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[bookmark: _Toc220490110][bookmark: _Ref236996990][bookmark: _Ref237321884][bookmark: _Toc246310104]Introduction and Organization
This document covers the preliminary design of the Keck Next Generation Adaptive Optics Real Time Controller (NGAO RTC).
This section is an overall introduction and summary of the RTC architecture and implementation and the organization of the document.
Section 2 describes the overall system characteristics.
Section 3 covers the latency and timing requirements that drive the architecture and implementation decisions.
Sections 4 through 11 cover the individual sub-systems in the RTC: Control Processor (CP), Wave Front Sensors (WFSs), Tomography Engine (TE), DM and Mirror Command Generators …
Subsequent sections cover RTC issues of a general nature or related topics.
For details on the algorithms used, see [ref Don Gavel, RTC Algorithms Document].
[bookmark: _Toc246310105]Relationship to the Functional Requirements Document (FRD)
Each section of this document describe the design of the hardware or software that is intended to satisfy one or more of the functional requirements set forth in the RTC FRD (______).
Where appropriate, an annotation, “FR-XXXXX”, is noted throughout this document that refers to a specific functional requirement in the FRD that is being addressed.
Appendix B contains a cross reference between the functional requirements and the sections in this document that address them.
[bookmark: _Toc246310106]Background and Context
The design of the Real-Time Processor for the Keck Next Generation Adaptive Optics system represents a radically new computational framework that blazes new territory for astronomical AO systems.  The need for a new approach is due to the considerable step up in the amounts of data to be processed and controls to be driven in a multiple guide star tomography system.  Furthermore, KNGAO has set ambitious new goals for wavefront correction performance that puts further pressure on processing rates and latency times that traditional compute paradigms have trouble scaling up to.  Current processing requirements are in the Terra Operations per second region.  Instead, the KNGAO RTC is structured around a massively parallel processing (MPP) concept, where the highly parallelizable aspects of the real-time tomography algorithm are directly mapped to a large number of hardware compute elements.  These compute elements operate separately and simultaneously.  With this approach, increasing problem size is handled roughly by increasing the number of processor elements, rather than processor speed.
In short, in this design, the structure of the algorithm drives the structure of the hardware.  Therefore, it is necessary to understand the algorithm itself to understand the hardware architecture, so please review the companion volume [ref Don Gavel, RTC Algorithms Document], which presents the technical details of the massively parallel algorithm for AO tomography.
For the purpose of introducing the hardware design, the algorithm and hardware have three main top-level component steps: wavefront sensing, tomography, and DM control.  These physically map to component blocks of hardware, see Figure 1.  The actual physical layout of boards and connecting cables mimic this geometry.  Inside the blocks, further parallelization is achieved by use of Fourier domain processing, where each spatial frequency component is processed independently.  Fourier-domain algorithms have been developed in recent years for wavefront phase reconstruction [ref Poyneer] and for tomography [ref Tokovinin, Gavel].


[bookmark: _Ref242771316][bookmark: _Toc246310318]Figure 1	Simplified View of the RTC

As stated, the real-time processing takes place on small compute elements, either Field-Programmable Gate Arrays (FPGAs, Graphical Processing Units (GPUs), or multiple processors and cores.
FPGA devices have been used in the digital electronics industry since the 1980’s, when they were first used as alternatives to custom fabricated semiconductors.  The arrays of raw unconnected logic were “field-programmed” to produce any digital logic function.  They grew in a role as support chips on board computer motherboards and plug-in cards.  Recent versions incorporate millions of transistors and some also incorporate hundreds to thousands of on-chip conventional arithmetic processors.  Their use is now common in many products from high performance scientific add in boards to consumer portable electronics including cell phones.  Today these chips represent a fast growing, multi-billion dollar industry.
Graphical Processing Units were first introduced to offload the video processing for computer displays from the computer’s CPU.  They have since developed as a key processor for digital displays, which have demanding applications in computer-aided design and video gaming.  GPUs specialize in geometric rotations, translations, and interpolation using massive vector-matrix manipulations.  Beyond graphics, GPUs are also used in analyzing huge geophysical signal data sets in oil and mineral exploration and other scientific calculations requiring extremely high performance.  GPUs can be adapted to the wavefront reconstruction problem through these means and, at this point, they remain a possible low-cost option in AO for wavefront sensor front-end video processing, but they are still under evaluation for this purpose.
The RTC uses a mix of CPUs, GPUs, and FPGAs to best match their individual strengths to the RTC’s needs.
[bookmark: _Toc246310107]Design Philosophy
For efficiency, we are maximizing the use of existing designs and code.  The WFS are based on the Villages and GPI systems for reconstruction and the Villages open loop DM control.
To insure the maximum reliability, serviceability, and maintainability, we have maximized the use of commodity parts and industry standard interfaces.  
We have matched the structure of the problems to the form of the solutions and to their implementation.  This maintains the visibility of the various aspects of the original problem as they are transformed through the algorithms and implementations.
It is not often you can examine several alternate implementations in full detail.  Each of several possible algorithms has several possible implementations.  We have investigated these within the budgeted time and resources available.
[bookmark: _Ref245021311][bookmark: _Toc246310108]Functions of the RTC System (FR-1401)
1. Measure the atmosphere using 7 laser and 3 natural guide stars, producing wave fronts and tip/tilt, focus, and astigmatism values based on these measurements.
2. Using the measurements above, estimate the three dimensional volume over the telescope (tomographic reconstruction).
3. Determine the correct shape of the DMs that will correct for the turbulence for each DM and the values for each tip/tilt mirror in the system.
4. Generate the correct commands for each DM and mirror, compensating for any non linearity or influence functions.
5. Capture any diagnostic and telemetry data and send it to the AO Control or the RTC Disk Sub-System as required.
6. The RTC interacts with the telescope system and the AO Control through two Ethernet connections: one connected to the RTC Control Processor (CP) and one connected to the RTC Disk Sub-system. 
Additional functionality will be to compensation for vibrations (Reference the section)
[bookmark: _Toc246310109]Algorithm

List steps

The optimal implementation for one element will not be the optimal implementation for all the elements; nor will the optimal overall implementation likely be the optimum for most (if any) elements.



[bookmark: _Toc246310319]Figure 2	Simplified Tomography Algorithm

We have a sequence of parallelizable steps, each with different characteristics: 
· A somewhat parallelizable I/O portion, done once at the beginning and the end of a frame
· An embarrassingly parallelizable basic algorithm, done in the Fourier domain
· A simple aperturing algorithm which must unfortunately be done in the spatial domain
· A highly parallelizable (but with heavy busing requirements) Fourier transform required by the need to move back and forth between the spatial and Fourier domains, so that we can apply the aperture
The last three items are applied in sequence, for each iteration required to complete a frame (see _____).
The architecture balances the requirements.  

Show a small version of the overall system that this expands from

[bookmark: _Toc246310110]Functional Architecture
The NGAO RTC is not a single computer or controller.  It consists of many different computers and processors (> 10) each performing different functions simultaneously, but with their inputs and outputs synchronized to perform the overall task of correcting the science wave front.
Figure 1 is a top level view of the overall system and its relationship to the AO Control.  Figure 3 depicts the overall design, emphasizing real-time signal flow.  Figure 41 highlights the flow of telemetry, diagnostic, and offload data.


[bookmark: _Ref242774866][bookmark: _Toc246310320]Figure 3	Top-level view of the AO Control’s View of the RTC

The RTC System is a real-time digital control system that operates on a fixed clock cycle, referred to as the Frame Clock.  Each frame, the RTC takes data from various cameras, processes it, and updates the various mirrors and DMs for which it is responsible.
It runs the same program on each frame, with different data, but the same parameters, repeatedly, until the AO Control causes it to change.  
The acts as the synchronizing interface between the AO Control and the rest of the RTC.  It takes asynchronous requests and control coming from the AO Control and synchronizes them as required with the rest of the RTC components.  It is based on a conventional Linux processor.
The parameter loading determines the “state” of the RTC.  This loading occurs in the background to the real-time cycles.  Parameter updates to the PEs [define] occur synchronized to the frame clock.  This insures that all information processed during a frame is processed with the same parameters.  The companion document [ref Processing Engine to AO Control Interface Design Document] describes the available control parameters and the update process in detail.
[bookmark: _Toc246310111]Control Processor (CP)

(See Figure 3 and Figure 13) 




[bookmark: _Toc246310112]Wave Front Sensors (WFS)
A short overview: There are two types of WFS in the NGAO RTC: low order (LOWFS) and high order (HOWFS).
LOWFS
LOWFS use an IR natural guide star (NGS) to estimate tip/tilt, focus, and astigmatism for the science field.
A low-order wavefront sensor (LOWFS) processor is responsible for converting raw camera pixel data into a tip/tilt signal, plus focus and astigmatism numbers for the one TTFA sensor.  Algorithm details are given in the [ref Don Gavel, RTC Algorithms Document].  Each LOWFS camera operates in parallel and feeds its data to the LOWFS.  The LOWFS processes the data and sends commands to the science tip/tilt actuator on the Woofer and to the tomography engine.
HOWFS


[bookmark: _Toc246310321]Figure 4	Point-and-Shoot HOWFS/LOWFS Pair

A high-order wavefront sensor processor is responsible for converting raw Hartmann WFS camera pixel data into an array of wavefront phase measurements spaced on a regular grid in a coordinate system that defined as common throughout the AO system.  HOWFS use a laser guide star (LGS) or an NGS to probe the atmosphere and determine the high order atmospheric distortion in that direction.  There are two types of HOWFS:
The Point-and-shoot HOWFS first generates a wave front to correct light in the direction of the LGS.  This wave front is then converted to DM commands that are used to determine the shape of a DM.  This DM is used to sharpen their associated LOWFS NGS.
The tomography HOWFSs provide probing of the atmospheric volume containing the science object and generate a wave front in the direction of the LGS.  These wave fronts are processed by the tomography engine and used to estimate the volume in the direction of the science object.  The estimate of the volume is in turn used to provide a wave front to correct light in that direction.  This wave front is passed to a DM command generator to place the desired shape on the science DM.
Each HOWFS wavefront sensor has an associated wavefront sensor processor.  These operate in parallel then feed their aggregate results to the tomography engine.
The architecture for the hardware for all WFSs follows the massively parallel approach.  First, each wavefront sensor has an associated wave front sensor processor card, operating in parallel with but otherwise independent of (other than the frame synchronization clock) every other processor card.
At the present time, it is not established whether the WFSs will be implemented using FPGAs or with GPUs.
[bookmark: _Toc246310113]Tomography Engine
The tomography engine’s processors are mapped “horizontally” over the aperture.  A given processing element (PE) on this map is assigned a piece of the aperture and alternates processing a portion of either the spatial or Fourier domain of it.



Diagram

All computational elements run the identical program, albeit with different parameters and data.  Each processor in the tomography engine is connected to its four neighboring elements (representing the next spatial frequency over in both directions) because is it necessary to shift data to neighbors in order to implement the Fourier transform and interpolation steps in the tomography algorithm.
[bookmark: _Toc246310114]DM Command Generators
The Point-and-Shoot HOWFS’s and the tomography engine’s wavefronts are sent to the deformable mirror command generators for their DMs.  These are dedicated units, one per DM.  They take desired wavefronts in and produce DM command voltages that result in the correct wavefront, taking into account actuator influence functions and nonlinearities of each DM.


Diagram


[bookmark: _Toc246310115]Disk Sub-System
The RTC Disk Sub-System (see Figure 3) is an extremely high performance, large storage system that is designed to capture system Telemetry data that can be generated by the RTC.  This data can be generated at over 36 GBytes/sec.  This system is designed to be able to capture this data for an extended period, but it is not intended to be an archival system for long-term storage or access.  The system has a capacity to store up to 60 terra bytes of data, which could be filled in a matter of days of heavy use.
Likewise, no data base facilities are provided beyond normal directory services.
[bookmark: _Toc246310116]Global RTC System Timing
Sub msec accurate time stamping of data will be provided for the telemetry stream.  This will provide 
[bookmark: _Toc246310117]Diagnostics and Telemetry Stream
All major data signals can be sent to the Telemetry/Diagnostic stream at the request of the AO Control.  Any data in this stream can be sent to either-or-both the AO Control, for diagnostics, or the RTC disk sub-system, for storage.  (See: Section 9 )
Data that can be saved through Telemetry or viewed through Diagnostics include (See Section 9):
1. Raw Camera Data
Centroids
Wave Fronts
Tomographic Layers
Science on-axis High Order Wave Front
Science on-axis Woofer Wave Front
Science on-axis High Order Commands
Science on-axis Woofer Commands
RTC Current Parameter Settings
All Diagnostic information is time stamped accurate to one Frame Time.


[bookmark: _Toc246310118]Physical Architecture
The RTC is physically divided between the Naismith and the computer room below the telescope.  The cameras, their controllers, the DMs, and their controllers are located on the Naismith.  The rest of the RTC, the WFS, tomography engine, disk sub-system, DM command generators, control processor, and clock generator are located in the computer room.  The two sections are connected by high-speed fiber links.


[bookmark: _Ref244593054][bookmark: _Toc246310322]Figure 5	RTC Physical architecture, showing the divide between the Naismith and the computer room


[bookmark: _Toc246310119]Implementation Alternatives

[bookmark: _Toc246310120]Multi-core CPUs

[bookmark: _Toc246310121]FPGAs
XXXX
FPGAs have a significant advantage over traditional CPUs in that you can change both their hardware and software.
[bookmark: _Toc246310122]GPUs
XXX
We are examining different candidate technology implementations for the WFS and the DM Command Generators.  
The WFS can be implemented using conventional CPUs, FPGAs, or GPUs.  We are currently determining the best fit between the requirements and implementation technology.
The Tomography Engine is currently being developed using Field Programmable Gate Arrays (FPGAs).  No alternate implementation is being pursued.
The DM Command Generation can be implemented using custom logic or GPUs.  We are currently determining the best fit between the requirements and implementation technology.
[bookmark: _Ref241634346][bookmark: _Toc246310123]System Characteristics

[bookmark: _Toc246310124]Assumptions and Performance Requirements

	Item No.
	Assumptions
	Value
	Units
	Ref

	1
	Wind
	
	m/sec
	

	2
	r0
	
	cm
	

	3
	Max Zenith Angle
	54
	degrees
	

	4
	Frame Rate
	2
	Hz
	

	5
	Stare Time HOWFS
	500
	µsec
	

	6
	Stare Time LOWFS
	4,000
	µsec
	

	7
	Sub Apertures
	64
	
	

	8
	Number of Tomography Layers
	5
	
	

	9
	Number of Tomography WFSs
	4
	
	

	10
	Number of WFSs for Tip/Tilt, focus, and astigmatism
	3
	
	

	11
	Number of Science Objects
	1
	
	

	12
	MTBF
	
	per KHr
	

	13
	MTTR
	
	per KHr
	


[bookmark: _Toc246310370]Table 1	NGAO RTC System Assumptions


	Item No.
	Performance Requirements
	Value
	Units
	Ref

	1
	Wind
	
	m/sec
	

	2
	r0
	
	cm
	

	3
	Max Zenith Angle
	54
	degrees
	

	4
	HOWFS Frame Rate
	2
	KHz
	

	5
	LOWFS Frame Rate
	250
	Hz
	

	6
	Stare Time HOWFS
	500
	µsec
	

	7
	Stare Time LOWFS
	4,000
	µsec
	

	8
	Sub Apertures
	64
	
	

	9
	Number of Tomography Layers
	5
	
	

	10
	Number of Tomography WFSs
	4
	
	

	11
	Number of WFSs for Tip/Tilt, focus, and astigmatism
	3
	
	

	12
	Number of Science Objects
	1
	
	

	13
	MTBF
	
	per KHr
	

	14
	MTTR
	
	per KHr
	


[bookmark: _Toc246310371]Table 2	NGAO RTC System Performance Requirements

[bookmark: _Toc234309618][bookmark: _Ref241492427][bookmark: _Toc246310125]RTC States Visible to the AO Control
There are multiple levels of states in the AO system.  This section describes only those states that the RTC keeps track of.  These states are limited and insure only that the RTC cannot damage itself, will not give invalid data, and that it can be controlled to move between states become functional or be shut down. 
Figure 6 shows the states visible to the AO control.
Finer grained information may be available for diagnostics, but are not presented here.


