that is given by Eq. (3.9) for
both quantities provides the starting point for evaluating
this covariance:

2
(wiw;) = <-2/\E> f dx;dx,v;(x1)v;(X2)

X J;) JO dTldewi(Tl)Wj(Tz)
X fo, _’;qu’ld{2<n[x1 + <§_:>’§1;t - 71]
X n[xg + <é>’§2,t - 7‘2:|>

Zj

+ f f dT]dTgwi(Tl)Wj(Tz)<ai(t - T1)aj(t - 7'2».
[V ]
(3.21)
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The first step in reducing this expression utilizes the
Taylor hypothesis [Eg. (3.3)], the Kolmogorov spectrum
for refractive-index fluctuations [Eq. (3.4)], and the statis-
tics of wave-front-sensor measurement noise [Eq. (3.7)] to
yield the result

{win;) = 969 X 10~ ( ) f dx; dxzv;(x1)v;(x2)
© o min(z;, z;)
X j j dTldewi(Tﬂwj'(Tz)J‘ d{an({)
o Jo 0
X {J’ drerc ™3 exp(—2mike - A)
X xp[—2wi(r, — T2k - V]) + c}
+ aﬁRJWdTwiZ(T). (3.22)
0

The integral with respect to « is performed over the
spatial-frequency domain, and the vector A is defined by

A=x; - X+ <£>(Pi -xy) - (£>(p’ - Xz). (3.23)
2i Zj

A is analogous to the quantities Ap,,, Apog, and Ap,, that
appear in previous research.” The remaining expected-
value operation that appears in Eq. (3.22) averages over
the uniformly distributed direction of the wind-velocity
vector v. Note that an as-yet unspecified additive con-
stant ¢ has been introduced within the altitude integration
in Eq. (3.22). As a result of Eq. (3.14) this constant may
take any value that is independent of x; and x, without
altering the value of the overall expression.

The remaining expected value that appears in Eq. (3.22)
can be evaluated in terms of the Bessel function Jy(z) with
Eq. (9.1.21) of Olver?® and the assumption of a uniformly
distributed wind direction. The integral with respect to
the angular component of k may be similarly evaluated,
and Eq. (3.22) can be further simplified by the change
of integration variable defined by 6§ = (1, — 72), 7=
(r1 + 72)/2. The constant ¢ may now be assigned the value

¢ = —969 X 10'327rf dik 83y 2m|r — Tlkv)  (8.24)
0

to cancel the singularity in the « integration. The com-
bined result of these substitutions is

(wiu;) = 2w 969 X 10‘3< ) f dx;dx,u; (x1)v;(x2)
X f_:ds[ fo " drwitr + 8/ — 8/2)]
X fo " e fo " dhe R (2mrb0)
X [Jo(RmrA) — 1] + 6, P; fo cmdfrwi"')('r). (3.25)

Statistical characterizations of atmospheric turbulence
are frequently expressed in terms of the quantity (D/ro)*?,
where D is the diameter of the telescope aperture and ro
is Fried’s turbulence-induced effective-coherence diame-
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ter.?® The covariance (u;u;) can be expressed in this form
by the change of integration variable » = Dk and the
identity

1= ro'5’3[2 :;( ) j d¢C, 2({):' ) (3.26)

which is an algebraic rearrangement of the definition for
ro. The final expression for (u;u;) takes the form

1
u; u,)—097< ) I:J dec, 2({)] J dx;dx,v; (x1)v;(x2)

X f d‘o‘[ J drwi(r + &/2w;(r — 3/2)]
—o 0

min(z;, zj)
x f &c, 2(g)f(28" 2A) + a,,Pf drw(r),
V]

D
3.27)

where the function f(a,b) is an abbreviation for the
integral

f(a,b) = J: dvv %3y (av)[Jo(by) — 1]. (3.28)

Equations (3.18)-(3.20), (3.23), (3.27), and (3.28) were
used to compute the statistical quantities A, S, and (¢, for
the numerical results that are presented in Section 4.
Appendix B evaluates the integral f(a,b) in terms of a
hypergeometric series, and Appendix C summarizes our
approach to evaluating numerically the spatial and the
temporal integrals that appear in Egs. (3.18)-(3.20) and
(3.27). Depending on the total number of subapertures
and actuators, a few seconds to a few hours of CPU time
on a high-performance workstation are necessary for nu-
merical evaluation of the performance of an adaptive-
optics system with these equations.

4. SAMPLE NUMERICAL RESULTS

This section contains numerical results describing the
predicted performance of adaptive-optics systems of vary-
ing levels of complexity. Subsection 4.A revisits the
subjects of fitting error and noise gain that have been
considered previously by a variety of investigators.!-15%4
These results incorporate the effects of circular apertures
and partial wave-front-sensor subapertures at the edge of
the pupil, two practical factors generally neglected in
previous research. The aperture geometries that are
evaluated include 25 to 393 actuators and 16 to 344
wave-front-sensor subapertures arranged in either the so-
called Fried (common-subaperture) or Hudgin (displaced-
subaperture) geometry.

