

NGAO

Real Time Controller

Design Document

Revision History						
Version	Author	Date	Details			
1.1	Marc Reinig and Donald Gavel	May 8, 2009	First draft version. Derived from MR's draft version 4.17			
Ver. 1.1.347		Oct 2, 2009	Updated Draft			

Table of Contents

1.	Intro	duction and Organization	1
	1.1 E	Background and Context	1
	1.2 C	Design Philosophy	2
	1.3 F	unctions of the RTC System	2
	1.4 F	unctional Architecture	3
	1.4.1	Wave Front Sensors (WFS)	5
	1.4.2	Tomography Engine	7
	1.4.3	DM Command Generators	7
	1.4.4	Control Processor (CP)	7
	1.4.5	Disk Sub-System	7
	1.4.6	Global RTC System Timing	8
	1.4.7	Diagnostics and Telemetry Streams	8
	1.5 F	Physical Architecture	8
	1.6 I	mplementation Alternatives	9
	1.6.1	Multi-core CPUs	10
	1.6.2	FPGAs	10
	1.6.3	GPUs	10
2.	Svste	m Characteristics	11
	2.1 A	Assumptions and Performance Requirements	
	2.2 F	TC States Visible to the AO Control	
	2.3 T	iming and Control of Internal States of the RTC	14
	2.4 S	izing and Scaling	14
	2.4.1	Sizing the Problem	14
	2.4.2	Sizing the Solution	14
	2.4.3	Scaling to Different Sized Problems	14
	2.4.4	Scaling to Different Speed Requirements	14
	2.5 F	Reconfigurability	14
	2.6 F	eliability and Recoverability	15
	2.6.1	SEUs	15
	2.6.2	BER	15
	2.6.3	Diagnostic Tools	15
2	Error	Budgets Latency and Data Pates	16
5.	21 0	rror Pudgots	10
	2.1 L		10
	3.1.1	Δεεμεγ	10
	22 1	atency	10
	3.2 1	Calculating Latency	17
	3.2.1	Ion-Pinelined vs. Pinelined Architectures and Latency	18
	331	Non-Pinelined Architectures	18
	332	Pinelined Architectures	19
	34 1	atency Calculations	21
	341	Transfer Latency	21
	3.4.2	Non-Transfer Latencies	
	3.4.3	Total Latency for Tomography Operations	
	3.4.4	Total Latency for NGS Operations	
	3.5 T	elemetry and Diagnostics Data Rates	
_			
4.	RTC C	ontrol Processor (CP)	26
	4.1 A	O Control System Feature Support	
.,	4.1.1	Commands	
Ver.	1.1.347	1	0/20/2009