[bookmark: _Ref241491736][bookmark: _Toc234309668][bookmark: _Toc228940465][bookmark: _Toc246310323]Figure 6	RTC and Sub-System States Viewable by the AO Control

The RTC CP will not honor a request to do something that is not valid, given its current state, and will return an appropriate error to the AO Control.  
Examples:
1. If a sub-system has not been configured and the AO Control attempts to start the sub-system, the RTC will return an error indicating “Not Configured”. 
1. If the AO Control attempts to set a parameter with a value that is out of the allowable bounds for that parameter, the RTC will return and error indicating “Out of Bounds” with an additional message that indicates the allowable bounds.  This is not really a “state” issue, but is mentioned here for clarity.
1. However, if the AO Control attempts to set a parameter with a valid value but one that does not make sense in the presence of other parameters that have been set, the RTC will simply set that parameter.  The states represented by various combinations of settable parameters have meaning to a higher level of control than the RTC and should be controlled at that level.
[bookmark: _Toc246310126]Timing and Control of Internal States of the RTC
See Section 2.2 for a discussion of the States of the RTC visible to the AO Control.
Several sub-systems of the RTC run at different rates or start at different times during operation.  The LOWFSs run at approximately 250 Hz while the HOWFSs run at approximately 2 KHz.  In addition, commands to change parameters come from the AO Control asynchronously.  The RTC synchronizes these changes in parameters or data to occur at the start of the basic frame, ~2 KHz.  This ensures that all processing that occurs during a frame is done with the same parameters and input data.  
Anything arriving too late to be applied at the start of a frame will be applied at the start of the next frame.

[bookmark: _Toc246310127]Sizing and Scaling 

[bookmark: _Toc246310128]Sizing the Problem

[bookmark: _Toc246310129]Sizing the Solution

[bookmark: _Ref241634314][bookmark: _Toc246310130]Scaling to Different Sized Problems

[bookmark: _Toc246310131]Scaling to Different Speed Requirements

[bookmark: _Toc246310132]Reconfigurability

[bookmark: _Toc246310133]Reliability and Recoverability


[bookmark: _Toc246310134]SEUs
An SEU is a single event upset in the system, usually caused by neutron showers from cosmic rays in the atmosphere.  Alpha particles from concrete or other materials can also cause them.  When these particles strike electronic circuitry, the result can be to switch the state of some elements, such as memory.  
SEU events normally leave no lasting damage to the circuitry, so that once detected, we can remedy their effect by reloading the memory with the correct value.
We can monitor for these events, but the latency between occurrence and detection has costs:  science data can be damaged if the latency is too long; the system can be made considerably more expensive and costly if we attempt to make it too short.
Consequently, there are several requirements that we need to establish for the NGAO RTC:
1. What is an acceptable MTBF for an SEU event?  These events are a subset of the overall RTC MTBF, which also needs to be specified.
2. What is an acceptable latency between the occurrence of an event and our detection of the event?
3. What action should be taken when an event occurs?  
4. How long should the repair take?
Current analysis:
1. Initial indications are that the SEU FIT (Failures in time) will be measured in weeks (I am still working on the calculations).
2. Detection latency will probably be in seconds to minutes depending on design requirements
3. On detection, we will send an error condition message to the AO Control.  We also provide a hardware indication, which could be used if desired, to close the science shutter until a repair is made.  
We can also automatically reload the disturbed data or require that the AO Control do it.   
The AO Control could either allow the exposure to continue with the existing damage or restarted it: one minute of bad data on a five minute exposure vs. a 1 hour exposure.
4. On detection, repair could take seconds to minutes depending on design requirements.  No physical presence would be required for the repairs to be made, regardless of whether they are done automatically or manually.
[bookmark: _Toc246310135]BER


[bookmark: _Toc246310136]Diagnostic Tools


[bookmark: _Ref244508678][bookmark: _Toc246310137]Error Budgets, Latency, and Data Rates


Add a summary table on update rates and latencies for DMs and T/T
Add a summary table on bit resolution for DMs and T/T.

[bookmark: _Toc246310138]Error Budgets
Ref [____________________]


[bookmark: _Toc246310139]Latency

[bookmark: _Toc246310140]Accuracy
The accuracy of a system is determined by several factors.  In our system, they are the accuracy of the:
· Camera data
· Parameters used in calculations
· Algorithms used
· Arithmetic operations
· Output hardware
Camera Data
The camera data supplied is 16 bits.  We have assumed that the camera data is accurate to 14 bits.
Parameters
All fixed parameters and arrays used in calculations are represented as 18-bit numbers for real values with an added 18-bit imaginary part if they are complex.  Examples of the parameters are Cn2, Fourier coefficients, Kolmogorov filter coefficients, asterism parameters, DM modeling tables, etc.
Algorithms
Don, do you want to say something here?
Arithmetic Operations
Individual arithmetic operations take 18-bit values and accumulate a 45-bit result. 
DACs
The DM’s are supplied with 14-bit values.

[bookmark: _Toc246310141]Latency
The most significant element to overcome in an AO system is the latency between sampling the atmospheric turbulence and applying the compensation for it.  See Appendix D for calculations on the impact of latency components on the wavefront error.
It and the spatial sampling determine the rate at which calculations and data transfers must be made to achieve a given level of compensation.
These in turn determine the size of the computation engine that is needed to handle the problem.  For the current NGAO specification, this is a terra operation per second problem, which directly affects and limits the choices of algorithms, architectures, and implementations.
The total RTC latency is made up of several components, illustrated below (not to scale).

Definitions



[bookmark: _Toc246310324]Figure 7	Overall RTC Latency Components (not to scale)
Example Timing

The total latency is calculated from the midpoint of the camera stare time to the midpoint of the subsequent DM hold-time.  Computational Latency includes only the portion of time due to our actual processing of the data.
[bookmark: _Toc246310142]Architectural Issues Affecting Latency
Processing system architectures can be divided into two major categories: non-pipelined and pipelined.  The following discussions attempts to highlight the differences between the two.  One is not better than the other except in the context of the requirements and limitations of the system to which they are applied.
In the two examples that follow, it is assumed that the total processing time is the same in each case.  The effects on the minimum total latency is examined.  The example timings are for 900 µsec msec of computational latency, 400 µsec for the longest element of the computational latency, and 500 µsec to read the CCD.  The time to perform centroiding can be overlapped with the CCD read and are ignored.  However, the reconstruction and tomography cannot effectively start until all the centroids have been processed.
Non-Pipelined Architectures
In a non-pipelined system, data is brought in, processed by a single processing unit, the results are used, and the cycle is started again.  In our case, we have a computational latency of 1 msec and a CCD read time of 500 µsec.  Since there the processing unit is busy processing the last frame, no processing can occur during the next CCD read.  The resultant frame rate is 1.5 msec and the total latency is 3 msec.


[bookmark: _Toc246310325]Figure 8	Non-Pipelined Latency (not to scale)
Use 400 usec for tomography
Example Timing

In a non-pipelined system, the frame rate is determined by the total latency of handling the data.  In this case, it is the time to read the CCD plus the computational latency.  
All calculations must be finished before new calculations can start.  The total latency is two frames (1 frame to handle the data, plus ½ a frame on the front end to account for the integration time of the camera and ½ a frame at the end to account for the integrated effect of the DM hold time).
Pipelined Architectures
In a pipelined system, the processing is divided amongst several units.  Each unit processes the data and passes it on to the next unit.  The total computational Latency is still 1 msec, as above (assuming transfer times between units are negligible).  However, it can be seen that new data can be brought in as soon as the first unit is through processing its last data, and the output can be updated as soon as the last unit has processed its data.  The frame rate here is determined by the largest time spent by any individual unit.  Consequently, this rate can be considerably faster than that in the non-pipelined case.
Note that the camera frame rate is the same as the DM frame rate.  The DM rate is synchronous but has a different phase than the camera’s.


[bookmark: _Ref237358882][bookmark: _Ref238363730][bookmark: _Toc246310326]Figure 9	Pipelined Architecture Latency (not to scale)
Example Timing

In this system, each element of the data processing is handled by separate hardware.  This allows us to have several frames of camera data being processed somewhere in the pipe at the same time, just not in the same piece of hardware.  The maximum frame rate is determined by the longest time it takes for any single element to process its data.
In our situation, the frame rate is determined by the CCD read time, which happens to be 500 µsec.  All other individual computational elements are less than this.  The time to handle the data is the time to read the CCD plus the Computational Latency , <3 Frames (1.4 msec).  The total latency is 1.9 µsec, <4 frames (3 frames to handle the data, plus ½ a frame on the front end to account for the integration time of the camera and ½ a frame at the end to account for the integrated effect of the DM hold time).
Figure 9 shows that the computational Latency does not end on a frame boundary.  While the DM commands are applied synchronous to the frame clock they are applied at a time that does not occur on a frame clock boundary. 
Assuming the time to handle the data is the same for both the pipelined and the non-pipelined case, the pipelined architecture will provide less total latency.  It can require more hardware, however.
0. Comparison of Non-Pipelined vs. Pipelined Architectures
A pipelined system takes more hardware and is more complex to implement than a non-pipelined system.  However, the benefits are that we can decouple the frame rate from the processing time and achieve a lower latency time.  In our case, the latency difference is 2.8  µsec vs. 1.9  µsec. a savings of 900  µsec or 30%.
For the NGAO RTC, we use a pipelined architecture.
[bookmark: _Toc246310143]Latency Calculations for NGAO
Latency can be divided into three categories: transfer, compute, and fixed latencies.
Transfer latency is the result of moving data from one place to another, usually between physically distinct hardware.
Compute latency is due to the time it takes to apply an algorithm on the data, and includes any minor transfer latency that may occur during that process.
Fixed latency is due to system architecture issues that are separate from the above.  In the case of the RTC, it is the result of the value of the frame clock and the time read the data out of the CCD subsequent from the actual time to transfer it to the WFS frame grabber.
Detailed latency analysis can be found in Appendix D.
Table 3 shows the system parameters used in the following latency analysis.
Extended Sub Apps are the total subapertures we use in computations to account for the FOV and zenith angle. 


[bookmark: _Ref237359741][bookmark: _Toc246310372]Table 3	NGAO RTC System Parameters

The frame rate of 2 KHz is driven by the maximum tomography error allowed (see Appendix D and [Requirements Doc]).
There are 64 subapertures across the primary aperture.
In order to avoid artifacts due to wrapping while processing Fourier data, the number of apertures used internally is 88.

With and w/o aperture?
Iterations, 1 or 3?


[bookmark: _Toc246310373]Table 4	NGAO RTC Latency Summary

Notes:
1. This is the time for a single camera to capture an image from the LGS.  It is a function of the CCD and camera controller settings.
2. This is the time that includes reading the CCD, Centroiding, reconstructing the wave front, and transferring it to the Tomography Engine.  Reading the CCD, grabbing the frame, and computing the centroids may be overlapped in some implementations.
These values are based on analysis and measurements done for the GPI AOC [[endnoteRef:1]].  This is a similar sized problem. [1:  	GPI Adaptive Optics Computer (AOC) SDD, 5/3/08, v0.10, Genimi Planet Imager (GPI) Instrument, Critical Software Design Description] 

3. This is the time to combine the wave fronts from the tomography HOWFS, compute the estimate of the atmosphere, forward propagate the science object, and transfer the data to the low and high order command generators for the science object DMs.  
This is based on simulations and calculations summarized in Appendix E.
4. This is the time to generate the commands for the science object DMs and transfer them.
5. This is the time the commands are held on the DM.  It is the same as the camera stare time.
The Point-and-Shoot HOWFS is a complete open loop control system.  As such, we calculate the latency from the mid-point of the stare time to the mid-point of the DM hold (see Figure 10).

[bookmark: _Ref246139194][bookmark: _Toc246310327]Figure 10	Point-and-Shoot HOWFS Latency
Preliminary Timing

The Tomography HOWFS is different from the Point-and-Shoot HOWFS, since its latency is only part of the overall science control loop latency.  Consequently, its latency is calculated from the end of the stare time to the start of the tomography calculations (see Figure 11).

[bookmark: _Ref244597581][bookmark: _Toc246310328]Figure 11	Tomography HOWFS Latency
Preliminary Timing




[bookmark: _Toc246310329]Figure 12	LOWFS/NGS Latency
Preliminary Timing

Transfer Latency
Table 5 and Table 6 show the transfer latencies that affect the total latency of the RTC.  Also shown are the data rates needed to support the required Telemetry of system data during operation.


[bookmark: _Ref237360199][bookmark: _Ref236998281][bookmark: _Toc246310374][bookmark: OLE_LINK7][bookmark: OLE_LINK8]Table 5	Tomography Transfer Latencies and Rates
Relate these times to the timing diagrams


[bookmark: _Ref242523953][bookmark: _Toc246310375]Table 6	Point-and-Shoot HOWFS Transfer Latencies and Rates
Relate these times to the timing diagrams

Notes:
Transfer times in the processing flow of the data must take place in a small part of a frame (~50 µsec, ~10% of a frame) whereas Diagnostic/Telemetry transfers may take an entire frame (~500 µsec).  This leads to a much higher rate for Operational transfers.
The two key parameters calculated are the “Total Diagnostic/Telemetry Rate” and the “Operational Transfer Time”.  The former determines the characteristics of the RTC Disk Sub-System and the later is part of the Total RTC latency calculation.
1. This is the time for a single camera to transfer the camera data to the Frame Grabber.  A time of 50 µsec has been allocated which is consistent with a transfer using Camera Link full configuration.  Also shown is the total data rate needed to save the camera data for all 7 cameras through the Diagnostic/Telemetry port.
If the frame grabber is a separate piece of hardware from the rest of the WFS, this is the time to transfer the camera data from it to the next stage of the WFS, the centroider.  Since camera data has already been saved at the camera output if requested, there is no load associated with saving it to the Diagnostic/Telemetry port in the WFS processor.
This time may be overlapped with the CCD read time, depending on the exact implementation of the WFS.  It is included here for conservativeness.
If it is desired to save the centroids, this number is the amount of time to transfer the data over the Diagnostic/Telemetry port.  No additional operational transfer load is required.
This time may be overlapped with the CCD read time, depending on the exact implementation of the WFS.  It is included here for conservativeness.
After the WFS has calculated the wave front, these numbers are the amount of time needed to transfer it to the tomography engine and the Diagnostic/Telemetry Port.
After the Tomography Engine has estimated the atmospheric volume, the data needs to be transferred to the DM Command Generator.  If it is also desired to save the tomographic layer information, the amount of time to transfer the data over the Diagnostic/Telemetry port is also given.
The DM information from the Tomography Engine is in a spatial measure and the DM Command Generator generates the correct DM actuator voltages to best match the desired DM shape.  These numbers are the amount of time it takes to transfer the correct shape to the DM.  Additionally, the data rate for the Diagnostic/Telemetry Port is shown if the data is to be saved.
Non-Transfer Latencies



[bookmark: _Ref237594866][bookmark: _Ref237594826][bookmark: _Toc246310376]Table 7	Non-Transfer Latencies

Total Latency for Tomography Operations
See Figure 9 for a representative timing diagram.  Make a separate diagram


[bookmark: _Toc246310377]Table 8	Total Latency Calculations

Total Latency for NGS Operations


[bookmark: _Toc246310378]Table 9	Total NGS Latency Calculations






[bookmark: _Toc246310144]Calculating Error Values Due to Latency
Reference _________
½ Frame for stare time

½ Frame for DM hold time



Description of each element

[bookmark: _Toc246310145]Data Rates
In addition to the latency associated with acquiring the guide star image, processing the AO data, and controlling the actuators, the NGAO system needs to be able to save key system telemetry data.  This feature allows subsequent processing of the science data, atmospheric and system analysis, and the display real time diagnostics information.
The amount of data it is possible to save is huge (many Giga Bytes per second) and a very large, fast disk sub-system is needed to capture this data prior to analysis, see ____________.
Add summary table of the data rates

[bookmark: _Ref241634396][bookmark: _Toc246310146]RTC Control Processor (CP)
The RTC Control Processor (CP) provides an asynchronous interface between the RTC system the AO Control.
It is built on a high performance Linux server.
The RTC system is a key component to the overall AO system and the rest of the telescope environment and will adhere to the component architecture defined in [ref CP interface spec].
[bookmark: _Toc246310147]Architecture and Design





[bookmark: _Ref237850336][bookmark: _Ref237153378][bookmark: _Toc246310330]Figure 13	RTC Control Processor (CP)

[bookmark: _Toc226979991][bookmark: _Toc246310148]AO Control System Feature Support
See the AO Control Interface Document (ref CP interface spec) for details on these features.
[bookmark: _Toc246310149]Commands
The CP accepts commands from the system AO Control (or alternatively from a telnet session) over sockets.  Data is passed as part of the command or as a system address from which the CP will fetch the data.
See [ref CP interface spec]
[bookmark: _Toc246310150]Monitoring


[bookmark: _Toc246310151]Events
Events within the RTC are generated by the individual sub-systems and monitored by the CP.  The CP in turn generates events for the AO Control as required by the AO Control.
[bookmark: _Toc246310152]Alarms


[bookmark: _Toc246310153]Log Messages


[bookmark: _Toc246310154]Configuration
Low-level configuration is handled by the CP under control of the AO Control
[bookmark: _Toc246310155]Archiving
AO data is saved short term in the RTC disk sub-system.  Long term archiving is provided by the telescope archiving systems.
[bookmark: _Ref243979692][bookmark: _Toc246310156]Diagnostic Data Stream
Boxcar averaging of camera frame or other data will be provided prior to transfer to the AO Control over the diagnostic stream.
[bookmark: _Toc246310157]Computational Load
In general, the computational load of the CP is moderate and should be well supported by a multi-CPU/multi-core server.
The boxcar averaging in 4.2.8 may require some added hardware, on the order of an additional processor.  This is not significant and an analysis is ongoing to determine the exact implementation and hardware/software impact.
[bookmark: _Toc246310158]Interfaces and Protocols