Subsections 4.B-4.D describe the performance of sample
adaptive-optics systems incorporating a single deformable
mirror and single guide star, a single deformable mirror
and multiple guide stars, and multiple deformable mirrors
and multiple guide stars. We have not attempted to fit
these results to simplified scaling laws because of the
number of parameters that are necessary to describe
the more complex adaptive-optics configurations. All
the cases that we consider assume either a 3- or a 4-m
telescope-aperture diameter, a 0.5-um wavelength for
performance evaluation, and the atmospheric turbulence
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Fig. 3. Sample atmospheric turbulence C,%(h) profile. This
profile is derived from U.S. Air Force Geophysics Laboratory
thermosonde data recorded on December 11, 1985. Integrat-
ing this profile yields the parameters ro = 0.285 m and 6y =
18.6 urad for a wavelength of 0.5 um and a zenith angle of 0°.
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Fig. 4. Atmospheric-wind-speed profile. This profile was
recorded simultaneously with Fig. 3. The associated Greenwood
frequency is 19.7 Hz at A = 0.5 um.

C.%(h) and wind-velocity profiles that are illustrated in
Figs. 3 and 4. These profiles are an example of good see-
ing conditions that were recorded at Mt. Haleakala,
Hawaii, by a U.S. Air Force Geophysics Laboratory
thermosonde on December 11, 19852" Integrating these
profiles yields the parameter values ro = 0.285 m, 6, =
18.6 prad, and f, = 19.7 Hz at a 0.5-um wavelength and a
zenith angle of 0°. Although seeing conditions that are
this good are unusual at 0.5 pum, values that are this large
for a wavelength of 1.0 um were frequently recorded dur-
ing the Air Force Geophysics Laboratory measurement
program.

Adaptive-optics system performance is quantified in
terms of mean-square residual phase error, expected long-
and short-exposure OTF’s, and long- and short-exposure
Strehl ratios. Mean-square phase errors were computed
with Eq. (2.23). Expected long- and short-exposure
OTF’s were computed with the expression

OTF(«, 6)

fdeA(x)WA(x — Ax)exp[— %2 D(x,x — Ak, 0)]

y (4.1)
| axwzeo
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where D(x,x, 8) = ([e(x, ) — (X', 0)]%) is the structure
function of the residual-phase-distortion profile € in the
direction 0. This expression describes either long- or
short-exposure OTF’s according to whether only the piston
mode or both the piston and the tilt modes have been re-
moved from the phase profile e(x, 8). The structure func-
tion D(x,x/, 0) is related to the second-order statistics of €
by the identity

D(x,x, 0) = (€%(x, 0)) + (€*(X, 0)) — 2(e(x, Pe(x, 0)), (4.2)

and the three terms on the right-hand side of this equa-
tion can be computed with the formula

(€(x, O)e(x, 0))
= <[q§(x, 0) — 2 Fi(x, 6) ?M,s,]
X [J»(:d, 0 - S7x,0 JEM, s,.,]>
= (b(x, 0)d(x, 0) — 37, 0 gMﬁ.«;(x, 0)s;)
- 2 7i(x, 0) %:Mij(d;(x', 0)s;)
+ %Fi(x, 0 (x, 0)%}M3M9"<Sj3j'>~ 4.3)

The covariance terms appearing in Eq. (4.3) may be
evaluated with Eq. (3.27) from Subsection 3.C. Finally,
long- or short-exposure Strehl ratios are computed by in-
tegration of the corresponding OTF.

A. Fitting Error and Noise Gain

We can evaluate the wave-front fitting error for a given
adaptive-optics actuator-subaperture configuration by
applying the techniques that are developed here to a
sample problem with zero wind velocity, a single ground-
level turbulence layer, and a noise-free wave-front slope
sensor. Asaresult of Eq. (8.27), the mean-square residual
phase variance is proportional to the quantity (D/ro)*® in
this special case. The constant of proportionality de-
pends on the system’s actuator-subaperture geometry and
the deformable-mirror actuator influence function. The
right-hand asymptotes of Figs. 2 and 5 of Wallner*® sug-
gest that the mean-square fitting error is accurately ap-
proximated by a scaling law of the form

€ = cr(Liro)™, 4.4

where cr is the so-called fitting-error coefficient and L
is the width of a wave-front-sensor subaperture. Further
details of the subaperture and actuator geometries evi-
dently have little bearing on the value of the fitting error,
at least for square apertures containing 1 to 36 sub-
apertures in either the common-subaperture or the
displaced-subaperture configuration. The first results
of this section investigate this hypothesis for larger,
circular, apertures and compare the fitting error for
minimal-variance estimators with and without closed-
loop constraints.

Fitting-error coefficients have been computed for the
Fried and Hudgin subaperture geometries with D/L = 4,
8, 12, 16, 20. The two subaperture geometries that
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Fig. 5. Actuator-subaperture geometries evaluated for fitting-

(a)

error coefficients. This figure illustrates (a) the Fried and
(b) the Hudgin actuator~subaperture geometries with eight
subapertures/aperture diameter. The large open circles repre-
sent the telescope aperture, and the actuator locations are in-
dicated by the dots. Wave-front-sensor subapertures and the
gradient components that are measured are indicated by the small
squares and vectors. The edge subapertures are truncated by
the boundary of the telescope aperture. The small gaps between
the subapertures appear only for purposes of illustration.

were evaluated with D/L = 8 are illustrated in Fig. 5.
Partial wave-front-sensor subapertures and deformable-
mirror actuators that are located outside but coupling into
the clear aperture were included in the analysis. The re-
sults that were obtained also assume a linear-spline
actuator influence function. As described in Appendix C,
the necessary spatial integrals were evaluated with
Simpson’s rule on a grid of points with 2D/L points/
aperture diameter.