[bookmark: _Toc246310159]Interface between the CP and the AO Control
The interface is over Ethernet using sockets and the details of this interface are covered in a separate document [ref CP interface spec].
The compute load of the CP is expected to be relatively low.  Therefore, it is possible that the AO Control functions and the CP functions could be integrated into a single hardware platform if desired.
[bookmark: _Toc246310160]Interface between the CP and the rest of the RTC
The CP’s interface to the rest of the RTC is through Gbit Ethernet, LVDS, or Camera Link busses as appropriate.
Cameras
The interface between the CP and the cameras will be over Camera Link.  The will provide commands to the cameras directly for control and status.
HOWFS
There are two interfaces between the CP and the HOWFS: Camera Link is used to present dummy camera data during diagnostics and tests; Ethernet is used for HOWFS control and status.
LOWFS
There are two interfaces between the CP and the LOWFS: Camera Link is used to present dummy camera data during diagnostics and tests; Ethernet is used for LOWFS control and status.
Tomography Engine
The interface between the CP and the Tomography Engine is over LVDS for control and status.
DM Command Generators
The interface between the CP and the DM command generators is over Ethernet for control and status.
Tip/Tilt Command Generators
The interface between the CP and the Tip/Tilt command generators is over Ethernet for control and status.
Clock Generation Sub-System
The interface between the CP and the Clock Generation Sub-system is over Ethernet for control and status.
Disk Sub-system
The interface between the CP and the disk sub-system will be over the RTC internal Gbit Ethernet for control and status.
[bookmark: _Toc246310161]Data Flow and Rates

[bookmark: _Toc246310162]To AO Control

[bookmark: _Toc246310163]To the Disk Sub-system


[bookmark: _Toc246310164]To the rest of the RTC

[bookmark: _Toc246310165]Cameras
[bookmark: _Toc246310166]HOWFS (Tomography and Point-and-Shoot)
[bookmark: _Toc220490116][bookmark: _Toc246310167]Interfaces and Protocols
The interface between the HOWFS camera sub-systems and the RTC will be through Camera Link™ using the Camera Link™ Full configuration.
[bookmark: _Toc246310168]Data Flow, Rates and Latency
The following are the specifications the camera systems must meet in order for the RTC to meet the required error budget.
Camera Frame Rate
The HOWFS camera must be able to sustain a 2 KHz frame rate, Ref _______.
CCD Read Time Latency
After each frame is exposed, the CCD transfers the frame data to holding registers and starts exposing the next frame.  The CCD must be able to transfer this data to the camera controller at the camera frame rate without affecting the simultaneous science object acquisition.
Camera Transfer Latency
The data latency between the last byte transferred from the CCD and the last byte sent to the frame grabber must be less than 50 µsec.  See: Table 5.
[bookmark: _Toc246310169]LOWFS (IR)
In order to accommodate differing natural guide star’s (NGS) brightness, the rate of the camera clocks can be set differently on each wavefront sensor with respect to the tomography engine.  This is useful to allow overall system optimization by trading individual wavefront or tip/tilt/focus sensor signal-to-noise ratio with sensor bandwidth.  All sensor sample periods however must be less than the tomography sample period in order for the system to remain synchronized at its maximum rate.  The master frame clock is derived from one of the HOWFS cameras.
[bookmark: _Toc246310170]Interfaces and Protocols
The interface between the camera sub-systems and the RTC will be through Camera Link™ using the Camera Link™ Full configuration.
[bookmark: _Toc246310171]Data Flow, Rates and Latency
The following are the specifications the camera systems must meet in order for the RTC to meet the required error budget.
Camera Frame Rate
The LOWFS IR cameras must be able to sustain a 250 Hz frame rate [REF].


CCD Read Time Latency
After each frame is exposed, the CCD transfers the frame data to holding registers and starts exposing the next frame.  The CCD must be able to transfer this data to the camera controller at the camera frame rate without affecting the simultaneous science object acquisition.
Camera Transfer Latency
The data latency between the last byte transferred from the CCD and the last byte sent to the frame grabber must be less than 50 µsec.  See: Table 6.
[bookmark: _Toc246310172]Master Clock Generation for Camera Synchronization
Cameras will be able to synchronized to an external Frame Clock or be able to generate a Frame Clock to which other cameras can be synchronized.  Ideally, one camera will be designated as the master RTC camera.  All other cameras will be synchronized to this camera.
[bookmark: _Toc246310173]Inter Camera Capture Jitter
The time between the synchronization signal and the start of the camera exposure will be a Maximum of _____ µsec for cameras of the same frame rate.
[bookmark: _Toc246310174]Control
The AO Control will control all camera parameters through facilities provided by the CP.  The following controls will be supported be each camera:
[bookmark: _Toc246310175]Gain
[bookmark: _Toc246310176]Frame rate
The frame rate is the frequency at which new frames are captured.
 The RTC will support whatever rates are required by the system, i.e. 2 KHz, 1 KHz, 500 Hz, 100 Hz.
[bookmark: _Toc246310177]Stare Time
This is the time during which the camera is actually making an exposure.  Whatever times are required by the system will be supported.  Ref (________)
[bookmark: _Toc246310178]Frame Transfer Rate
The frame transfer rate is the speed of the link between the camera and the frame capture card.
[bookmark: _Toc246310179]Internal Camera Clock Speeds and Parameters
These parameters set the internal workings of the camera and are generally not set by non-maintenance personnel.

[bookmark: _Toc246310180]Wave Front Sensors (WFSs)
We intend for all WFSs to have a common architecture and implementation.  This brings the advantage of lower spares cost, easier trouble shooting and development, and faster debug time during operation.
a) The RTC will provide a focus input to the focus offload loop controlled by the AO Control function.
b) The RTC will provide a tip-tilt input to the tip-tilt offload loop controlled by the AO Control function.
c) The RTC will filter the build up of un-sensed modes, such as piston and global waffle.
[bookmark: _Toc246310181]Algorithms

[ref Don Gavel, RTC Algorithms Document]

[bookmark: _Toc246310182]WFS Interfaces
The interfaces to the WFSs are shown in the following figures: LOWFS in Figure 14, Point-and-Shoot HOWFS in Figure 18, and Tomography HOWFS in Figure 16.  Input will be via the machine-vision industry’s standard Camera Link cabling and communications protocol using the full configuration, unless otherwise noted.  Output will connect to the tomography engine also via Camera Link communication.  The 24 bits data width in this standard can represent two camera pixels each with a dynamic range of up to 2^12 = 4096 counts per pixel, which is above the maximum counts anticipated in NGAO wavefront sensing.  The computed result from the WFSP does not increase the measurement limited signal-to-noise ratio so this 24 bit word width is also sufficient for transfer to the tomography engine, even though the tomography engine will ultimately be using a 36 bit internal word width to maintain computational accuracy.
The Camera Link interface cable is serialized low-voltage differential signaling (LVDS) pairs on an engineered standard cable (e.g. 3M’s Mini D Ribbon).  The base configuration allows a throughput of up to 2.04 Gbit/s.  For the 256x256 WFS chip running at 2 kHz frame rate, and 12 bits per pixel, the pixel data rate is 1.573 Gbit/s, which is under the base configuration limit and so does not demand an enhanced bandwidth configuration.  Since the bit rate of Camera Link is generally faster than the processor clock (in the case of FPGAs), standard serializer/deserializer (SERDES) transceivers are needed to terminate the connections on each board.
Wavefront sensor processor cards are assigned one per wavefront sensor, while the tomography engine processors are mapped over the aperture, it is necessary for the four tomography WFSPs (each containing a full aperture’s worth of data) to distribute their results over the tomography engine processors.  The distribution is accomplished using a specialized interface located along the left side of the tomography engine array, as shown in Figure 36.  This interface makes sure the correct data are shifted in along each row of tomography processors.  The cable connection from the WFSPs to the tomography engine uses the same LVDS / Camera Link 2 Gbit/s standard as used for the input to the WFSPs, only this time there is far less data to transfer.  The full-frame transfer of 64x64x2x12bit numbers (an extra factor two for complex Fourier coefficients) is accomplished in 50 microseconds, about 10% of a 2 KHz frame cycle.  A doublewide Camera Link interface can be used if this is deemed to take too much of the latency budget.
[bookmark: _Toc246310183]Data Flow and Rates



[bookmark: _Toc246310184]LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus)
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The LOWFSs take inputs from the 3 IR Tip/Tilt/focus and astigmatism cameras.  The cameras feeding the LOWFSs are focused on natural guide stars (NGS).  They generate low order control for the on-axis correction of the light for both science and AO paths.

[bookmark: _Toc246310185]Architecture and Design



[bookmark: _Ref236920264][bookmark: _Toc246310331]Figure 14	LOWFS




[bookmark: _Toc246310332][bookmark: OLE_LINK3][bookmark: OLE_LINK4]Figure 15	LOWFS Latency (not to scale)
Preliminary Timing

[bookmark: _Toc246310186]Interfaces and Protocols
Inputs
The Inputs are from 3 IR cameras over Camera Link base configuration at 250 Hz frame rate:
· Two tip/tilt cameras (Size?)
· One focus/astigmatism camera (Size?)
Outputs
The outputs are:
· An analog X/Y controls to the on-axis Tip/Tilt stage of the Woofer at a 250 Hz frame rate.
· 3 analog X/Y controls to the tip/tilt mirrors associated with the 3 LOWFS cameras at a 250 Hz frame rate.
· Digital Tip/tilt, focus, and astigmatism information sent to the tomography engine at a 2 KHz frame rate to synchronize with the Tomography’s frame rate.
[bookmark: _Toc246310187]Data Flow, Rates and Latencies
Camera Data
Each LOWFS camera has an image size of ______ and a data width of ______.  This yields a data rate of ______ B/frame and a total rate of ______ B/sec.  This data is sent to a frame grabber in the LOWFS and alternatively to the Telemetry/Diagnostic signal path.
The LOWFS IR camera has a stare time of 4 msec [REF] for a frame rate of 250 Hz.

Tip/Tilt Signals
The tip/tilt signals are analog voltages < ±10 V, with a rise/fall time of < 10 µsec, and a frame rate of 2 KHz.
Astigmatism and Focus
The astigmatism and Focus data are sent to the tomography engine as digital data over 1 LVDS port.
[bookmark: _Toc246310188]Low Order Reconstruction Engine
See the ______ document for the details on the algorithms for extracting tip/Tilt, focus, and astigmatism from the camera data.



[bookmark: _Toc246310189]HOWFSs (High Order Wave Front Sensors)
Seven HOWFSs generate seven wave fronts used by the AO RTC system.
· Four tomography HOWFSs generate wavefronts used by the tomography engine that in turn generates on axis wavefronts used by the woofer and high order DM(s) to correct for atmospheric aberration affecting the science object(s).  Currently there is only one science object, but we have the possibility of supporting more if needed.
· Each of three point-and-shoot HOWFSs compensate for atmospheric aberrations affecting a corresponding LOWFS NGS used for T, astigmatism, and focus.
To generate these wave fronts, the HOWFSs take inputs from the tomography or point-and-shoot cameras.  These cameras are focused on laser guide stars (LGS).
The images are first corrected for dark current, thresholded, and then processed to produce centroids corrected for reference centroids and offsets.
Piston and Tip/Tilt are then extracted from the centroids and subtracted from them.
The Tip/Tilt removed centroids are processed separately off-line to produce a corresponding tip/tilt removed wavefront.
The tip/tilt value is used to control the tip/tilt mirror associated with the HOWFS
The piston-tip/tilt removed centroids are sent to a separate processor to extract focus.  This will be used to sense any change in the sodium layer.  This change will be compensated for by moving the HOWFS to a more correct focus position.  The path for this data is through the telemetry path.
The focus processor(s) are not part of the real time system.


[bookmark: _Toc246310190]Architecture and Design


[bookmark: _Toc246310191]Centroider and Wave Front Reconstruction Engine


CPU Implementation
This would be a conventional implementation using vector-matrix multiplication for the reconstruction.  It is the current implementation plan for the Point-and-Shoot HOWFS reconstructors and uses standard off the shelf components.
Currently, it is not clear that a CPU implementation will meet our requirements for the Tomography HOWFS.  Consequently, we are examining both a GPU and an FPGA implementation for all HOWFSs.
GPU Implementation
A 64 subaperture across (88 across for zero padding) reconstructor has been implanted on a single Nvidia Graphics Processor card.  This presents a simple solution for the HOWFSs that could be built with standard off the shelf components.  It would potentially provide lower latency than the CPU implementation and fewer racks of equipment since multiple HOWFSs could be supported by a single computer.
The GPU would reside on a PCI-E backplane slot on a CPU motherboard.  The CPU can be used to configure and run the GPU.  Additional PCI-E slots would house Camera Link interface cards, which in turn connect to the WFS camera for input and to the tomography engine for output.
We are currently analyzing whether we can utilize the GPU in the system at a 2 KHz frame rate under a real-time OS.
FPGA Implementation
Using FPGAs, it is possible to implement a centroider and reconstructor in a small number of chips that can implement a variety of algorithms.  These would be custom boards but have the potential for the lowest latency implementation.

The Tip/Tilt extracted by each HOWFS is used to control the tip/tilt mirror associated with that particular HOWFS camera.
There is a small difference between a Tomography HOWFS and a Point-and-Shoot HOWFS.
[bookmark: _Toc246310192]Tomography HOWFS
The Tomography HOWFS sends the reconstructed wave front to the Tomography Engine.  See Figure 16.
The latency contributed to the total RTC latency in Table 7 is the computational Latency shown in Figure 17.
Architecture and Design



[bookmark: _Ref236908693][bookmark: _Toc246310333]Figure 16	Tomography HOWFS



[bookmark: _Ref237594925][bookmark: _Toc246310334]Figure 17	Tomography WFS Latency (not to scale)
Preliminary Timing


[bookmark: _Toc246310193]Point-and-Shoot HOWFS
The Point-and-Shoot HOWFS, however, further processes the reconstructed wave front to generate DM commands which are sent to a DM that corrects the laser spot associated with its corresponding camera, see Figure 18 and Section 8.  Figure 18 illustrates the Point-and-Shoot HOWFS latency.
Architecture and Design


[bookmark: _Ref236908726][bookmark: _Toc246310335]Figure 18	Point-and-Shoot HOWFS


[bookmark: _Toc246310336]Figure 19	Point-and-Shoot HOWFS SW Modules



[bookmark: _Ref243981796][bookmark: _Toc246310337]Figure 20	Point-and-Shoot HOWFS Latency (not to scale)
Preliminary Timing


[bookmark: _Toc246310194]Tip/Tilt, Focus, and Astigmatism WFS


[bookmark: _Toc246310195]Architecture and Design



[bookmark: _Toc246310196]The Tomography Engine (TE)
The tomography engine takes wave fronts from several tomography HOWFS and recreates an estimate of the volume of the atmosphere in the field of view that would have created those wave fronts.  It does this using tomographic techniques similar to those of a CAT scan.
The wave fronts from the tip/tilt, focus, and astigmatism point-and-shoot HOWFSs are not sent to the Tomography Engine as a result of the “Build to Cost” decisions.  (REF)
The volume estimate is divided up vertically into layers and horizontally into subapertures.  The intersection of a layer and a sub aperture is a volume element called a Voxel.  
Once this estimate has been generated, it can be used to correct for the atmospheric aberrations in the direction of a science object within the field of view.  The path to the science object is propagated through the estimate of the atmosphere.  This generates a wavefront of the atmospheric distortion along the science path and this wave front is sent to the deformable mirrors (DMs), which correct for the distortion. 
The tomography engine is implemented as a 3-dimensional systolic array [[endnoteRef:2]] of processors that is mapped to the physical volume of the atmosphere above the telescope.  This is not a typical tower or rack-mounted PC.  It is specifically designed to implement very high-speed vector/matrix operations with very small latency requirements.  The total throughput rate is in the terra operation per second range with latencies of less than 500 microseconds.   [2: 	SPIE 2005 spatial paper] 

A Note on Systolic Arrays
 “A systolic system is a network of processors which rhythmically compute and pass data through the system.
“Physiologists use the word ‘systole’ to refer to the rhythmically recurrent contraction of the heart and arteries which pulses blood through the body.  
“In a systolic computing system, the function of a processor is analogous to that of the heart.  Every processor regularly pumps data in and out, each time performing some short computation so that a regular flow of data is kept up in the network.”
	Kung and Leiserson 


It is a scalable, programmable, and configurable array of processors operating in unison. 
It is a system can be easily put together (by replication of rows, columns, and layers) that will work for any sized problem, from the small to the large.
It is programmable, so that changes in the algorithm can be loaded at run time without changing the hardware.  Additionally, even the hardware is programmable in its architecture, interconnect and logic (see ___Appendix FPGAs__).
It is configurable so that the parameters can be easily changed to adapt to changing needs for a given system: number of sub apertures, guide stars or atmospheric layers; values for Cn2; mixes, heights and positions of natural and laser guide stars; height and profile of the sodium layer; height of turbulent layers; etc.
Processing Element (PE)


The algorithm we are executing (____________) allows all PEs to execute identical code.  This is refered to as SIMD (single instruction multiple data).  
[bookmark: _Ref191789280][bookmark: _Toc246046010][bookmark: _Toc139795515][bookmark: _Toc139795514][bookmark: _Toc246310197]Frame Based Operation
The normal operation, ignoring initialization and specialized diagnostics, is frame based, with a nominal frame rate of 2 KHz, see _______.  At the start of each frame, wave fronts  from tomography HOWFS are sent to the tomography engine in parallel.
Simultaneously, data for the DMs, which was calculated in the previous frame, are sent to the Woofer and Tweeter DM command generators.