Figure 6 plots the fitting-error results that were ob-
tained for the constrained and unconstrained minimal-
variance estimators and the Fried and the Hudgin
subaperture geometries. For D/L = 12, these results can
be approximated by the scaling laws

€W Lfro®

0.305  (unconstrained estimator, Fried geometry)
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The performance penalty associated with closed-loop con-
straints is no more than a factor of 7% in mean-square
phase error, which is significantly smaller than the factor
of 30% indicated by the right-hand asymptotes of Fig. 3 of
Wallner.”? This difference is attributable to the fact that
Wallner’s closed-loop estimator is the noise-optimal least-
squares estimator that is evaluated under conditions of
zero measurement noise. The performance variation be-
tween the two subaperture geometries is typically between
10% and 15%. The remaining results in this section are
for the case of the Fried geometry.

To parameterize the combined effect of the fitting error
and the wave-front-sensor noise on the reconstructor per-
formance, it is useful to rewrite Eq. (3.27) in the form

_ 2 5/3 3 . -1
_0.97< L) Uﬂ dC; (;)]

x f a1 e (%) ()

(wiw;)
(L/r 0)5/3

X Jm dS[deTwi(r + &/2)yw;(r ~ 6/2)]
—» 0

—y —

26v 2A
D D

min(z;, z;)
x [ agee
0

+ 8; P f wdrwiz(r)/(L/ro)5/3. (4.6)
0

All the covariances (u;u;) that determine the residual
mean-square phase error for the reconstructor are propor-
tional to (L/ry)¥%. The constant of proportionality de-
pends on the actuator-subaperture geometry of the
adaptive-optics system and on the term P; [§drw;(r)/
(L/ro)*®. The latter quantity may be interpreted as the
mean-square wave-front-sensor noise level that first is
scaled by the noise gain of the adaptive-optics servo filter
and then is normalized by the relative level of turbulence
within an individual wave-front-sensor subaperture.

0.325 (constrame.d estlmfitor, Fried gef)metry ) . Figures 7 and 8 plot the tilt-included and the tilt-
0.350 (unconst':ralned ?stlmator, H“figm geometry) removed mean-square wave-front reconstruction errors,
0.365  (constrained estimator, Hudgin geometry) respectively, as a function of D/L and the normalized rms
4.5) wave-front-sensor noise level. These results assume that
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Fig. 6. Fitting-error results for minimal-variance reconstructors with and without closed-loop constraints. Here D is the telescope-
aperture diameter, L is the width of a subaperture, and the mean-square phase error resulting from fitting error is cx(D/ro)*?.
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the mean-square wave-front slope measurement error on
partial subapertures is inversely proportional to the sub-
aperture area. For D/L = 8 and rms wave-front-sensor
noise levels that are no greater than 0.25(L/ry)*®, the per-
formance penalty that is associated with the closed-loop
reconstructor is no greater than 10% in wave-front vari-
ance. This penalty increases for larger noise levels, but
not until the mean-square error for both reconstructors is
approximately an order of magnitude greater than the
no-noise limit imposed by the fitting error. Unlike what
is shown in Fig. 8 of Wallner,”? the performance of the
closed-loop reconstructor never diverges dramatically from

the open-loop case. As the sensor noise level increases,
the range space of the closed-loop minimum-variance re-
constructor is reduced to include only those wave-front
modes for which the expected magnitude of turbulence is
greater than the expected estimation error resulting from
measurement noise.

The effect of sensor noise on wave-front reconstruction
accuracy is frequently estimated by use of a formula of the
form3-15

on® = (C1 + Cy In Ni)opp?, @7

where oy? is the mean-square phase-estimation error that
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Table 1. Short-Exposure Strehl Ratio versus
Control-Loop Bandwidth (f) and Sensor Noise
Level at A = 0.5 pm for a 4-m-Aperture Telescope
with 0.25-m Subapertures under the Atmospheric
Conditions Given in Figs. 3 and 4

f=
Noise at 10f, Waves [ 30 Hz 20 Hz 10 Hz

Natural guide star

0.00 0.772 0.647 0.549 0.312
0.05 0.632 0.537 0.306
0.10 0.604 0.513 0.294
0.20 0.514 0.438 0.253

Sodium guide star (z = 90 km)

0.00 0.598 0.517 0.445 0.263
0.05 0.503 0.433 0.256
0.10 0.481 0.414 0.246
0.20 0.411 0.355 0.213

Rayleigh-backscatter guide star (z = 20 km)

0.00 0.141 0.138 0.129 0.096
0.05 0.131 0.123 0.091
0.10 0.126 0.118 0.088
0.20 0.112 0.105 0.079

is due to noise, opp? is the mean-square phase-difference
measurement error for a single wave-front-sensor mea-
surement, Ny is the total number of wave-front-sensor sub-
apertures, and C; and C, are coefficients depending on the
wave-front reconstruction algorithm and the wave-front-
sensor geometry. The values C; = 0.239 and C, = 0.101
yield a good fit to the results that are plotted in Fig. 7 for
the smaller noise levels.