Diagram to go here


After the wave fronts have been loaded, a consistent 3D estimate of the atmospheric volume is created by the tomography algorithm.  This volume estimate is arranged by sub apertures and layers.
When the estimate is complete, the science object is forward projected through the estimated atmosphere and low and high order information is extracted from the wavefront.  This is the end of a frame.
The low and high order wavefronts are then sent to the woofer and tweeter command generators respectively while the new wave fronts are loaded, starting a new frame.
[bookmark: _Toc139795517][bookmark: _Toc246046013][bookmark: _Toc246310198]Processing the Data
The tomography algorithm is not only parallelizable, but is what is called an embarrassingly parallelizable one.  If we have N elements to calculate for, we can actually use N processors in parallel with minimal interaction between them to reduce the total calculation time.
The algorithm also is an iterative one and converges step by step to a minimum variance estimation of the atmosphere based on the wave fronts from the tomography WFS, see Arithmetic Reconstruction Tomography (ART) [[endnoteRef:3]] and [ref Don Gavel, RTC Algorithms Document].  A simplified diagram is presented in Figure 21. [3:  	Kak, Avinash C. “Principles of Computerized Tomographic Imaging”, Ch 7, IEEE Press, 1988] 

In executing the algorithm, we need to perform several tasks that are computationally intensive:
1. Apply a Kolmogorov filter to match our estimates to know atmospheric statistics
2. Account for the positions of our guide stars by shifting our forward and back projections
3. Precondition our errors before back projecting them
4. Scale the forward and back projections by layer to compensate for the cone effect
Each of these tasks can be done either in the spatial or Fourier domains.  However, they are much less computationally intensive in the Fourier domain.  Consequently, we perform most of our iterative loop in the Fourier domain.
 

[bookmark: _Ref246153233][bookmark: _Toc246310338]Figure 21	The basic iterative tomography algorithm

Because we solve our problem in the Fourier domain, we may get wrapping errors when paths are propagated through the replicated domains.  This could result in forward propagated values in regions outside our aperture being back propagated into our estimated atmosphere.  To avoid this, we may have to force those values to zero.
To do this we would take our forward propagated Fourier domain data back to the spatial domain and reapply our aperture, forcing values outside it to zero.  Then we would apply the Fourier transform to the apertured spatial domain data so we could again back propagate it.  If we precondition the data, we may have to apply the aperture again after preconditioning.
The augmented data flow for the Fourier domain is shown in Figure 22.
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[bookmark: _Ref246150559][bookmark: _Ref246150552][bookmark: _Ref136254014][bookmark: _Toc246046076][bookmark: _Toc246310339]Figure 22	Actual Fourier Domain Data Flow with Aperturing

Applying the aperture in the iterative loop is the dominant element time-wise.  The relative time to do the two 2D DFT‑1/DFT pairs in order to apply the aperture can be seen in Figure 23.


[bookmark: _Ref246151991][bookmark: _Toc246310340]Figure 23	Relative time of components of iterative loop
However, the iterative algorithm will converge to a minimum variance solution without applying the aperture, perhaps taking more iterations.  We are currently evaluating the accuracy, stability, and relative speed of the loop both with and without applying the aperture. 
0. [bookmark: _Toc246310199]Architecture
We have modeled the algorithm implementation after the tomography problem itself.  We divide the atmosphere into sub-domains called voxels.  We use an iterative algorithm to calculate the influence of each voxel.  These calculations are highly parallel, very simple, have minimum memory requirements, and minimum communication requirements with other voxels.  Our implementation of the algorithm follows this model.  We assign a very simple processor called a processing element (PE) to a small number of adjacent voxels.  We place a large number of these processors on a field programmable gate array (FPGA), see _______.  Each FPGA contains all of the voxels for one column of the atmosphere above the telescope.  Multiple FPGAs, then, are used to hold all of the voxels for the space above the telescope.
This implementation maintains the visibility of all aspects of the original problem through the various phases of the solution.
The Tomography Engine PE uses a wide-word SIMD (Single Instruction Multiple Data) architecture.  That is, the instruction is not decoded, all bits that control any aspect of the PE are present directly in the instruction and all PE’s receive the same instruction simultaneously and execute the same function on their individual data.

Add illustration of the PE control word

As stated above, we solve our problem using domain decomposition.  We have ‘N’ elements in our domain, we have ‘m’ processing elements (PEs), and we divide the task into ‘m’ parts with each part handling N/m elements.
Memory is completely local to the Processing Elements (PEs), so no global memory access is required by any PEs.
[bookmark: _Ref136763781]All PEs use exactly the same algorithm and lines of code, with no branching.  Therefore, all PEs are executing the same line of code at the same time and so finish at exactly the same time.  Consequently, the program could be located in a single external controller [[endnoteRef:4]].  However, for timing and performance reasons and in order to minimize the busing resources used, we duplicate the control logic for each sub domain: one controller per FPGA with hundreds of PEs on each FPGA served by that controller. [4: 	“General Purpose Systolic Arrays”, Johnson, Hursom, Shirazi, 1993, Computer, IEEE, (p24)] 

The control logic for these domains is very small; and does not impact the density (PEs per chip) of the implementation significantly.
.

[bookmark: _Toc246046014][bookmark: _Toc246310200]Macro Architecture
We divide our problem into domains and sub-domains, mapping the implementation of our algorithm to the structure of the underlying science problem.
At the top level is the domain of the entire 3D atmospheric volume we are estimating.  This is further divided into layers and sub apertures.


[bookmark: _Toc246310341]Figure 24	Modeling the solution after the form of the problem

Note:
The term “sub aperture” is normally used in a spatial context to denote a portion of the primary aperture of the telescope.  Here it is also extended to denote a single frequency bin of those across the aperture
For our purposes, we divide the atmosphere into columns.  Each column is one sub aperture square at the ground and extends vertically through the various layers of the atmosphere, see Figure 25.  The intersection of a column and a layer defines a voxel and we assign a processor to each voxel to calculate its OPD (Optical Path Delay).  The voxel is the smallest sub domain we deal with.


[bookmark: _Ref246153039][bookmark: _Toc246046077][bookmark: _Toc246310342]Figure 25	A column of combined layer and guide star processors form a sub aperture processor

We assign one processor to handle all computations for some number of voxels in a layer arranged in a square.  If we have 5 layers, a column of 5 processors might handle a single column of voxels for a single sub aperture or it might handle all processing for a column of 9 sub apertures (45 voxels).  Each FPGA handles a sub-domain consisting of a square region of adjacent columns, which as described contain all layers of the atmosphere for that region.
We take an array of many of these adjacent regions and place them in an FPGA, which can support hundreds to thousands of processors.  Each FPGA then supports calculations for some larger portion of the atmosphere.
We then array these FPGAs on a circuit board to support a yet larger volume of the atmosphere and in turn array these circuit boards to support the total volume necessary.

[bookmark: _Toc246310343]Figure 26	Using our knowledge of structure



[bookmark: _Toc246310344]Figure 27	Tomography Engine Block Diagram

[bookmark: _Toc246046015][bookmark: _Toc246310201]Inter Element Communications
In a 3D systolic array, each processor in the array must communication with its six orthogonal neighbors.  Within an FPGA, there are an abundance of routing resources and this is not a problem.  However, to communicate between the voxels on one FPGA and the neighboring voxels on another, we have a limit set by the I/O pins available on the FPGA.  This also holds for the voxels at the boundaries between adjacent printed circuit boards.  

At the boundaries of our volume, the processors on each face wrap symmetrically to communicate with the opposite face.


Diagram


Figure 28 shows the array interconnect for a layer.  The bandwidth across all interfaces must be the same to insure efficient operation.  However, the data path width and transfer clock rate across chip and board boundaries can be different to accommodate the physical realities of the system.


[bookmark: _Ref246152912][bookmark: _Ref140390851][bookmark: _Toc246046078][bookmark: _Toc246310345]Figure 28	The Systolic Array, showing boundaries for different elements
Sub aperture processors (black), chips (blue), and boards (green)

Each processor for a sub aperture must talk to each orthogonal neighbor.

Each FPGA has P I/O pins.  For L layers and m sub apertures per side of the square area the FPGA covers we can calculate the number of I/O pins available per voxel.  This gives each voxel a bus size of I/O pins to communicate with each neighbor on a different FPGA.
An example could be an FPGA that has 600 pins we can use for this communication.  Each device handles five layers and nine sub apertures.  Therefore, the bus size between adjacent chips would 10 bits per voxel.  This allows eight pins for data and two for clock and control.  However, each voxel handles a complex value.  So we need to transfer 2 18-bit words.  As a result, we serialize the data across the chip boundaries, while internally, we use a wide bus.
Control is distributed to individual chips and Processing Elements (PEs).  Both data and control are pipelined. 
The number of iterations in a frame is set to a fixed number.  This number is set to guarantee that all iterations will complete before the start of the next frame.  During anomalous situations, such as initial startup or an obscuration traveling rapidly across the aperture, the system may not be able to converge to our lower error limit in a single frame and must continue at the start of the next frame.  We don’t want the frame sync to occur in the middle of an iteration, leaving the machine in an uncertain state.

Given the immense data bandwidth and compute requirements, we use a Harvard architecture (program and data memory are separate), SIMD model processor for the basic processing element (PE) throughout the array.  Independent communications paths for code and data and allows us to perform operations on all data elements in the volume simultaneously on each instruction.
As described, the system is implemented using direct communications only between the immediately adjacent cells in the x, y and z directions: four horizontally orthogonally adjacent voxels and the voxel above and below.
These sub aperture columns are arranged in a square on an x,y-grid, which corresponds to the sub apertures on the instrument.  The actual number of sub apertures used is larger than the number of sub apertures on the instrument, since we must allow for the fact that our volume will typically be a trapezoidal and be wider at the top ( see _____ ).
A central control core is used for each FPGA.
Each FPGA has a single local state machine for control.  This state machine supplies control for all the PEs as a wide word, with some local decoding at the PE level.  The state machines are globally synchronized at the start of each frame.  If a state machine inadvertently finds itself in an invalid state, a log of the event is kept and a signal is made available outside the system.  System logic can determine the best action based on frequency or location of the occurrence.
[bookmark: _Toc139795523][bookmark: _Toc234310425][bookmark: _Toc246310202]Layer-to-layer and Guide-Star-to-Guide-Star Communications
As stated, we divide our problem into sub-domains.  Each FPGA handles a sub-domain consisting of a region of all layers in m x m spatial or spatial-frequency sub-apertures.
We create a three-dimensional grid of N X N X L processors, where N is the number of sub apertures and L is the number of layers.  Actually, L is MAX(Layers, guide stars); however, since we will normally have more layers than guide stars (to insure an underdetermined problem), we use L here for convenience.
Consider a vertical projection of a single sub aperture through our volume.  It consists of the area/volumes of each layer above it in our model.  It also corresponds to a particular sub aperture in each of our WFSs.
Each processor for a sub aperture must talk to each orthogonal neighbor.  

Each FPGA has P Input/Output pins.  This gives each processor a bus size of Input/Output pins to communicate with each neighbor.  Our device (a Xilinx® Virtex-5 or Virtex-6) will have 600 or more pins we can use for this communication between chips.  Each device will handle five layers and nine or more sub apertures.  Therefore, our bus size between adjacent chips is approximately 10 pins.  This allows eight pins for data and two for clock and control.
[bookmark: _Toc139795524][bookmark: _Toc234310426][bookmark: _Toc246310203]Inter Layer Communications

[bookmark: _Toc246310204]Inter Sub-Aperture Communications
This communication path is used for DFT calculations, loading and unloading data, and performing interpolation to compensate for the cone effect for laser guide stars (see ____).
[bookmark: _Toc246046018][bookmark: _Toc246310205]Program Flow Control
Each FPGA has a simple control processor that supplies the control words for all the PEs on the chip.  The structure of the control word is a wide-word, with minimal local decoding at the PE level.  All control processors, one for each FPGA, are globally synchronized at the start of each frame.  
For robust operations, if a state machine finds itself in an invalid state, a log of the event is kept and a signal is made available outside the system.  System logic or the operator can determine the best action based on frequency or location of the occurrence.
There is no need (or ability) for each voxel processor (or sub aperture processor) to have branch capability or individual register addressability within the array.  All PEs execute the same code on exactly the same register address in synchronism.
However, at global level, we do need to:
· Determine what diagnostic programs to run in the time between the end of convergence and the start of a new frame
· Synchronize control logic at the start of a frame and determine when we are too close to the end of a frame to start another iteration.

Each frame starts with the result of the previous frame, so in general, we will converge to a new estimate before the end of a frame.  The remainder of each frame can thus be used for diagnostic and monitoring processes.  Diagnostic and monitoring functions can be interrupted at the end of a frame and continued at the end of the next frame and so on until they complete


Our algorithm requires that we convert between the spatial and Fourier domains.  In our architecture, we do this by N shifts across rows to accomplish the transform.  During this transformation, each CP calculates the running sum-of-squares for the error.  When the transform is over, if the value is below our criteria, we stop iterations and start or continue any diagnostic or monitoring processes that need to be run.
We have three basic tasks that our architecture needs to support: I/O, DFT (both highly parallelizable) and a linear solver (embarrassingly parallelizable).
No local or global memory access is required to other Processing Elements (PEs), so memory can be completely local to the PEs.
Since all PEs execute the same program, the architecture is SIMD (Single Instruction Multiple Data) and the program could be located in a single external controller [[endnoteRef:5]].  However, for timing and performance reasons and in order to minimize the busing resources used, we duplicate the control logic for each sub domain (individual FPGAs).  As a side effect, this also gives us the ability to implement MIMD algorithms if needed. [5: []	“General Purpose Systolic Arrays”, Johnson, Hursom, Shirazi, 1993, Computer, IEEE, (p24)] 

The control logic for these domains is very small; and does not affect the density (cells per chip) of the implementation significantly.

[bookmark: _Ref139517927][bookmark: _Ref139517954][bookmark: _Toc139795532]
[bookmark: _Ref191177123][bookmark: _Ref191177155][bookmark: _Toc246046022][bookmark: _Toc246310206]Implementation
[bookmark: _Toc246046023][bookmark: _Toc246310207]General Operation
The Tomography Engine is a 3D, systolic array of processor cells that calculates a 3-D estimate of the index of refraction of a volume of the atmosphere.  The volume is broken into layers and each layer contains a number of voxels (volume elements that are one layer thick and one sub aperture square).
Since the calculations for the tomography are embarrassingly parallel, we dedicate a single processor for each voxel.  Each processor is very simple and has enough local memory to do all its processing without needing access to global or a neighbor’s memory.  The nature of the parallel algorithms implemented determines the exact amount of this memory required.
The overall operation is on a frame basis, with a frame having a nominal duration of 500 µSec.  The operations during each frame are identical to those of all other frames.
· At the beginning of a frame, data is shifted into one side of the array from the WFSs.  As the WFS data is shifted in, the processed data is simultaneously shifted out of the other side for DM command generation.  Thus the data load and unload portion of a frame are completely overlapped, see _____.
· During the rest of a frame, data circulates through the array for processing, shifting from cell to cell, by rows or columns during operation.  The shifting of data during operation uses the same data paths that were used for the load/unload.
There is no global communication between the processors.  All communication is local between adjacent processors.
[bookmark: _Toc246046024][bookmark: _Toc246310208]The Systolic Array
Put this Earlier
The iterative solver in the tomography engine is easily parallelized.  As soon as input data become available, calculations can be performed concurrently and in-place as data flows through the system.  This concept was first defined by Kung at Carnegie-Mellon University:
A systolic system is a network of processors that rhythmically compute and pass data through the system.  Physiologists use the word “systole” to refer to the rhythmically recurrent contraction of the heart and arteries that pulses blood through the body.  In a systolic computing system, the function of a processor is analogous to that of the heart.  Every processor regularly pumps data in and out, each time performing some short computation, so that a regular flow of data is kept up in the network [[endnoteRef:6]]. [6: []	H. T. Kung and C. E. Leiserson.  Systolic Arrays (forVLSI).  Proceedings of Sparse Matrix Symposiums, pages 256–282, 1978.] 

At first, systolic arrays were solely in the realm of single-purpose VLSI circuits.  This was followed by programmable VLSI systolic arrays [[endnoteRef:7]] and single-purpose FPGA systolic arrays [[endnoteRef:8]].  As FPGA technology advanced and density grew, general-purpose “reconfigurable systolic arrays” [[endnoteRef:9]] could be put in single or multiple FPGA chips.  The capability of each processing element in early FPGA systolic array implementations was limited to small bit-level logic.  Modern FPGA chips have large distributed memory and DSP blocks that, along with greater fabric density, allow for word-level 2’s complement arithmetic.  The design goals for our systolic array are: [7: [] 	R.  Hughey and D.P.  Lopresti.  Architecture of a programmable systolic array.  Systolic Arrays, Proceedings of the International Conference on, pages 41–49, 1988.]  [8: [] 	M.  Gokhale.  Splash: A Reconfigurable Linear Logic Array.  Parallel Processing, International Conference on, pages 1526–1531, 1990.]  [9: []	K.T.  Johnson, A.R.  Hurson, and Shirazi.  General-purpose systolic arrays.  Computer, 26(11):20–31, 1993.] 

· Reconfigurable to exploit application-dependent parallelisms
· High-level-language programmable for task control and flexibility
· Scalable for easy extension to many applications
· Capable of supporting single-instruction stream, multiple-data stream (SIMD) organizations for vector operations and multiple-data stream (MIMD) organizations to exploit non homogeneous parallelism requirements [[endnoteRef:10]] [10: []	A. Krikelis and R. M. Lea. Architectural constructs for cost-effective parallel computers.  pages 287–300, 1989.] 


Because of tasks, such as multiple 2-D DFTs per Frame, the number of compute operations drastically outnumbers the I/O operations.  The system is therefore “compute-bound” [[endnoteRef:11]].  The computational rate, however, is still restricted by the array’s I/O operations that occur at the array boundaries.  The systolic array tomography engine is composed of many FPGA chips on multiple boards. [11: []	H.T.  Kung.  Why Systolic Architectures?  IEEE Computer, 15(1):37–46, 1982.] 



[bookmark: _Toc246310346]Figure 29

[bookmark: _Toc246046025][bookmark: _Toc246310209]The processing element (PE)
The heart of our systolic array is the Processing Element (PE).  This is a very powerful cell, which can perform 18-bit pipelined operations at 500MHz.  Each PE uses two multiply-accumulate units (MACs) for the complex arithmetic of the Fourier transform.  A single FPGA chip can have over 500 of these MACs and allows us to have over 250 PEs per chip.
This is the power of the FPGA.  While each FPGA might only be processing data at 100 MHz, each chip can contain >250 processors for a combined processing capability of >25 G Operations per second.
For the Xilinx chips we use, these MACs are called DSP48s.  They have 18-bit MACs, with a 48-bit accumulate register to prevent overflow on long MAC operations.

[bookmark: _Ref246298968][bookmark: _Toc246310347]Figure 30	Processing Element (PE)


[image: ]
[bookmark: _Toc246046079][bookmark: _Toc246310348]Figure 31	The Xilinx DSP48E architecture [[endnoteRef:12]] [12: []	Xilinx, Inc.  Virtex-5 Xtreme DSP Design Considerations User Guide,7 January 2007.] 



[image: ]
[bookmark: _Toc246046080][bookmark: _Toc246310349]Figure 32	A single Processing Element (PE)

Two DSP48s are employed, one for the real and one for the imaginary part of the complex number.  As shown in Figure 30, the PE also contains a dedicated Block RAM memory, an18-bit register for the real part, and an18-bit register for the imaginary part.  Multiplexors control whether these registers receive data from their respective MACC or if data are just snaked through them to the next PE.  Note that there is only a single 18-bit input and single 18-bit output.  This is because when data is flowing through the mesh, the real part is transferred on even clock edges and the imaginary part on odd edges.  This is particularly important for instructions types such as the DFT where complex multiplication is performed on inputs split across two clock cycles.
[bookmark: _Toc246046026][bookmark: _Toc246310210]PE interconnect
The switching lattice for a simple 3x3 layer of the tomography engine is shown in Figure 33.  For a large telescope, this lattice could be 64x64 or larger.  The individual PEs are labeled by their column and row position in the mesh.  Each PE has a multiplexor on its input to route data orthogonally from a neighboring horizontal PE, vertical PE, or next layer PE.  External I/O only takes place at the mesh boundary on the right and left sides.  Information shifts in a circular fashion along columns, rows, or layers.  All data paths are 18-bits wide to match the fixed 18-bit inputs of the DSP48E block.

[image: ]
[image: ]= Output to layer above [image: ]= Input from layer below
[bookmark: _Ref246156822][bookmark: _Toc246046081][bookmark: _Toc246310350]Figure 33	A layer of PEs, showing the interconnect and I/O

[bookmark: _Toc246046027][bookmark: _Toc246310211]I/O bandwidth
In a multi-chip system, an important question is how many PEs can be partitioned for each chip.  The system has I/O bandwidth and logic resource limits.  In Table 3.4, I/O requirements and resource availability for the threeVirtex5SXFPGAs are compared.  It is important to note from the figure that not all of the DSP48E resources were used because total chip bandwidth runs out at a certain point for different FPGAs.  Serialization/deserialization logic are used for the interconnect.




Add table




[bookmark: _Toc246046028][bookmark: _Toc246310212]SIMD system control
Most control signals are single bit control, but some, like the address inputs to the BlockRAM, function as index counters to the stored coefficient data.  In addition to fine-grained control at the PE level, control signals also manipulate the multiplexors at the switch lattice level.  These control signals are global and can be issued by a single control unit or by distributed copies of the control unit.  The control unit requires very few resources, so even if multiple copies are distributed, the cost is minimal.  The control communication overhead of larger arrays can also be avoided with multiple control processors per FPGA.
[bookmark: _Toc246046029][bookmark: _Toc246310213]Cycle accurate control sequencer (CACS)
When the tomography algorithm is mapped to hardware, it can be controlled by linear sequences of control bits, specific clock counts of idle, and minimal branching.  A Cycle Accurate Control Sequencer module (CACS), shown in Figure 34, was architected to be a best of both worlds solution that would (1) borrow single cycle latency benefits from finite state machines and (2) use programmability aspects of a small RISC engine.  Because the CACS logic consists of only an embedded BlockRAM module and a few counters, it has both a small footprint and a fast operational speed.
The control sequence up counter acts as a program counter for the system.  The following types of instructions can be issued from the control BlockRAM:
Real coefficient address load: Bit 22 signals the real coefficient up counter to be loaded with the lower order data bits.
Imaginary coefficient address load: Bit 21 signals the imaginary coefficient up counter to be loaded with the lower order data bits.
Control sequence address load: Bit 20 and status bits control whether or not a conditional branch is taken.  If a branch is to be taken, then the control sequence up counter is loaded with the address contained in the lower order data bits.
Idle count: Bit23 loads adown counter with a cycle count contained in the lower order data bits.  This saves program space during long instruction sequences where control bits do not have to change on every cycle.  When the down counter reaches zero, the idle is finished and the control sequence up counter is re-enabled.
Control bus change: When the high order bits are not being used for counter loads, the low order bits can be changed cycle by cycle for the control bus registers.
Three types of low-level instructions are presented in Figure 35 to show how a sample control sequence in a text file is compiled by script into BlockRAM content.  First the single bit outputs are defined, then an idle count command creates a pause of “cols*2-1” number of times.  Note that “cols” is a variable dependant on the number of east/west columns in the systolic array.  The instructions are flexible because they incorporate these variables.  Single bit changes are done on the subsequent two cycles and finally the real and imaginary coefficient counters are loaded.
[image: ]
[bookmark: _Ref246157080][bookmark: _Toc246046082][bookmark: _Toc246310351]Figure 34	CACS Architecture


[image: ]
[bookmark: _Ref246157400][bookmark: _Toc246046083][bookmark: _Toc246310352]Figure 35	Sample CACS ROM content










[bookmark: _Toc246310214]Latency
Move up









[bookmark: _Toc234310442][bookmark: _Toc246310215]General Operation
The Tomography Engine is a 3D, systolic array of processor cells that calculates a 3d estimate of the index of refraction of a volume of the atmosphere.  The volume is broken into layers and each layer contains a number of voxels (volume elements that are one layer thick and one sub aperture square).
Since the calculations for the tomography are embarrassingly parallel, we dedicate a single processor for each voxel.  Each processor is very simple and has enough local memory to do all of its processing without needing access to global or a neighbor’s memory.  The nature of the parallel algorithms implemented determines the exact amount of this memory required.
The overall operation is on a frame basis, with a frame having a nominal duration of 1 msec.  The operations during each frame are identical to those of all other frames.
During each frame, the engine:
· At the beginning of a frame, data is shifted into one side of the array from the WFSs.  As the WFS data is shifted in, the processed data is simultaneously shifted out of the other side.  Thus the data load and unload portion of a frame are completely overlapped.
· During the rest of a frame, data circulates through the array for processing, shifting from cell to cell, by rows or columns during operation.  The shifting of data during operation uses the same data paths that were used for the load/unload.  In this time, the iterations of the algorithm are performed until the RMS error falls below a pre-determined level.
There is no global communication between the processors.  All communication is local between adjacent processors.
The Tomography Engine is a 3-D, systolic array of processor cells.
Each PE has enough local memory to do all of its processing without needing access to global or a neighbor’s memory.  The nature of the parallel algorithms implemented determines the amount of this memory required.
Operation is on a frame basis, with a frame having a nominal duration of 500 µsec.  The operations during each frame are identical to those of all the other frames.
During each frame, the engine:
· Takes data in (wave-fronts)
· Processes the data (creating a tomographic estimate of the atmosphere)
· Delivers the processed data (estimated layer information for the DM’s)
There is no global communication or addressing between the processing cells that make up the engine.
Data flows through the array for processing, shifting from cell to cell, by rows or columns during operation.  Data is also loaded and unloaded using the same shifting mechanism.
At the end of a frame, as processed data is shifted out of the array, the new data is simultaneously shifted in.  Thus the load and unload portion of a frame are completely overlapped.




[bookmark: _Ref237427877][bookmark: _Toc246310353]Figure 36	RTC Boards



[bookmark: _Toc246310216]Interfaces and Protocols



[bookmark: _Toc246310217]Data Flow and Rates



[bookmark: _Toc246310218]Timing and Events



[bookmark: _Toc246310219]Control and Orchestration of Processor States

On-Line Parameter Loading

Off-Line Parameter Loading

[bookmark: _Toc246310220]Design

[bookmark: _Toc246310221]Physical Architecture of the Tomography Engine

[bookmark: _Toc246310222]FPGA Design
Xilinx Virtex 5 or 6
Higher logic density may lead to timing and pin-out issues
Higher density logic may lead to more susceptibility to SEU’s

Basic Cell Layout

FPGA Configuration

System Monitor
The System Monitor monitors the core temperatures and voltages of each FPGA.  They are linked serially, so that the health of each FPGA in the tomography processor can be monitored independent of the operation state of the system.
Clocks

Data

System Signaling
Diagnostics and Telemetry

Position Detection

Power

Power Supply Bypassing

Heat Removal

[bookmark: _Toc246310223]Board Design


FPGA Configuration

Power Regulators
Each board will have its own power regulator for the critical core voltages: _______
These voltages must be < ±___ for all FPGA’s on the board.

Power Supply Bypassing


Voltage Monitors

Temperature Monitor


Connectors

Power

Clock

Data

System Signaling
Diagnostics and Telemetry

Position Detection

Clock Issues

Heat Removal

[bookmark: _Toc246310224]System (Multi-Board)

Board to Board

Data

Clock

System Signaling
Diagnostics and Telemetry

[bookmark: _Toc246310225]System Facilities

Power Supplies
All power supplies are to be digitally programmable and monitored.
Number and size

Do they need to be redundant?

Clocks

Communication to and from the CP

Communications to the Telemetry Stream

Communications to the Diagnostic Stream


[bookmark: _Toc246310226]Mechanical Design

Ease of use

Cooling

Cabling

Power

Data In and Out

Power Control (Pulizzi)

[bookmark: _Toc246310227]Performance

Add summary table of the cycle times for DFT, iterations (with and without aperturing and number of cycles)




[bookmark: _Toc139795528][bookmark: _Toc234310431][bookmark: _Toc246310228]Other Architectural Issues

[bookmark: _Ref136409822][bookmark: _Toc139795529][bookmark: _Toc234310432][bookmark: _Toc246310229]Program Flow Control
Since we must convert the forward propagated values to the spatial domain and apply the aperture to them, we calculate the error in the spatial domain.  Then we transform the error back to the Fourier domain for back propagation.  In our architecture, we do this by N shifts across rows to accomplish the transform (see Figure 52
The total o  number of iterations in the frame is fixed.  This limit is set to guarantee that each iteration will complete before the start of the next frame.  During anomalous situations, such as initial startup or an obscuration traveling rapidly across the aperture, the system may not be able to converge to our lower error limit in a single frame and must continue at the start of the next frame.  We do not want the frame sync to occur in the middle of an iteration, leaving the machine in an uncertain state.
[bookmark: _Toc234310430]Diagnostic programs to run after the tomography iterations have completed.
[bookmark: _Toc246310230]Arithmetic Errors and Precision
A DFT has O(N2) operations for each transform, while an FFT has O(Nlog(N)) operations.  Using exact arithmetic, they have equal accuracy.  However, when using finite math, the DFT has the potential to incur more round-off errors than an FFT. 
Special care must be taken to avoid this error from accumulating over many transforms.  We use pre-scaling of our coefficients and post-scaling of the transformed data to minimize this.
[bookmark: _Toc139795530][bookmark: _Toc234310433][bookmark: _Toc246310231]Integer Operations vs. Floating Point
Range of values and precision
Scaled integer arithmetic is used (Need a good reference for this) 

[bookmark: _Ref237070855][bookmark: _Ref236996945][bookmark: _Ref236997022][bookmark: _Toc220914195][bookmark: _Toc246310232]DM and T/T Command Generation
The DM and T/T command generator sub-systems convert wavefront information into mirror voltage commands to result in the desired wavefront.

[bookmark: _Toc246310233]Algorithms

[ref Don Gavel, RTC Algorithms Document]


[bookmark: _Toc246310234]Tip/Tilt Mirrors
The RTC controls 10 tip/tilt mirrors (one for each WFS) and 1 on-axis tip/tilt actuator on the Woofer:
· 3 T/T mirrors associated with the 3 LOWFS cameras
· 7 T/T mirrors associated with the 7 HOWFS cameras
· 1 T/T actuator on the Woofer
Each actuator is driven by its own driver.  The driver is supplied by the tip/tilt command generator with a value that corresponds to the desired tip/tilt. 
[bookmark: _Toc246310235]Tip/Tilt Command Generators
The tip/tilt command generators take a desired tip/tilt angle from a WFS and convert that angle to a signal to the tip/tilt mirror drivers or actuators that will set the mirrors to the correct position.
HOWFS T/T
The tip/tilt information for each HOWFS is derived from the centroids calculated for that HOWFS.
LOWFS T/T
______________________________
On-axis T/T
The on-axis tip/tilt information is derived from the tip/tilt information supplied by the three LOWFS.  For details on the algorithm see [ref Don Gavel ,RTC Algorithms Document].
Systematic Vibration Compensation (FR-XXXX, no current functional requirement)
The on-axis tip/tilt actuator will be capable of compensating for systematic vibrations through a TBD algorithm [ref Don Gavel ,RTC Algorithms Document] using information from TBD sources.
[bookmark: _Toc246310236]Interfaces and Protocols
The controlling signal provided to the tip/tilt mirror drivers will be either an analog voltage or a digital value.  The decision as to which is used will be reserved for the build phase.  
[bookmark: _Toc246310237]Data Flow and Rates
LOWFS and On-axis T/T
The LOWFS and the On-axis tip/tilt are updated at 250 Hz.  This rate is determined by the LOWFS frame rate.
HOWFS T/T
The HOWFS T/T mirrors are updated at 2 KHz.  This rate is determined by the HOWFS frame rate.
[bookmark: _Toc246310238]DM Command Generators


[bookmark: _Toc246310239]Low Order (Woofer) (On-axis DM, closed loop operation)
The low order DM (woofer) operates closed loop.  All WFS and the science object are affected by the shape of the Woofer.
Algorithm Description (Brief)
Ref (Don’s algorithm document)




[bookmark: _Toc246310354]Figure 37	Woofer command generation

Interfaces and Protocols
The wavefront supplied to the Woofer command generator by the Tomography Engine will be an array of approximately 400 displacement values.  These values will be in scaled nanometers.
The electronics that drive the Woofer have not been specified at this time.  Therefore the interface and protocol to the DM cannot be specified.  However, it is not expected to be a limiting issue.
Data Flow and Rates
The Woofer is sent commands from the Tomography engine at the frame rate of the system (~2 KHz).  These commands are sent synchronously with the tweeter commands.
The electronics that drive the Woofer have not been specified at this time.  However, a reasonable estimate of the time to transfer the commands to the approximately 400 elements of the Woofer is less than 50µsec, which is the time that the current tweeter system (4092 elements) takes to transfer the its commands.
[bookmark: _Toc246310240]High Order (Tweeter) (Science and LOWFS DMs, Open Loop Operation)
The high order on-axis science DM and the LOWFS DMs all operate open loop.
The high order science DM removes high order aberrations from the science image.  The shape placed on it is calculated by forward projecting the science object through the tomographic estimate of the atmosphere.
The LOWFS DMs correct aberrations in the light from the NGSs.  The NGS LOWFSs sense tip/tilt, focus, and astigmatism that the HOWFS cannot.  The shape that is placed on the LOWFS DM is calculated by sensing the wave front from an adjacent point-and-shoot LGS through its HOWFS. 