B. Single Guide-Star Results

This subsection contains numerical results describing the
performance of three different guide-star options for a
4-m telescope imaging at a 0.5-um wavelength under the
good seeing conditions that are presented in Figs. 3 and 4.
The three guide-star options that are considered are a
natural on-axis guide star, a mesospheric sodium-layer
guide star at a 90-km altitude, and a guide-star generated
with Rayleigh backscatter from an altitude of 20 km.
For this sample problem we chose a subaperture width of
0.25 m, which approximately matches the ry, value of
0.285 m for the C,%(z) profile in Fig. 3. The guide-star
options are evaluated in terms of their short-exposure
Strehl ratios and OTF’s for a variety of different control-
loop bandwidths and wave-front-sensor noise levels. Re-
sults on long-exposure performance are deferred until
Subsection 4.C, which discusses multiple-guide-star sys-
tems, since a single laser guide star cannot be used to
measure overall wave-front tilt.

Table 1 lists the short-exposure Strehl ratios for the
three guide-star choices over a range of bandwidths and
noise levels. The finite servo bandwidths of 10, 20, and
30 Hz bracket the 196-Hz Greenwood frequency for the
wind profile in Fig. 4. The noise levels that are listed in
Table 1 are specified at a wave-front-sensor sampling rate
that is assumed to be a factor of 10 larger than the control-
loop bandwidth. The corresponding noise levels at the
control-loop bandwidth will be attenuated by a factor of
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(m/10)¥2 = 0.56. The short-exposure Strehl ratio for the
natural guide star with zero noise and infinite bandwidth
reflects the effect of the fitting error for the common-
subaperture geometry and the parameter values D/L = 16
and L/r, = 0.25/0.285 = 0.877. The noise-free, infinite-
bandwidth Strehl ratios for the two laser-guide-star op-
tions incorporate the additional wave-front reconstruction
error resulting from focus anisoplanatism. This is a rela-
tively modest effect for the mesospheric-sodium-layer
guide star and a much more significant degradation for
the Rayleigh-backscatter beacon at an altitude of 20 km.
The Strehl ratios that were computed for finite control-
loop bandwidths are significantly larger than what would
be expected based on the standard scaling laws for long-
exposure Strehl ratios'™®® that neglect interactions with
the fitting error and with focus anisoplanatism.

The degree of interaction between wave-front-sensor
noise and other error sources can be estimated from a
comparison of Table 1 and Fig. 8. For example, a wave-
front-sensor noise level of 0.1 wave at the wave-front-
sensor sampling rate corresponds to a normalized noise
level of [0.1 X 0.56/0.877%] X (L/re)®® = 0.0625(L/ry)"®
wave at the control-loop bandwidth. Using Fig. 8, we find
that the predicted increase in the mean-square phase
error that is due to this noise level with D/L = 16 equals
0.097(L/ry)*® = 0.078, which corresponds to a relative
Strehl-ratio reduction of approximately exp(—0.078) =
0.925. The Strehl ratios that are listed in Table 1 for the
0.1-wave noise level, which account for the interactions be-
tween noise and other error sources, are degraded by a
factor in the range of 0.912-0.937 from the Strehl ratios
that are computed for 0.0-wave measurement noise. The
corresponding Strehl-ratio losses for a 0.2-wave noise level
at the sensor sampling rate are 0.788 (F'ig. 8) and 0.791-
0.831 (Table 1). The Strehl-ratio degradation that is due
to wave-front-sensor noise is effectively decoupled from
focus anisoplanatism and servo-bandwidth effects for the
representative noise and bandwidth parameters that are
given in Table 1.

Short-exposure OTF’s corresponding to the Strehl ratios
that are listed in Table 1 are presented in Figs. 9-12.
The results for the zero-sensor-noise, infinite control-loop
bandwidth case are plotted in Fig. 9. The OT¥’s for either
the natural guide star or the mesospheric-sodium-layer
guide star are proportional to the diffraction-limited OTF
at all but the lowest spatial frequencies, with a constant of
proportionality equal to the noise-free, infinite-bandwidth
Strehl ratio that is listed in Table 1. The OTF for the
Rayleigh-backscatter guide star at 20 km is not a scaled
version of the diffraction-limited result but does remain
within an order of magnitude of the diffraction-limited
OTF at all spatial frequencies. All three cases represent
an improvement of at least 2 orders of magnitude over the
short-exposure OTF without adaptive optics.

Figures 10-12 plot the relative reduction to the short-
exposure OTF’s that are due to a finite control-loop band-
width and a sensor noise level of 0.2 wave. With zero
wave-front-sensor noise, the OTF reduction resulting from
a loop bandwidth of 20 or 30 Hz for either the natural
guide star or the mesospheric-sodium-layer guide star is
constant to within 5% for all normalized spatial frequen-
cies greater than 0.2. The OTF reduction at 10 Hz for
these guide stars or at any bandwidth for the Rayleigh-
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backscatter guide star is more variable but differs by no
more than +20% for spatial frequencies between 0.2 and
0.9 times the diffraction-limited cutoff. The larger OTF
variations for the Rayleigh-backscatter guide star indicate
a stronger interaction between focus anisoplanatism and
servo-bandwidth effects. Finally, the additional OTF re-
duction resulting from 0.2 wave of wave-front-sensor noise
is approximately constant for all three guide stars and for
servo bandwidths at spatial frequencies above 0.2 times
the diffraction-limited cutoff.

C. Multiple-Guide-Star Results
The single-guide-star results that are presented above il-
lustrate the relatively poor performance that is achievable

with a single Rayleigh-backscatter guide star for large-
aperture visible-wavelength adaptive optics. The number
of stars that are sufficiently bright to serve as natural
guide stars for visible imaging is very limited, however,
and illuminator lasers that have sufficient power and
beam quality to generate bright mesospheric-sodium-layer
beacons have not yet been demonstrated. Guide-star
constellations containing multiple beacons are one possible
approach to obtaining improved OTF’s and Strehl ratios
with minimum reliance on natural or mesospheric-sodium-
layer guide stars. Figure 13 plots the noise-free infinite-
bandwidth short-exposure OTF’s for three possible
multiple-guide-star configurations. These results are for
the same aperture diameter, atmospheric profiles, and
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deformable-mirror actuator spacing as in Subsection 4.B.
The guide-star constellations that are considered and the
short-exposure Strehl ratios corresponding to the OTF’s
given in Fig. 13 are

® A constellation of four Rayleigh-backscatter guide
stars at a 20-km altitude. The guide stars are transmit-
ted with the full telescope aperture and arranged in a
square with 2 m between guide stars. Each wave-front-
sensor subaperture measures wave-front slopes for the
guide star that is most nearly overhead. The short-
exposure Strehl ratio for this option is 0.214.

® A constellation of one on-axis Rayleigh-backscatter
guide star at a 20-km altitude and an on-axis mesospheric
sodium-layer guide star. A separate wave-front sensor

with four subapertures measures the wave-front slopes for
the mesospheric sodium-layer guide star. The illuminator
power that is necessary for the mesospheric sodium-layer
beacon is greatly reduced from the single-beacon case be-
cause the subaperture area has increased by a factor of 64.
The short-exposure Strehl ratio for this hybrid guide-star
configuration is 0.260.

® A constellation of one on-axis Rayleigh-backscatter
guide star at 20 km and an on-axis mesospheric sodium-
layer guide star sensed with a wave-front sensor with 16
subapertures. The short-exposure Strehl ratio for this

constellation 1s 0.433.

Guide-star position uncertainty significantly limits the
OTF and the Strehl ratio that are achieved with four
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Rayleigh guide stars. The Strehl ratio of 0.214 increases
to 0.272 if this effect is neglected in the analysis. Results
that are similar to those shown in Fig. 13 are achieved for
larger-aperture telescopes with a hybrid guide-star con-
stellation consisting of a bright mesospheric sodium-layer
guide star and a dim natural guide star.

All laser-guide-star adaptive-optics systems are in some
sense multiple-guide-star systems because a natural guide
star must be used to sense full-aperture wave-front tilt.
Natural guide stars that are sufficiently bright for this
purpose have densities that are low relative to the size of
the isoplanatic angle at visible wavelengths. Figures 14—
16 illustrate how noise-free infinite-bandwidth long-
exposure OTF’s degrade because of the tilt anisoplanatism

Vol. 11, No. 2/February 1994/J. Opt. Soc. Am. A 799

that is caused by angular displacement of the tracking
guide star. These results are once again for a 4-m-
aperture telescope, a 0.5-um evaluation wavelength, a 0°
zenith angle, a 0.25-m subaperture width, and the atmo-
spheric turbulence and wind profiles that are given in
Figs. 3 and 4. For Fig. 14 it is assumed that a single
off-axis natural guide star is used for both tilt sensing and
higher-order adaptive optics. In this case a guide-star
separation of as little as 8 arcsec degrades the long-
exposure OTF by an order of magnitude. Figures 15 and
16 plot results for a single on-axis laser guide star com-
bined with an off-axis tracking guide star. Only wave-
front tilt compensation is degraded by anisoplanatism
for these curves, and the long-exposure OTF’s that are

1.000 RS
b W
X
N\
NN Rl
N | e
-~ <
NN T T~ ~d
“~
0.100 - T o o
= - e ~
(=] - ~ ~ .
g e s ~ N
8 —~— N A
g TN NG
? Ny
= 1y
=3 [}
@ A \\ \\ "
0.010 NoErey
oo A\ Y
-{ === 35ingle Rayleigh guide star NN
~| == = Four Raylefgh guide stars AWY \
Il = == Rayleigh and sodlum guide star Ny, =0 “
----- Rayleigh and sodium guide star (Ng,=16) \
7 T I 1 H H H T H
0.001 - '
0 0.2 0.4 0.6 0.8 1

Spatial frequency

Fig. 18. Short-exposure OTF’s resulting from anisoplanatism and fitting error for three multiple-guide-star constellations. These re-
sults are again for the parameter values D = 4 m, L = 0.25 m, ¢ = 0° and the atmospheric profiles shown in Figs. 3 and 4. These results
also assume zero wave-front-sensor measurement noise and an infinite control-loop bandwidth. Ng, is the number of subapertures for
the sodium-guide-star wave-front sensor. The Rayleigh-guide-star altitude is 20 km. Each guide star is sensed over a quadrant of the

telescope aperture for the case of four Rayleigh guide stars.
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Fig. 17. FOV and guide-star geometries for multiconjugate
adaptive-optics calculations. The telescope FOV that is to be com-
pensated is a square that is 100 urad in width. The five circles
indicate the directions of natural and/or laser guide stars used for
wave-front sensing. The wave-front reconstruction algorithm is
selected to minimize the weighted sum of residual mean-square
phase errors at nine points in the FOV, as indicated by the points
and the weights.

achieved with an on-axis laser guide star and a displaced
tracking guide star are significantly larger than the OTF
for a single natural guide star that is displaced by a com-
parable angle.