[bookmark: _Toc246310355]Figure 38	DM Command Generation Latency (not to scale)
Preliminary Timing

High Order Science DM (Tweeter) Command Generation


[bookmark: _Toc246310356]Figure 39	Science Object DM command generation

Interfaces and Protocols
The drive electronics for the Command Generator are housed in a real-time Linux system running on a multi-processor multi-core system.
The Tomography Engine sends the Command Generator an array of displacement values (in nanometers) over an LVDS cable using a simple clocked protocol.
The Command Generator sends the DM driver the resultant commands over an LVDS cable (32 pairs) using a proprietary but simple protocol.  The cable is driven by a general purpose I/O board from VMETRO.  This board is supported by a RT Linux driver supplied by the DM Driver manufacturer, Cambridge Innovations. 
NOTE:
The drivers for the LVDS cable must be on the same AC ground as the Cambridge Innovations DM controller.
Currently, the Command Generator will be in the computer room and the DM Controller will be on the Naismith (see Figure 5).  In this configuration, the Command Generator will drive an LVDS-to-optical converter and the signals will be brought to the Naismith through optical cables.  At the Naismith, the optical cables will drive an optical-to-LVDS converter that will drive the DM Controller.  It is this converter that must be on the same AC ground as the DM Controller.
Data Flow and Rates
The Tweeter Command Generator is sent an array of displacements (4K elements) from the Tomography engine at the frame rate of the system (~2 KHz).  It processes these and sends the commands (4K) to the Tweeter.  These commands are sent synchronously with the Woofer commands.
The electronics for the Tweeter are able to write to all 4K elements in less than 50 µsec.  All elements must be written sequentially so there is no ability to update only a single element.

High Order DM for the LOWFS NGS Command Generation


[bookmark: _Toc246310357]Figure 40	LOWFS Command Generation

Interfaces and Protocols
The drive electronics for LOWFS DM Command Generator are part of the real-time Linux system that comprises the Point-and-Shoot HOWFS.  No external transfer mechanism is needed to transfer the desired wavefront.
The Point-and-Shoot HOWFS sends the Command Generator an array of displacement values (in nanometers).
The Command Generator sends the DM driver the resultant commands over an LVDS cable (32 pairs) using a proprietary but simple protocol.  The cable is driven by a general purpose I/O board from VMETRO.  This board is supported by a RT Linux driver supplied by the DM Driver manufacturer, Cambridge Innovations. 
NOTE:
The drivers for the LVDS cable must be on the same AC ground as the Cambridge Innovations DM controller.
Currently, the Command Generator will be in the computer room and the DM Controller will be on the Naismith (see Figure 5).  In this configuration, the Command Generator will drive an LVDS-to-optical converter and the signals will be brought to the Naismith through optical cables.  At the Naismith, the optical cables will drive an optical-to-LVDS converter that will drive the DM Controller.  It is this converter that must be on the same AC ground as the DM Controller.
Data Flow and Rates
The LOWFS DM Command Generator is sent an array of displacements (1K elements) from the HOWFS at the frame rate of the system (~2 KHz).  It processes these and sends the commands (1K) to the LOWFS DM.  These commands are sent synchronously with the Woofer and Tweeter commands.
The electronics for the LOWFS DM are able to write to all 1K elements in less than 50 µsec.  All elements must be written sequentially so there is no ability to update only a single element.







[bookmark: _Ref241488831][bookmark: _Ref244504655][bookmark: _Toc246310241]Telemetry, Diagnostics, Display and Offload Processing
There are several types of data that may be supplied by the RTC: raw data, displayable data (offload processed), settable parameters, environmental parameters, logs, notifications and errors.
In this document:
· Telemetry refers to raw data sent unprocessed to the disk sub-system.
· Diagnostics refers to raw data that has been filtered by the offload processor (sampled or temporally filtered) and sent at a low bandwidth to the AO Control.  Such data may be used for on line r0 calculations or for PSF analysis. 
· Settable parameters are any parameter which the AO Control can set during normal operations.  These comprise the RTC’s current operating state.
· Environmental parameters include temperature, residual errors, airflow, voltages, vibration of components of the RTC, etc.
All major data signals can be sent to the Telemetry/Diagnostic data path at the request of the AO Control.  Any data in this path can be sent to either-or-both the AO Control, for diagnostics, display, or the RTC disk sub-system, for storage.  (See: Section 8)
These signals include:
1. [bookmark: OLE_LINK9][bookmark: OLE_LINK10]Raw Camera Data for 4 tomography WFSs, 3 point-and-shoot WFSs, and 3 NGS cameras
2. Centroids all HOWFS
3. Reconstructed wave fronts for all HOWFS
4. Tomography Layers
5. Science on-axis High Order Wave Front produced by the Tomography engine after forward propagating from the science object through the tomographic estimate of the atmosphere.  This is the open loop control wave front for the High Order DM
6. Science on-axis Woofer Wave Front produced by the Tomography engine after forward propagating from the science object through the tomographic estimate of the atmosphere.  This is the closed loop control wave front for the Low Order DM
7. Science on-axis High Order Commands
8. Science on-axis Woofer Commands
9. All RTC Current Parameter Settings including the settings of the following: shutters, laser fiber In/Out actuators, laser On/Off state and intensity, filter wheel position, interlocks



[bookmark: _Ref237850288][bookmark: _Ref236996885][bookmark: _Toc246310358]Figure 41	RTC Diagnostics and Telemetry
Show the offload processor

Diagnostic data is captured and sent to the AO Control at rates of approximately one sample per second, as determined by the AO Control.
A separate frame grabber associated with the disk sub-system captures camera data for diagnostics and telemetry.  This data is a parallel stream supplied by a Camera Link splitter, shown in Figure 41.
[bookmark: _Toc246310242]Architecture and Design
The RTC processing elements must be able to send all data streams that can be monitored to the disk sub-system simultaneously.  Because of this, we send these streams constantly to the Offload Processor.  The Offload Processor selects the desired streams, from none to all, individually.  This results in a reduction in the logic that the individual sources must support.  The decision is made at one location.
The data is then routed to the disk sub-system and/or the Offload Processor will sample or filter the data and send it to the AO Control as appropriate. 
[bookmark: _Toc246310243]Offload processor
The offload processor is a multi-processor multi-core Linux box running.  Data is taken in from its raw source and sampled or temporally filtered (a simple 1 pole filter) as necessary.  The processed data is sent to the AO Control for display or analysis at a predetermined rate of <3Hz.


[bookmark: _Toc246310359]Figure 42	Offload Processor

Time averaged and filtered data will be provided to the AO control as specified in the FRD, [TBD]
[bookmark: _Toc246310244]Interfaces and Protocols



[bookmark: _Toc246310245]Data Flow and Rates



[bookmark: _Toc246310246]Timing and Events



[bookmark: _Toc246310247]Synchronization of AO Data Time Stamps with the Science Image Time Stamps
The RTC system will have a sub millisecond accurate clock, GPS based to time stamp the AO data for telemetry and diagnostics and provide to the SRT.
· How will we use atmospheric data collected during the capture of science images for post processing (e.g. PSF)?
· To what accuracy must the time stamps on the science image and the AO data match?
· How to determine what time slice of the atmospheric data corresponds to a science image?
· Currently, science image shutter open and close times are time stamped to a precision nominally of a  small fraction of a second but may be as much as  ±30 seconds in error (see Appendix C).
· To what do we reference the RTC data and how?
· How to relate the AO data time stamps to the times in the science data at which the shutter was actually opened and closed?
[bookmark: _Toc246310248]An Important Note on the Telemetry Rates
Since the total storage rate can exceed 36GB/sec, if all possible data sets are captured, care should be taken to insure there is enough space remaining in the disk sub-system to save the data.  The disk sub-system can support multiple TB of data, but after a number of nights of heavy use, a great deal of the storage may be used.
The disk sub-system is not meant to archive data.  Its purpose is merely to store it temporarily until the desired data can be archived to another location and the unneeded data can be deleted.
[bookmark: _Toc246310249]Handling System Diagnostic Functions
The RTC does not need to know that a wave front was generated by a star or a laser diode (with or without simulated turbulence).  Its job is the same; calculate the wave front and tomography.  No special features are in place for system diagnostics beyond the normal diagnostics described here.

[bookmark: _Toc246310250]RTC Disk Sub-System
All major data signals can be sent to the Telemetry/Diagnostic data path at the request of the AO Control.  Any data in this path can be sent to either-or-both the AO Control, for diagnostics, or the RTC disk sub-system, for storage.
Since the total storage rate can exceed 36GB/sec if all possible data sets are captured, care should be taken to insure there is enough space remaining in the disk sub-system to save the data.  The disk sub-system can support multiple TB of data, but after a number of nights of heavy use, a great deal of the storage may be used.
The disk sub-system is not meant to archive data, merely to store it temporarily until the desired data can be archived to another location and the undesired data can be deleted.
[bookmark: _Toc246310251]Interfaces and Protocols


[bookmark: _Toc246310252]Interface to the RTC


[bookmark: _Toc246310253]Interface to the System AO Control


[bookmark: _Toc246310254]Data Flow and Rates


[bookmark: _Toc246310255]RTC Telemetry Port


[bookmark: _Toc246310256]System Network


[bookmark: _Toc246310257]Storage Capacity

[bookmark: _Ref241634443][bookmark: _Toc246310258]Timing Generation and Control



[bookmark: _Toc246310360]Figure 43	Clock and System Timing Generation

[bookmark: _Toc246310259]Camera Synchronization and Timing


[bookmark: _Toc246310260]GPS Sub millisecond Time Stamp Source


[bookmark: _Toc246310261]Pipeline coordination

[bookmark: _Toc246310262]Global Synch

[bookmark: _Toc246310263]Global Reset



[bookmark: _Toc246310264]Tomography System Clock

[bookmark: _Toc246310265]Tomography Synch

[bookmark: _Toc246310266]Tomography Clock (100 MHz)

[bookmark: _Toc246310267]Tomography LVDS Clock (600 MHz)


[bookmark: _Toc246310268]RTC Physical Architecture



[bookmark: _Toc246310361]Figure 44	Split of RTC hardware between the computer room and the Naismith


[bookmark: _Toc246310362]Figure 45	Rack space required on the Naismith for the camera, DM and T/T controllers



[bookmark: _Toc246310269]RTC Test Bench
The Test Bench System is a part of the RTC system, but is not involved in the operations of the system.  It is designed to perform bench tests on RTC major and sub-units: CP, WFSs, Tomography Engine boards, DM Command Generators …
Two permanent benches will be maintained: one at Keck and one in Santa Cruz.
Its purpose is to provide rapid and accurate acceptance, functional, development, diagnostic and debug test of all major RTC components
It can plug into the LVDS or Camera Link output from a Camera, a WFS, a tomography engine board, or a DM Command Generator and capture and analyze their outputs.
It can supply simulated input information to WFS, Tomography Engine boards, or DM Command Generators and simultaneously capture their outputs to validate unit functionality.
It is meant to be a bench tool in the lab rather than as an operational piece of the RTC.
It has all facilities necessary to provide the correct control to the devices under test through either LVDS, camera link, or Ethernet.
Two types of tests will be provided:
1. Push button (Go/No Go) confidence tests to validate the basic functionality of the unit.
2. Manually run tests to accomplish detailed analysis of the functionality or performance of the unit.
Additionally, to test the Tomography Engine boards or any custom boards, special jigs will be supplied that includes power supplies, cables, clock generators, monitoring, cooling and any other items needed to simulate the boards environment.
Figure 46 shows a diagram of the components of the test bench.
Outputs are capable of DMA’ing from memory to simulate complex data streams.
Inputs are capable of capturing the data streams from the device under test.
Programs will be written to control the input and output and display results.
[bookmark: _Toc246310270]Interfaces and Protocols
The user interface will be through either the console or the Ethernet.
The interface to the device under test (DUT)
[bookmark: _Toc246310271]Data Flow and Rates


[bookmark: _Toc246310272]Architecture




[bookmark: _Ref244845023][bookmark: _Ref244844997][bookmark: _Toc246310363]Figure 46	RTC Test Bench
[bookmark: _Toc246310273]Test Plan
[bookmark: _Toc246310274]General Requirements for System Components (HW and SW)
[bookmark: _Toc246310275]All Components
[bookmark: _Toc234309629][bookmark: _Toc246310276]Acceptance Testing
All components must have an established acceptance test requirement as part of their individual design package.
[bookmark: _Toc246310277]Long Term Maintenance Plan
The cost of ownership of a complex system such as the NGAO RTC is significant and may exceed the acquisition cost over time.  A clear plan must be in place for any custom hardware or software that will describe how the product will be maintained over time.  This must include:
1. Types of personnel required for various levels of maintenance including upgrades, feature additions, or bug fixes; i.e., what tasks would it be expected for astronomers, telescope technicians, software or hardware staff
1. A maintenance agreement must be included by the vendor that covers the delivered product for bug fixes for a minimum of 1 year after acceptance.
[bookmark: _Toc246310278]Document Control
All elements of the system are revision controlled with CVS or a functional equivalent.
[bookmark: _Toc246310279]Hardware
Spares

Panel Retention
All panels that can be removed during normal maintenance or operation shall be held in place with self-retaining screws or Velcro if the attachment to the system is satisfactory for EMI/RFI, light tightness, and ventilation concerns.
[bookmark: _Toc246310280]Software

[bookmark: _Toc246310281]Custom Components
Custom components include systems that are built from an aggregate of standard components, but combined into a custom configuration.
[bookmark: _Toc246310282]Documentation and Training
These products will need a variety of levels of documentation and training targeted at different audiences:
Operators Manuals

Diagnosis of Problems

Development of New Features

[bookmark: _Toc234309630]Diagnostics Capability
Each board must have the ability to have a minimum set of diagnostics performed on it while in the system and operating normally.  The following are required for all boards.  Requirements for specific board types are specified in their section.
[bookmark: _Toc246310283]Software
All custom software will be written in compliance with the existing Keck software standards [REF].  In addition to those standards, the following will be added if not already covered.
[bookmark: _Toc234309631]Software Module Identification
All software modules must contain a revision number and build date that can be queried during diagnostics to track currently installed module revisions.  This applies to each module in any compiled unit and any .DLL or .so, which is a custom piece of code.
Further, any executable must have a command that can be given during diagnostics that will list the information recursively for all such modules with which it is built or to which it is linked.
ROM Code
The revision number of the code, a unique functional ID number, and the build date will be included in the ROM code or data.
Table Generation Algorithms
Algorithms for generating any data stored in tables.
[bookmark: _Toc246310284]Hardware

Board ID, Revision, S/N, and location reporting
The following must be present in a computer readable form to assist in diagnostics and health monitoring.  Additionally, as noted, some must also be visible in a human readable form.
Board ID
The board ID is a simple text description in a very few words of the boards function accompanied by a part number that corresponds to the description, i.e., NGAO Tomography Processor, K100.  
Revision 
The board major revision number must be updated with any change to any layer.  This must be placed in a location that is easily visible and must be in copper.  A sub-revision location immediately adjacent to the major revision must be available for manual entry (indelible ink) and rework that changes the board such as the addition of wires or the addition or substitution of components.
S/N
Each board must have a space adjacent to the revision location where the serial number of the board can be written.
Location
If there are multiple identical board of identical types installed (i.e., Tomography boards or WFS boards) there must be a means of identifying in which position the board sits in the arrangement of identical boards.  To insure that it this cannot be incorrectly set, this should be not be set manually, but automatically by its position in the installation: a coded position socket into which each board plugs that is coded during manufacture.
[bookmark: _Toc234309632]Power supply monitoring
Sampling rate, sample depth, trigger capabilities, threshold capabilities.
[bookmark: _Toc234309633]Clock monitoring
Clock monitors
[bookmark: _Toc234309634]Trouble shooting and monitoring capability
Basic trouble shooting procedures will need to be performed occasionally: voltage or waveform viewing with a meter or scope are typical examples.  All custom boards must have easily accessible connections to measure its voltages and critical waveforms such as clocks.  For high speed clocks or differential signals where a scope probe could significantly alter the signal in question, a buffer should be provided between the signal and the connection. 
If an extender is to be used to perform these operations, the operation of the board in a system during normal operations must be demonstrated using such an extender.
All computer systems should include a general purpose digital I/O board that can be used by software components to signal important events, such as start of module, error conditions, completion of task, etc.
[bookmark: _Toc234309635]Cable Attachment Verification
Cables and connectors should be designed in such a manner that a device at one end can determine whether the cable is plugged in to the receptacle at the other end.
Circuitry will be included in each board for each cable to perform this analysis and report its result during diagnostics.
Note: If this feature cannot be implemented, then this requirement must be specifically waived for the specific board type and connector in question.
[bookmark: _Toc234309636]Temperature


[bookmark: _Toc246310285]Power Distribution, Environment and Cooling
Power to the various sub-systems will be controlled by a networked power control system such as a Pulizzi.  These are controlled by commands through the CP by the AO Control.  The power to the CP and the Disk Sub-System will be controlled directly by the AO Control.
Figure 47 shows the power control for the RTC.