Complete sky coverage at visible wavelengths with laser-
guide-star adaptive optics will require either accurate
tracking with very dim guide stars or guide-star offsets
that are considerably larger than 20 arcsec. For example,
the density of m =< 17.8 stars that provide a flux of at least
1100 (photons/m?)/s in the 0.55 + 0.09 wm spectral band
is ~0.25 star per square arcmin outside the plane of
the galaxy.? Practical techniques for accurate tilt-
anisoplanatism compensation with large guide-star offsets
have not yet been identified.

D. Multiconjugate Results
The parameter space of possible multiconjugate adaptive-
optics configurations is so large that we did not attempt to
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develop scaling laws that characterize the performance of ual phase variance averaged over the entire FOV. Natural
an extended range of potential systems. Instead we fo- or laser guide stars are located at the center and four cor-
cused attention on one particular implementation to ners of the field, and deformable mirrors are located con-
quantify the potential performance advantage of multi- jugate to ranges 0 and 5 km along the telescope’s line of
conjugate adaptive optics in at least one special case. sight. Adaptive-optics performance does not appear to be
Figure 17 illustrates the FOV and guide-star geometries a strong function of guide-star location or deformable-
that are assumed for these sample calculations. The FOV mirror altitude, provided that each deformable mirror ac-
is a square of width 100 prad (20.6 arcsec). The FOV tuator couples into the wave-front-sensor measurements
weighting function Wx(6) is a linear combination of nine for at least one guide star.
delta functions located at the center, the edges, and the Figures 18 and 19 plot long-exposure OTF’s at three
corners of the field. The values of Wr(6) at these nine points in the field of view of this multiconjugate configu-
points are derived from Simpson’s rule, so the mean-square ration. The OTF’s for a system that comprises a single
residual phase error €2 that is computed from these nine deformable mirror and one natural, on-axis guide star are
weights is the Simpson’s rule approximation to the resid- also plotted for comparison. These results assume a 3-m-
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Fig. 18. Long-exposure OTF’s for a multiconjugate configuration with five natural guide stars. These results assume the parameter
valuesD = 3m, L = 0.25 m, ¢ = 0% and A = 0.5 um and the atmospheric profiles illustrated in Figs. 3 and 4. Deformable mirrors are
located conjugate to altitudes of 0 and 5 km, and the interactuator spacing is 0.25 m for both mirrors. These results also assume zero
wave-front-sensor measurement noise and an infinite control-loop bandwidth.

1.000 N7 T
\\C\“\
G ~— o
AN \\ :\ S
N \\ ~ .
0.100 ™ ™ ™ X
-~ B
w NG \
5 ~ N Field Point
2 ~ -
2 N NN
5’ o N \‘ \*'— Center FOV
2 \ N
2 . N
0.010 & Q \
\\\ 7 Edge FOV
N
: i N \ /> Corner FOV
H H H ] H H \ {
...... Solid:  Multiconjugate Adaptive Optics \ /y
Dashed: Single Guide Star ‘/ \
0.001
0 0.2 0.4 0.6 0.8 1

\

Spatial Frequency

Fig. 19. Long-exposure OTF’s for a multiconjugate configuration with one on-axis natural guide star and four mesospheric-sodium guide
stars. This figure is similar to Fig. 18, except that the four natural guide stars at the corners of the telescope’s FOV have been replaced
by guide stars in the mesospheric sodium layer.
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aperture diameter, a 0° zenith angle, D/L = 12 for both
deformable mirrors, the Fried subaperture geometry for
all wave-front sensors, a 0.5-um evaluation wavelength,
zero wave-front-sensor measurement noise, an infinite
control-loop bandwidth, and the atmospheric C,2(h) profile
that is illustrated in Fig. 3. Figure 18 plots results for
five natural guide stars, and Fig. 19 describes system per-
formance with one natural and four mesospheric sodium-
layer guide stars. Because the isoplanatic angle for this
wavelength and this turbulence profile is ~20 urad, the
OTF’s for a single guide star are degraded considerably at
the edge and the corners of the =50-urad FOV. The long-
exposure Strehl ratios corresponding to these OTF’s are
0.774 (center), 0.140 (edge), and 0.070 (corner). The
OTF’s for either of the two multiconjugate configurations
decrease much more gradually with field angle. The long-
exposure Strehl ratios for these OTF’s are 0.720/0.704
(center), 0.569/0.447 (edge), and 0.441/0.282 (corner), with
the first number of each pair corresponding to the con-
figuration with five natural guide stars.

The effect of a finite servo bandwidth and wave-front-
sensor measurement noise on the performance of this
multiconjugate adaptive optics system is listed in Table 2.
The results are listed for control-loop bandwidths f be-
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tween 10 and 60 Hz and rms wave-front-sensor noise
levels from 0.00 to 0.20 wave at 10f. Table 2 is for the
case of five natural guide stars, with all the remaining
system parameters as for Fig. 18. The relative reduction
to long-exposure Strehl ratio resulting from a finite servo
bandwidth with zero wave-front-sensor noise is relatively
uniform for all three field points that are evaluated and is
approximately equal to the on-axis Strehl-ratio reduction
for a system that uses only a single guide star. Wave-
front-sensor noise actually has a lesser effect on the multi-
conjugate system than on the single guide star system,
presumably because the use of multiple guide stars intro-
duces some redundancy into the sensor measurement
vector. The increased complexity of the multiconjugate
wave-front reconstruction algorithm evidently does not
imply increased sensitivity to wave-front-sensor noise or
servo lag.

5. SUMMARY

The impulse-response function of a linear closed-loop
adaptive-optics system can be a highly nonlinear function
of the wave-front reconstruction matrix. This relation-
ship is linear for reconstructors that precisely predict

Table 2. Relative Reductions in Long-Exposure Strehl Ratio Resulting from Finite Servo Bandwidth (f)
and Sensor Noise Level for a Multiconjugate Adaptive-Optics System®

Multiconjugate Adaptive Optics

Single Guide Star
Noise at 10f, Waves On Axis On Axis Edge FOV Corner FOV
f =60Hz
0.00 0.943 0.942 0.953 0.955
0.05 0.919 0.924 0.937 0.950
0.10 0.867 0.892 0.909 0.937
0.20 0.702 0.806 0.826 0.864
f =40 Hz
0.00 0.885 0.885 0.902 0.907
0.05 0.862 0.868 0.886 0.902
0.10 0.814 0.837 0.859 0.889
0.20 0.659 0.757 0.784 0.821
f =30Hz
0.00 0.818 0.818 0.840 0.848
0.05 0.796 0.803 0.826 0.844
0.10 0.752 0.775 ’ 0.801 0.832
0.20 0.611 0.703 0.731 0.769
f =20Hz
0.00 0.677 0.679 0.707 0.721
0.05 0.660 0.667 0.696 0.719
0.10 0.624 0.644 0.677 0.707
0.20 0.509 0.585 0.617 0.655
f =10 Hz
0.00 0.346 0.351 0.380 0.404
0.05 0.339 0.346 0.374 0.403
0.10 0.323 0.336 0.366 0.397
0.20 0.270 0.308 0.337 0.372

“These results assume the parameter values A = 0.5 um, D = 3 m, D/L = 12 and the atmospheric conditions given in Figs. 3 and 4. The multiconjugate

adaptive-optics configuration is described in Fig. 17 and in the text.
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the deformable-mirror actuator command vector in the
absence of wave-front-sensor noise and atmospheric
turbulence. The closed-loop performance of such recon-
structors can be evaluated and optimized with minimal-
variance estimation techniques that have previously been
applied to the open-loop case.”"? The results that were
obtained describe adaptive-optics system performance in
the presence of error sources, including fitting error,
sensor noise, servo lag, and anisoplanatism. They are
also applicable to multiconjugate adaptive-optics configu-
rations that incorporate multiple guide stars and de-
formable mirrors to compensate atmospheric turbulence
across an extended field of view.

APPENDIXA: Q:Q = Q«

Section 2 of this paper requires the relationship @+ =
@+, where the matrix @ is an arbitrary orthogonal projec-
tion operator that is defined on the vector space of
deformable-mirror actuator commands and the projection
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Fla,b) = =S v @ don - 11

+ % j dvy~adi(av) — adi(av)dy(bv)
0

— by (bv)dy(av)]. (B2)

The first term on the right-hand side of Eq. (B2) vanishes
because of the asymptotic behavior of the function Jp.
The second term may be abbreviated in the form

3
fla,b) = —5-[ag(0, a) — ag(b,a) — bgla,b)], (B3)
where the function g(a, d) is defined by
gla,b) = J dvr =y (av) 1 (by) . (B4)
0

This integral can be evaluated with Egs. (11.4.33) and
(11.4.34) of Luke® with the following result:

gla,b) =

]

o 1AM (bY? 11 5 (a)] |
25/31"(11/6)(a> 2156 \% ifa=?t

> (Bb)
_F<1/6><_b_ M i.z.(gz therwi
25/3 F(5/6) a 241 6 6, ’ a otherwise

operator @+ is defined by Eqs. (2.38)-(2.40). Since both of
these matrices are orthogonal projection operators, we may
prove this equality by demonstrating that the null space of
Q is contained within the null space of @+. Suppose that
the vector x is an element of the null space of @ so that
@x = 0. Using Egs. (2.18), (2.33), (2.34), and the condi-
tion Q'R = RQ for the orthogonal projection operator @
yields the relationship

xTR2OTAORY?x = xT(RMAT + AMTR + RMSM™R)x
—0. A1)

The vector R¥?*x is therefore an eigenvector of the matrix
OTAO, with eigenvalue 0. Equations (2.38) and (2.39) for
the matrix L imply that

OTLORY*x = 0, (A2)
which, when combined with Eq. (2.40), yields
Q+x=0. (A3)

The vector x is therefore contained in the null space of
the matrix @+, which is sufficient to demonstrate that