[bookmark: _Ref237597397][bookmark: _Toc246310364]Figure 47	Power Distribution

[bookmark: _Toc246310286]Power Sequencing

[bookmark: _Toc246310287]WFS

[bookmark: _Toc246310288]Tomography Engine


[bookmark: _Toc246310289]FPGA Power Dissipation
The majority of the power dissipated by the tomography engine is in the FPGA’s.  There will be approximately 150 FPGAs, each dissipating a maximum of approximately 15 Watts for a total of 2.25 KW.
Sample Chip and Configuration
The initial evaluation of the FPGA design was based on the following estimated parameters in Table 10:
MAKE THIS A LINK
	Item
	Value
	Comment

	Chip:
	VSX95T 
	

	System Clock:
	100 MHz
	

	LVDS Clock:
	600 MHz
	

	Sub apertures per chip:
	100 (4 sub apertures per PE)
	

	Process Parameters
	Nominal
	

	Ambient Air Temp
	30° C
	

	Air Flow
	250 LFPM (moderate air flow)
	

	Heat Sink
	High Profile (Cool junctions)
	

	Junction Temp (θJ)
	52° C
	

	I/O utilization:
	100%
	

	DSP-48 Mult/Acc utilization
	40%
	

	Logic utilization
	56%
	


[bookmark: _Ref237597156][bookmark: _Toc246310379]Table 10	Preliminary FPGA Power Dissipation Analysis

Initial Power Estimates per Chip
It results of the preliminary power estimate per chip was a worst case of < 15 Watts.
[bookmark: _Toc246310290]Tomography Engine Cooling
The initial results of the pre-design power estimator tool look good.  We are not pushing any limits yet.  No exotic cooling requirements seem indicated.  A more detailed examination will be done later with a sample design actually synthesized and routed into a chip.
[bookmark: _Toc246310291]DM command Generation

[bookmark: _Toc246310292]Disk Sub-System

[bookmark: _Toc246310293]Control Processor (CP)

[bookmark: _Toc246310294]Environment

[bookmark: _Toc246310295]Power and Cooling Requirements
[bookmark: _Toc246310296]Documentation


[bookmark: _Toc246310297]Other Hardware and Software not otherwise Covered

[bookmark: _Toc246310298]Internal Networking

[bookmark: _Toc246310299]Shutters

[bookmark: _Toc246310300]Laser fiber In/Out actuators

[bookmark: _Toc246310301]Laser On/Off and intensity

[bookmark: _Toc246310302]Filter wheel operation

[bookmark: _Toc246310303]Interlocks

[bookmark: _Toc246310304]Inter-Unit Cables
Cables between units must provide the ability to verify the physical connection has been made between both units from a remote location.  An example would be a loopback pair in the cable, with a permanent jumper between the pins on the connector.  Other methods can be used, but the requirement is a direct method to insure connectivity from a remote location. 

[bookmark: _Toc246310305]Appendices	

[bookmark: _Ref220913537][bookmark: _Ref220913565][bookmark: _Ref220913613][bookmark: _Ref220910043][bookmark: _Toc246310306]Glossary

	Item
	Description

	AO Control
	Supervisory controller for the AO system

	BER
	Bit Error Rate

	Camera Link™
	

	Centroid
	

	Closed Loop Control
	

	Container/component
	

	COTS
	Commercial Off the Shelf

	CP
	Control Processor for the RTC

	CP
	Control Processor

	DAC
	Digital to Analog Converter

	DM
	Deformable Mirror

	DUT
	Device under test

	FPGA
	Field Programmable Gate Array

	GPU
	Graphical Processing Unit

	Harvard Architecture
	Data and instruction storage are separate for faster operation

	HOWFS
	High Order Wave Front Sensor

	Junction Temperature
	

	Latency
	

	LGS
	Laser Guide Star

	LOWFS
	Low Order Wave Front Sensor

	LVDS
	Low Voltage Differential Signaling

	MTBF
	Mean Time Between Failures

	MTBR
	Mean Time Before Repair

	NGS
	Natural Guide Star

	OEM
	Original Equipment Manufacturer

	OP
	Offload Processor

	Open Loop Control
	

	PE
	Processing Element 

	Pipelined
	

	Point-and-Shoot
	

	RTC
	Real Time Computer

	SEU
	Single Event Upset

	SIMD
	Single Instruction Multiple Data

	Tip/Tilt Mirror
	

	Tip/Tilt stage
	A tip/tilt actuator that has no mirror, but can move one.

	Tomography
	

	Tweeter
	High order DM

	WFS
	Wave Front Sensor

	Woofer
	Low order DM

	OPD
	Optical Path Delay

	
	

	
	

	
	



[bookmark: _Ref244508991][bookmark: _Toc246310307]Functional Requirements Cross Reference

	FRD ID
	Short Name
	General Requirements

	FR-1401
	Real Time Controller
	 1.4, 

	FR-1403
	Source of Control
	 

	FR-1405
	RTC Control functions
	 

	FR-1425
	Real Time Computer
	 




	FRD ID
	Short Name
	Performance Requirements

	FR-1406
	Bandwidth and Latency
	

	FR-1408
	Numeric Precision
	

	FR-1434
	Accuracy of wavefront reconstruction
	 

	FR-1435
	Accuracy of tip/tilt reconstruction
	 

	FR-1436
	Update rate
	

	FR-1437
	Wavefront sensor input data rate
	

	FR-1438
	Atmospheric information update rate
	

	FR-1454
	Startup shutdown time
	

	FR-1456
	DM data rate
	

	FR-1406
	Bandwidth and Latency
and Latency
	




	FRD ID
	Short Name
	Interface Requirements

	FR-1412
	TWFS interface
	

	FR-1418
	AO Control System Interface
	

	FR-1419
	Data Server Interface
	

	FR-1422
	DM and TTM interface
	

	FR-1423
	WFS detector and camera interface
	

	FR-2253
	High Speed RAID Interface
	




	FRD ID
	Short Name
	Functional Requirements

	FR-1445
	WFS sub aperture size in pixels
	

	FR-1446
	DM influence function and non linearity compensation
	

	FR-1447
	Tomography algorithm
	

	FR-1448
	Automated operation
	

	FR-1452
	Time Stamp data
	

	FR-1453
	Archiving of data
	

	FR-1457
	Wind layer computation output
	

	FR-1458
	Parameter read-back
	

	FR-2246
	Wind layer computation input
	

	FR-2254
	Startup
	

	FR-2255
	Status and Health Reporting
	




	FRD ID
	Short Name
	Physical Requirements

	FR-1440
	Size
	

	FR-1441
	Weight
	

	FR-1442
	Power Dissipation
	

	FR-1451
	Location
	




	FRD ID
	Short Name
	Reliability Requirements

	FR-1443
	Single Event Upset (SEU) rate
	

	FR-1449
	Uptime
	

	FR-1450
	Maintenance
	



[bookmark: _Ref244503022][bookmark: _Ref244503089][bookmark: _Toc246310308]Time-related keywords in Keck Observatory FITS files
 [[endnoteRef:13]] [13:  	Steve Allen, http://www.ucolick.org/~sla/fits/kecktime.html, Jan 28, 2009
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As an overview of the time-related keywords found in FITS files from the optical instruments at Keck Observatory please, see this computer-generated documentary list.
The two meanings of "keyword" at Keck
In the subsequent discussion, it is important to distinguish between KTL keywords and FITS keywords.
KTL keywords are obtained by interprocess (and often inter-machine) communication when a client process indicates interest.  The values of the KTL keywords communicate information about the state of the various subsystems of the Keck telescopes and instruments.  Depending on the nature of the quantity described by the keyword it may be continuously varying during an observation or it may never change.  Each KTL keyword is associated with a "service" that corresponds to some subsystem of the operations at Keck.  Some KTL services are the responsibility of the Keck staff and describe observatory-wide systems (e.g., DCS describes the telescope pointing and dome, ACS describes the primary mirror).  Other KTL services are associated with the particular instrument (e.g., CCD subsystems, motor control subsystems, etc.).
FITS keywords are recorded in the headers of the files, which are produced by the instrument systems when they obtain an image.  In many cases, there is a one-to-one correspondence between KTL keywords and FITS keywords.  There are, however, a number of FITS keywords inserted into every image that do not correspond to any KTL keyword.  There can also be FITS keywords, which correspond to KTL keywords, but where the FITS keyword name does not match the KTL keyword.
Finally, it is relevant to note that the FITS DATE keyword indicates a time stamp related to the construction of the FITS file itself.  There should be no expectation that the value of the FITS DATE keyword is related to the time at which the data in the FITS file were acquired.
Historical review of Keck timing keyword systems
During the development of the keyword handling systems at Keck Observatory, there was no requirement for a method of obtaining a precise time stamp.  None of the specifications for the initial optical instruments at Keck (HIRES, LRIS, ESI, DEIMOS) included any requirements for precise timing.  As a result, the ability of these instruments at Keck to indicate the time for any exposure-related event is haphazard.
The Keck telescope pointing control system (DCS) uses commercial GPS receivers as the time base.  The time provided by these receivers has experienced "interesting" events during the GPS W1K rollover in 1999 and during theater-level GPS jamming experiments conducted by DoD.  It is not clear what the DCS system reports during a leap second.  Other than in these exceptional conditions, the time base used by DCS is relatively reliable.
Any of the Keck instruments is able to ask DCS for its current values of its timing keywords.  Most notable among these KTL keywords are DATE-OBS, UTC, and MJD.  Reading the KTL DATE-OBS keyword from DCS provides a FITS Y2K-agreement-compliant value of the calendar date according to Coordinated Universal Time.  Reading the KTL UTC keyword from DCS provides a sexagesimal character string representation of the value of Coordinated Universal Time.  It is important to note that these are two separate keywords.  It is not possible to request both keywords simultaneously, nor to receive values, which are guaranteed to refer to the same instant.  As a result, it is possible that around 0 hours UTC the values of the KTL DATE-OBS and UTC keywords from DCS can refer to different calendar days -- thus resulting in a one-day discrepancy in the available notion of the time.  (Given that 0 hours UTC occurs around mid-day in Hawaii this will probably never be an issue for observational data.)
The manner by which DCS can be queried for date and time is a KTL keyword request.  In the current scheme, the KTL keyword read generates a EPICS request that is sent over the network to the DCS systems.  After that request is received and processed in DCS the resulting value is sent back over the network to the KTL requestor.  The design of the system provides no guarantees about how long this round trip takes.  Under normal circumstances the response to the KTL read is received within a small fraction of a second, but under adverse circumstances the DCS system has been observed to take as long as 30 seconds.  In these adverse circumstances, it is not clear how to ascertain what point in the transaction is represented by the time value.
Gathering the time-related keywords at Keck
The initial optical instruments at Keck (HIRES, LRIS, ESI, DEIMOS) monitor the sequence of events of an exposure using a process named watch_ccd.  The watch_ccd process is responsible for gathering most of the KTL keywords, which will be written, into the FITS file along with the image data of an exposure.  The watch_ccd process has a list of KTL keywords, which indicates when each keyword should be gathered during the exposure sequence.  The three points during the exposure are erase, shutter open, and shutter close.
In these instruments, the computer, which has command of the CCD, is called the CCD crate.  The CCD crate issues signals to the CCD controller to initiate all operations of the CCD electronics and the shutter.  When the CCD crate issues exposure-related signals to the CCD controller, it also transmits a MUSIC broadcast message to the traffic process.  The traffic process then re-transmits that MUSIC broadcast message to every other process, one of which is watch_ccd.  Each of these hops between processes on the network takes time.
When watch_ccd receives an exposure-related event it proceeds to issue KTL read requests for each of the keywords whose value is desired at that event.  These KTL read requests are issued sequentially.  Each request must complete before the next KTL read is done.  A successful KTL read involves a round trip between watch_ccd and the system(s), which know(s) the value(s) of each keyword.  Usually each KTL read succeeds in a small fraction of a second, but under adverse circumstances, the servers for the keywords may respond slowly, or not respond at all.
Each KTL keyword read has a timeout.  If the server does not respond within that timeout a KTL read will fail, and watch_ccd will proceed to read the next keyword in its list.  There are often dozens, even hundreds of keywords in the lists that watch_ccd has to acquire.  The total time to gather the keywords, even under ideal circumstances can be several seconds, and under adverse circumstances, it has been monitored to be as many as 30 seconds or more.  If the delay is long then the values of the KTL DATE-OBS and (more importantly) UTC keywords from DCS may not bear much relation to the instant at which the shutter events happened.
Strategies employed to get the best possible time stamps
These issues regarding the validity of the time-related keywords came to the attention of the UCO/Lick Scientific Programming Group during the retrofit, which added the exposure meter to HIRES.  Starting with that deployment the CCD readout software has been tailored to provide the best possible indication of event times given the constraints of systems, which were not specified with that as a design requirement.  These principles are now in use with HIRES and DEIMOS.  They will be applied to LRIS during the Red Mosaic upgrade.
The first remedy was to carefully arrange the order of the keywords in the lists provided to watch_ccd.  In the more recent deployments, the list has the KTL UTC keyword as the first in the list.  There can be no quicker way of getting that keyword from DCS.
Another remedy was to enhance watch_ccd to distribute the keyword collection over three events rather than two.  Initially the keywords were only gathered in response to shutter open and shutter close.  Those lists were rather large, and not optimally arranged.  In the more recent versions of watch_ccd, it is possible to gather keywords in response to the initiation of the erase of the CCD prior to opening the shutter.  The objective is to gather keywords whose value tends not to change during erase, and thus reduce the length of the lists of keywords desired at shutter open and shutter close.
Another remedy was to enhance watch_ccd to be able to rename a KTL keyword when writing it to the FITS file.  This renaming is often done when it is desired to sample the value of a KTL keyword more than once during an observation.  In the case of HIRES the KTL UTC and DATE-OBS keywords are read in response to both shutter open and shutter close.  For shutter open, they are written to the FITS file with the same name, and for shutter close, they are written to the FITS file with the names UTC-END and DATE-END.  This has been in use for all instruments deployed or upgraded since the HIRES exposure meter.  (Note that in the unusual case of an exposure very near to 0 h UTC the combination of all four of these keywords can probably be used to ascertain whether the pair of keywords for one of the shutter events may have straddled the day boundary.)
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]The most definitive remedy was to create an independent method for watch_ccd to give some indication of the times of the shutter events.  In recent versions when watch_ccd receives the shutter events, it immediately queries the system to get the UNIX system time.  The values of these queries are inserted into the KTL keywords DATE_BEG (for shutter open) and DATE_END (for shutter close).  These keywords are only as precise as one second.  Furthermore, these keywords rely on the UNIX system clock being set correctly.  In normal operation, the Keck systems should be using NTP to keep their clocks on time, but this is not guaranteed.
Interpretation of time keywords in Keck FITS files
In any instrument, which supplies the FITS DATE_BEG and DATE_END keywords along with the UTC and UTC-END keywords, it is prudent to inspect their values.  If the various subsystems were operating nominally then the keywords for shutter open will be in reasonable agreement, as will the keywords for shutter close.  Furthermore, the difference between the times of shutter close and shutter open should be in reasonable agreement with the various keywords that indicate the duration of the exposure.  If all of these agree, then their values are probably reliable.  If they do not agree, then their discrepancies give some indication of how unreliable the time stamps may be.

Steve Allen <sla@ucolick.org>
$Date: 2008/12/08 $
[bookmark: _Ref237321910][bookmark: _Toc246310309]Wavefront Error Calculations Due to Latency
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[bookmark: _Toc246310311]PE Detailed Design

[bookmark: _Toc246310380]Table 11	Processing Engine Register Map
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[bookmark: _Toc246310365]Figure 48	In-place DFT accumulation



[bookmark: _Toc246310366]Figure 49	Gantt chart for pipelined DFT



[bookmark: _Ref244414174][bookmark: _Toc246310367]Figure 50	2D MUX switching control

A 3D array to include layers is simply an extension of Figure 50, which only shows the two dimensional connectivity for simplicity.


[bookmark: _Toc246310368]Figure 51	Example Verilog code for ALU

[bookmark: _Toc246310312]DFT vs. FFT (… or when is a DFT faster than an FFT?)
We have the data in a systolic array.  Now we need to perform a Fourier transform on it.  Two approaches come to mind:
· Transfer the data to a separate FFT engine(s) and then transfer the transformed data back to the array for further processing.
· Use the systolic array processors themselves to perform the FFT.