Q+Q = Q.
APPENDIX B: EVALUATION OF f(a,b)
The function f(a, b) is defined in Section 3 by the integral

fla,b) = f dvy ¥y (av)[Jo(by) — 1]. (B1)
0

Here J, is a Bessel function of the first kind.?® This ap-

pendix derives a computational formula for f(a, b) in terms

of the gamma function and the hypergeometric functions.
Integrating Eq. (B1) by parts yields

where »F(a, b; ¢; 2) is a hypergeometric function.®

Equations (B3) and (B5) provide the desired computa-
tional formula for the function f(a,b). Direct numerical
evaluation of the definition®

3

[© < Ta+ nle +n e

210,668 = or & Te+m Al

(B6)

can require a very large number of terms for values of z
approaching unity. It is much more efficient to precom-
pute the values and the derivatives of the hypergeometric
function with Eq. (15.2.1) of Oberhettinger® at a set of
points within the unit interval and then to compute, with
Taylor series approximations, all the remaining hyper-
geometric evaluations that are necessary for Eq. (B5).
Fifth-order derivatives precomputed at 40 points provide
11 digits of accuracy for this purpose.

APPENDIX C: NUMERICAL INTEGRATIONS

The evaluation formulas that are derived in Section 3 for
the quantities {e®), A, and S include integrals over the
field of view of the telescope, the aperture of the telescope,
the range, and the time. This appendix briefly summa-
rizes the numerical techniques that are used to compute
these integrals.

The integral with respect to range in Eq. (3.27) is evalu-
ated with a Gaussian quadrature formula® of the form

o M
f GCXDFD) ~ D eif ). @)
0 i=0

The coefficients ¢; and ranges z; are selected to satisfy the
conditions

- M
J dzC.2(2)2z™ = 2 ciz™ (C2)
0

i=0
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Table 3. Gaussian Quadrature Weights, Altitudes,
and Wind Speeds for Altitude
Integrations Weighted by C,%(z)

Layer Altitude (m) Turbulence Weight Wind Speed (mn/s)
1 61.211 0.216 7.997
2 1178.485 0.105 9.760
3 2350.632 0.415 9.280
4 4567.710 0.078 28.119
5 7158.162 0.064 28.286
6 11763.788 0.032 17.946
7 14947.749 0.027 9.126
8 17632.778 0.022 4,926
9 21184.678 0.006 4.071
10 23528.705 0.003 2.519
11 24864.313 0.001 2.301

Table 4. Discrete Weights for Temporal Integrals
Weighted by klexp(—k7)]

l C;

0.395
1.109
0.990
1.011
0.995
1.001
0.984
0.980
0.961
0.432
3.770

Bowaoomswh~o

-0.083 0.000 0.083 0.030 -0.027 -0.003
A L] [ ] L]

*—

-0.333 0.000 0.333 -0.293 -0.144 0.437
] [ ] ] L °

0.013

(a) (b)

Fig. 20. Discrete weights for x-wave-front slope measurements
on (a) unobscured and (b) partially obscured wave-front-sensor
subapertures. The phase values at the nine points are summed
with the indicated weights to approximate the average x-wave-
front tilt over the continuous subaperture. This approximation
is exact for any wave-front quadratic in both x and y over the
square that is bounded by the four corner points.

-0.083 0.000 0.083 0.145
- J

for m = 2M — 1. Values of ¢; and z; for the turbulence
profiles that are used in Section 4 and for M = 11 are
listed in Table 3.

The temporal integral in Eq. (3.27) is approximated
with the discrete summation

M

[ e - 0 = Y wisnesefc - it ©3)
0

i=0

The coefficients ¢; are in this case selected to minimize
the mean-square error
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e? = <[der¢(x, 6,t — Dw()
0

M
- > h(x,0,t — iAT)w(iAT)ciA7]> (C4)
=0
for the Kolmolgorov spectrum with an infinite outer scale
and a zero inner scale. We recall from Eq. (8.10) that the
possible values for the temporal weighting function w(r)
are either 6(7) or k[exp(—k7)]. Ifw(r) = 8(7), the required
weighting coefficients are clearly M = 0 and ¢ = 1. For
the case w(r) = klexp(—%7)] we use the parameters M =
10, Ar = 1/(2k), and the values of ¢; that are listed in
Table 4. The final coefficient ¢y is larger than the re-
maining coefficients to account for truncated portion of
the integral in relation C3.

Finally, the spatial integrals in Egs. (3.18)-(3.20) and
(3.27) are approximated with two-dimensional discrete
summations of the form

f dxo(x)f(x) =~ D, v, f(iAx, jAx). (C5)
i,j

The grid-point spacing Ax is equal to one half of the spacing
between deformable-mirror actuators on the deformable
mirror with the highest actuator density. The coeffi-
cients v; are chosen so that relation (C5) is an equality for
any function f that is second order in both x; and x; within
each square that is bounded by four of these actuators.
For example, Fig. 20(a) illustrates the coefficients that are
used to compute the x-wave-front slope on a completely
illuminated wave-front-sensor subaperture. These are
standard Simpson’s rule weights. Figure 20(b) illustrates
the modified coefficients that are used for a subaperture
that is partially obscured by the edge of the telescope ap-
erture. These coefficients yield the exact wave-front tilt
for any wave-front that is quadratic in both x; and x,
within the area that is bounded by the four actuators.
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