In both cases, we are constrained in busing to cell-to-cell shifting due to pin and routing limitations.  Therefore, if it takes one instruction clock (~10 nsec) to shift a word of data between voxels, and we have  sub apertures, the transfer of the data to and from an FFT engine would takeshifts.  Similarly, if the systolic array processors are to perform the FFT, we have essentially the same overhead problem and this overhead is added to the overhead of the transform calculation themselves.  Thus if the time in cycles to perform the FFT is, then the total time spent will be:



The represents the memory access time of the FFT, and is often ignored when calculating FFT processing times.

In a DFT, each resulting coefficient results from the combination of a portion of each of the original data samples, weighted by a Fourier coefficient.  We make use of this fact by adding a recirculation line to our systolic array.  As data is shifted out one end, it is fed back to the input of the other end.  After N shifts, all voxels have had all the data from the other voxels pass by.  As they pass by, we perform a running multiply-accumulate of the data and the appropriate Fourier coefficient to form the spatial frequency coefficient for that voxel’s position in the chain.  Thus, we perform the DFT in  cycles.




[bookmark: _Ref244417659][bookmark: _Toc246310369]Figure 52	DFT Generation

This approach also applies to a two dimensional DFT.

Talk about bus time penalty for FFT

Each cell holds a data element of the input data vector to be transformed.  The procedure will produce the transform (or its inverse in  clocks leaving all elements in the correct location with no need to unscramble them.
To perform the transfer, each clock, we shift the data one cell.  The data in the last cell is re-circulated to the input of the first cell.  
At each clock, as xi is shifted into a cell, it is multiplied by ci, the transform coefficient for that position for that particular data element.  The product is added to a running sum.  

After  clocks, the transform (or inverse transform) is complete and each cell holds the appropriate Fourier coefficient.  They are all properly ordered and can be operated on immediately in that domain.



[bookmark: _Toc246310313]System Synchronization
[bookmark: _Toc246310314]Itemized list of all identified Hardware and Software
[bookmark: _Toc246310315]Itemized List of Cameras, T/T Mirrors, DMs, and Actuators



[bookmark: _Toc246310381]Table 12	List of sensors and actuators connected to the RTC


[bookmark: _Toc246310316]Tomography Array Size and Cost Estimate

[bookmark: _Toc246310382]Table 13	Estimate of the Tomography Engine Array Size and Cost
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Fixed 

Subap 

Size

Var 

Subap 

Size Units Comments

Assumed Parameters

Layers 5 5 L

Science Objects 1 1 Sci_Obj

No. of fwd prop. cycles needed to propagate all science objects 1 1 Sci_Obj_Iter = ABS( 1 + INT( (Sci_Obj-1)/ MAX(GS, L)))

Atmosphere Height (height of highest layer) 15 15 Km Atmos_Ht

Guide Star Contselation Angle (full width, edge to edge) 20.0 20.0 Arc Sec FOV

Max Angle from Zenith 50 50 DegreesAngle_from_Zenith

Guide Stars (not including low order)  4 4 GS

Subapertures Across Primary Aperture 64 64 SA

Primary Aperture Size 10 10 meters Dia

Subaperture Size 15.6 15.6 cm SA_Size = Dia * 100 / SA

Number of Extended Subapertures at Max Height 88 88 ESA, Extended sub apertures at max height [1] [8]

Clock Speed 100 100 MHz CLK

Transfer In/Out time 176 176 Cycles Xfer_Cycles = ESA * 2 [2]

Number of iteration cycles to converge 3 3 Cnvg_Iter

Time for Each Elements of the Algorithm

20 20 Cycles Error Calculation

New Value Calculation 20 20 New Est Value 

Aperturing ( 2-D DFT

-1

/DFT ) 626 626 Cycles Aperture = 7 * ESA + 10 [2]

Pre conditioning (matrix multiply + 2-D DFT

-1

/DFT) 626 626 Cycles Pre_Cond = 7 * ESA + 10 [2]

Filtering (Kolmogorov applied to back propagated error) 20 20 Cycles Filter

Scaling during tomography (includes fwd and back proj) 808 808 Cycles Scale = 2 * (4 * ESA + L^2 + 2);  Fwd/Back: X/Y: complex [3]

Scaling of Science Object(s) with Variable sub aperture size N/A 404 Cycles = Sci_Obj_Iter * Scale_V / 2

Use Fast Scaling no no Potential for a scaling speed-up to be investigated [7]

Propagating science objects 20 20 Prop_Sci = L * 2 + 2

Total Iteration Time

Total Clock Cycles per Iteration 2,208 2,208 Cycles It_Cycles = Error_Calc + New_Value + Aperture + Pre_Cond + Filter + Scale + ESA

Total Time per Iteration 22.1 22.1 µSec It_Time = It_Cycles / CLK

Summary

Total Cycles/Time to Converge

Clock Cycles to Converge 6,624 6,624 Cycles Cnvg_Cycles = Cnvg_Iter * It_Cycles [4]

Time-to-Converge 66.2 66.2 µSec Cnvg_Time = Cnvg_Cycles / Clk

Total Tomography Time, including load, unload and science propagation

All-Layers-on-a-chip

Min Time 68.2 72.2 µSec = Cnvg_Time +  Sci_Obj_Iter * (Xfer_Cycles + Prop_Sci) / CLK

Max Frame Rate 14.66 13.84 KHz Max_Fr_Rate = 1000 / ( Cnvg_Time +  Sci_Obj_Iter * (Xfer_Cycles + Prop_Sci) / CLK )

4-voxels-per-Processing-Element Time 267 271 µSec = Cnvg_Time * 4 + Sci_Obj_Iter * (Prop_Sci + Xfer_Cycles) / CLK

4-voxels-per-Processing-Element Frame Rate 3.75 3.69 KHz = 1000 / (Cnvg_Time * 4 + Sci_Obj_Iter * (Prop_Sci + Xfer_Cycles) / CLK)

Notes:

1 ESA = INT(  ( ( 100 * Dia / SA_Size )  + 2 * ( ( 1 / COS( RADIANS( Angle_from_Zenith ) ) * ( Atmos_Ht * 1000 * 100 ) * SIN( RADIANS( ( FOV / 2 ) / 60 ) ) ) / ( SA_Size  ) ) + 1 ) 

2 Assumes one clock to transfer a real and one for an imaginary part => 3 clocks per element for real 2-D DFT and 4 for Imaginary 2-D IDFT (ie. 7N clocks per Real DFT/IDFT pair)

3 Scaling

Shift a complex number for L-1 layers (ground layer doesn't shift)

Each shift  (using bi-directional shifting) is a max of 17% (total shifts ~ 50%) for each direction => ~100% for a single scaling

Scaling is done for forward and back prop (and science obj for variable sized subaps)

4 For variable sized subaps, we need to also scale the forward projection of the science objects + V_scale

5 Includes time to propagate the science objects, load data from the WFS and send data to the DM Command Processor

6 Includes overhead of board-per-layer plus time to load data from the WFS and send data to the DM Command Processor

7 Possib le reduction in scaling time from  2 * (4 * ESA + 2 * L^2 + 2) to 2 * (ESA + 2 * L * GS + 2)

8 For variable sized subaps, we use: IF((SA + 20) > ESA, ESA, SA+20) 

Tomography Performance

on Axey

Subap Type
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modulealu4( input_a, input_b, output_c, ctrl_0, ctrl_1, ctrl_2,ctrl_3, clr, clk );

inputctrl_0, ctrl_1, ctrl_2, ctrl_3;

input[17:0] input_a, input_b;

output[44:0] output_c;

inputclr, clk;

wire[3:0] ctrl;

reg[44:0] output_c;

assignctrl = {ctrl_3, ctrl_2, ctrl_1, ctrl_0};

parameterADD = 4'b1001;

parameterMUL = 4'b0001;

parameterNOP = 4'b1000;

always@(posedgeclk or posedgeclr)

begin

if(clr)

output_c <= 0;

else

case(ctrl)

ADD:

output_c <= input_a + input_b;

MUL:

output_c <= input_a * input_b;

default:;

endcase

end

endmodule


image66.wmf
N


oleObject4.bin

image67.wmf
2

N


oleObject5.bin

image68.wmf
FFT

T


oleObject6.bin

image69.wmf
2

TotalFFT

TTN

=+


oleObject7.bin

image70.wmf
2

N


oleObject8.bin

oleObject9.bin

image71.emf

oleObject10.bin

image2.emf
Woofer DM

Command Gen

Science DM

DACs

On Axisand DFUs

Science

Tip/Tilt Driver

Science DM

Command Gen

Woofer DM

DAC

On Axis

Science

Wave Fronts

(LVDS)

Woofer

Commands

Science

Object

DM

Commands

(LVDS)

T/T, Focus

and

Astig

(Volume

Info.)

Low Order

Science

Wave Fronts

(LVDS)

LOWFS

LOWFS

Camera 

controller

(IR) (3)

LOWFS

Camera 

Controller

(IR) (3)

LOWFS

Camera Cntrl

(IR) (3)

Camera

Link

(3)

RTC –Simplified Data Processing View

Ver 1.1

15 October, 2009

Tomography

Engine

Tomography

HOWFS

Tomography

HOWFS

Tomography

HOWFS

Tomography

HOWFS

Tomography

Wave Fronts

(LVDS)

(4)

Tomography

HOWFS

Camera  

Controller

(4)

Tomography

HOWFS

Camera 

Controller

(4)

Tomography

HOWFS

Camera 

Controller

(4)

Tomography

HOWFS

Camera Cntrl.

(4)

Camera

Link

(4)

Point and Shoot

HOWFS

Camera Controller

(3)

Point and Shoot

HOWFS

Camera Controller

(3)

Point and Shoot

HOWFS

Camera Controller

(3)

Camera

Link

(3)

Point and Shoot

HOWFS

Point and Shoot

HOWFS

Point and Shoot

HOWFS

These sharpen 

their individual 

corresponding 

LOWFS NGS

Point and Shoot

Tip/Tilt Drivers

(3)

Point and Shoot

Tip/Tilt Drivers

(3)

Point and Shoot

LOWFS

Tip/Tilt Drivers

(3)

(3)

Point and Shoot

LOWFS DACs

Point and Shoot

LOWFS DACs

Point and Shoot

LOWFS DACs

(3)

LVDS

(3)


oleObject11.bin

oleObject12.bin

image72.emf
Ver 1.2 1 November, 2009

NGAO Current Target Design

WFS DM LOWFS Tip/Tilt Tip/Tilt

Item Cameras Size (K) Cameras Mirrors Actuators Comments

LOWFS 1 * N/A 1024 1 1 N/A LOWFS DMs get their wavefront correction from the POS WFS

LOWFS 2 * N/A 1024 1 1 N/A LOWFS stars are at 2am to preserve sky coverage.

LOWFS 3 * N/A 1024 1 1 N/A LOWFS get their T/T from the LOWFS, not a LGS

PAS 1 ** 128x128 N/A N/A 1 N/A Point and Shoot LGSs are used only for correcting the

PAS 2 ** 128x128 N/A N/A 1 N/A  wavefront of their LOWFS star, not for tomography

PAS 3 ** 128x128 N/A N/A 1 N/A

Tomog 1 256x256 N/A N/A 1 N/A

Tomog 2 256x256 N/A N/A 1 N/A

Tomog 3 256x256 N/A N/A 1 N/A

Tomog 4 256x256 N/A N/A 1 N/A

Woofer N/A 400 N/A 0 1 Woofer T/T  value is calculated from the on-axis 

tomography

MOAO 1 N/A 4096 N/A 0 N/A Woofer will serve as T/T for the central science object

MOAO 2 N/A (1K) N/A (1) N/A MOAO T/T values are calculated from off-axis tomography  

MOAO 3 N/A (1K) N/A (1) N/A

MOAO 4 N/A (1K) N/A (1) N/A

MOAO 5 N/A (1K) N/A (1) N/A

MOAO 6 N/A (1K) N/A (1) N/A

MOAO 7 N/A (1K) N/A (1) N/A

Totals 7 5 3 10 1

() Indicates possible future expansion

MOAO 2 - 7 may not be installed in initial configuration, but the RTC must be able to handle them, if and 

when they are installed, while still meeting the PRD requirements: 2KHz, etc. 

* What size are the T/T and Truth cameras?

** T/T mirrors for the LOWFS LGS get their value from their LOWFS LGS, not their LOWFS star

*** T/T mirrors for the HOWFS get their values from their HOWFS, not from tomography
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Estimate of the Tomography Engine Array Size and Cost

(Cost does not include power supplies, fans, rack, etc.)

Wd Size 

(bits)

PE Clock 

Speed 

(MHz)

Req. bit 

Rate per 

Voxel (Gb)

LVDS Xfer 

Rate 

(Mb)

LVDS Ports 

Needed 

per Voxel

Array 

Size (per 

side) Layers

Number of 

Chips per 

Board

22 July, 2009

18 100 1.80 600 3 88 5 9 ver 1.5

Chip

DSP-48s 

Avail.

DSP-48s 

Req.

I/O Pins 

Avail per 

Chip

I/O Not 

Used per 

Chip

I/O Pins 

Avail. per 

Face

LVDS 

Ports 

Avail. 

per Face

GTP 

(3Mb) GTX (5Mb)

Max. 

Voxels 

per Face

Data Rate 

Needed 

Per Face 

(Gb)

Sub Aps 

per chip (5 

layers, 1 

Voxel per 

PE)

Sub Aps per 

chip (5 

layers, 4 

Voxels per 

PE)

Total 

Chips

Number of 

Boards

Est. Cost 

per 

Board ($)

Dist Cost for 

1 chip ($)

Total 

Chip 

Cost 

($K)

Total Array 

Cost (K$)

VSX35T 192 90 360 0 90 45 8 0 15 27 9 36 245 28 $1,500 $500 $123 $165

VSX50T 288 160 480 0 120 60 12 0 20 36 16 64 144 17 $1,500 $1,000 $144 $170

VSX95T 640 250 640 40 160 80 16 0 26 46.8 25 100 96 11 $1,500 $3,000 $288 $305

VSX240T 1,056 640 960 0 240 120 24 0 40 72 64 256 42 5 $1,500 $14,100 $592 $600

VFX100T 256 250 680 80 170 85 0 16 28 50.4 25 100 96 11 $1,500 $2,300 $221 $237

VFX130T 256 250 680 80 170 85 0 20 28 50.4 25 100 96 11 $1,500 $4,050 $389 $405

VFX200T 320 N/A 840 0 210 105 0 24 35 63 49 196 53 6 $1,500 $7,700 $408 $417

Wd Size We use 18 bits per word and we want to transfer 1 word per clock

PE Clock Speed Clock Speed of each processing element (PE or CPU).  Each PE can process one or more voxels

Req. bit Rate per Voxel Each voxel needs to move in one new word (18 bits) on each clock

LVDS Xfer Rate Each LVDS differential pair (Port) can operate at this bit rate

LVDS Ports Needed per Voxel Given the required rate per voxel and the capabilities of the LVDS Ports, this is the number of LVDS ports each voxel needs

Array Size The size of the tomography array in sub apertures, given the number of sub apertures across the primary, angle from the zenith and FOV

88 is based on 1 am FOV, 46 Degrees off azimuth, and 54 sub apertures, 10m primary, 15 Km highest layer

Layers Number of layers in tomography

Number of Chips per Board Number of chips we put on one board

Chip Specific chip under consideration

DSP-48s Avail. The number of DSP-48's (Multiplier/Accumulators) a given chip has available

DSP-48s Req. The number of DSP-48's (Multiplier/Accumulators) we need inthis chip for this configuration, Each PE requires 2 DSP-48s

I/Os Number of I/O pins available on a given chip (LVDS ports take two pins)

I/Os per Face Each face can use 1/4 of the pins available the chip

LVDS Ports Avail. per Face Each LVDS Port uses two I/O pins

GTP/GTX Ignore

Voxels per Face How many voxels will fit, given the "Ports Avail. per Face" and "PortsNeeded per Voxel"

Each chip is a cube that is "Sub Apertures" x "Sub Apertures" at the base and "Layers" high. 

So, each x and y face of the cube (chip) has Sub Apertures x Layers number of voxels needing to connect to the next chip

Each face on the cube needs "Ports Needed per Voxel" x Layers x "Sub Apertures" of LVDS ports to talk to the next chip

Data Rate Needed per Face Given the "Voxels per Face" and the "Req. Rate per Voxel" what is the required data rate needed per face?

Sub Aps per chip (5 layers, 8KHz) Given "Voxels per Face" and "Layers" how many sub apertures would fit in this chip at 1 processing element per voxel

Sub Aps per chip (5 Layers … 2KHz) If we shared one processing element among 4 voxels, how many sub apertures would fit in this chip?

Total Chips Given the "Array Size" and the "Sub Aps (2KHz)", how many chips will we need?

Number of Boards Number of boards needed given the "Number of Chips per Board" and "Total Chips"

Est. Cost per board Estimated cost of one board not including the above chips.

Dist Cost for 1 chip Catalog price for 1 chip from a distributor

Total Chip Cost Cost of the chips in the array based on the "Dist Cost"

Total Array Cost Total array cost with chips and boards
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