4.1.3 Events 27 4.1.5 Log Messages 27 4.1.6 Configuration 27 4.1.7 Archiving 27 4.1.8 Computational Load 27 4.1.8 Computational Load 27 4.1.1 Interfaces not Protocols 27 4.2.1 Interface to the AO Control 27 4.2.2 Interface to the est of the RTC 28 4.3.1 To AO Control 28 4.3.2 To the Disk Sub-system 28 4.3.3 To the Disk Sub-system 28 4.3.3 To the Disk Sub-system 29 5.1 Interfaces and Protocols 29 5.1.1 Interfaces and Protocols 29 5.1.2 Data Flow, Rates and Latency 29 5.2.1 Data Flow Rates and Latency 29 5.2.1 Data Flow Rates and Latency 29 5.3.1 Inter Camera Capture Jitter 30 5.4 Gontrol 30 5.4.1 Gain 30 5.4.2 Data Flow Rates and Latency		4.1.2	Monitoring	27
4.1.4 Alarms 27 4.1.5 Configuration 27 4.1.6 Configuration 27 4.1.7 Archiving 27 4.1.8 Computational Load 27 4.1.7 Archiving 27 4.2 Interfaces and Protocols 27 4.2.1 Interfaces to the AO Control 27 4.2.2 Interfaces and Protocols 28 4.3.1 To AO Control 28 4.3.2 To the RTC 28 4.3.3 To the RTC 28 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.1.2 Data Flow, Rates and Latency 29 5.2 Owtre S(IK) 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4 Gamin 30 5.4.1 Gamin </td <td></td> <td>4.1.3</td> <td>Events</td> <td>27</td>		4.1.3	Events	27
4.1.5 Log Messages 27 4.1.6 Configuration 27 4.1.7 Archiving 27 4.1.8 Computational Load 27 4.2.1 Interfaces and Protocols 27 4.2.1 Interface to the AO Control 27 4.2.1 Interface to the Cest of the RTC 28 4.3 Data Flow and Rates 28 4.3.1 To AO Control 28 4.3.2 To the Disk Sub-system 28 4.3.3 To the Disk Sub-system 28 4.3.3 To the Test of the RTC 28 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.2 LOWFS (R) 29 5.2.1 Interfaces and Protocols 29 5.2.1 Interfaces and Protocols 29 5.2.2 LOWFS (R) 29 5.2.1 Interfaces and Protocols 29 5.2.2 Data Flow, Rates and Latency 29 5.3.4 Gain 30 5.4.4 Gain 30		4.1.4	Alarms	27
4.1.6 Configuration 27 4.1.8 Computational Load 27 4.1.8 Computational Load 27 4.2.1 Interfaces and Protocols 27 4.2.2 Interfaces to the AO Control 27 4.2.2 Interface to the AO Control 27 4.2.2 Interface to the AO Control 27 4.3.2 Data Flow and Rates 28 4.3.3 To AO Control 28 4.3.1 To AO Control 28 4.3.2 To the Pisk Sub-system 28 4.3.3 To AO Control 29 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.1.2 Data Flow, Rates and Latency 29 5.2 LOWFS (IR) 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4.1 Gain 30 5.4.1 Gain 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Interfaces and Protocols <td< td=""><td></td><td>4.1.5</td><td>Log Messages</td><td>27</td></td<>		4.1.5	Log Messages	27
4.1.7 Archiving 27 4.1.8 Computational Load 27 4.2 Interfaces and Protocols 27 4.2.1 Interface to the AC Control 27 4.2.1 Interface to the AC Control 27 4.2.1 Interface to the RTC 28 4.3 Data Flow and Rates 28 4.3 To the Disk Sub-system 28 4.3.3 To the rest of the RTC 28 5. Cameras 29 5.1 Interfaces and Protocols 29 5.1.1 Interfaces and Protocols 29 5.2 Data Flow Ates and Latency 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4 Gain 30 5.4 Gain 30 5.4 Gain		4.1.6	Configuration	27
4.1.8 Computational Load 27 4.2 Interfaces and Protocols. 27 4.2.1 Interface to the AO Control 27 4.2.2 Interface to the rest of the RTC 28 4.3 Data Flow and Rates 28 4.3.1 To AO Control 28 4.3.2 To the Disk Sub-system 28 4.3.3 To the rest of the RTC 28 4.3.3 To the rest of the RTC 28 5.1 Cameras 29 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1 Interfaces and Protocols 29 5.2 Data Flow, Rates and Latency 29 5.2.1 Interfaces and Protocols 29 5.2.2 Data Flow, Rates and Latency 29 5.3.1 Interfaces and Protocols 30 5.4.4 Control 30 5.4.5 Catrol 30 5.4.6 Control 30 5.4.7 Data Flow and Rates 30 5.4.8 Frame Transfer rate 30 5.4.4 Frame Transfer rate </td <td></td> <td>4.1.7</td> <td>Archiving</td> <td>27</td>		4.1.7	Archiving	27
4.2 Interfaces and Protocols. 27 4.2.1 Interface to the AO Control 27 4.2.2 Interface to the AO Control 28 4.3 Data Flow and Rates 28 4.3 Data Flow and Rates 28 4.3.2 To the Disk Sub-system 28 4.3.3 To the Disk Sub-system 28 4.3.4 To the Disk Sub-system 28 4.3.5 Cameras 29 5.1 Interfaces and Protocols 29 5.1.1 Interfaces and Protocols 29 5.2 LOWFS (IR) 29 5.2.1 Inter Camera Capture litter 30 5.4 Canneral 30 5.4.1 Gain 30 5.4.1 Gain 30 5.4.1 Gain 30 5.4 Control 30 5.4 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Trasfer rate 30 6.4 Wave Front Sensors (WFSs) 31 6.1 Uwer Stow Over Wave F		4.1.8	Computational Load	27
4.2.1 Interface to the AO Control 27 4.2.2 Interface to the rest of the RTC 28 4.3.1 To AO Control 28 4.3.2 To the Disk sub-system 28 4.3.3 To the Disk sub-system 28 5. Cameras 29 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.2 LOWFS (IR) 29 5.2.1 Interfaces and Protocols 29 5.2.2 Data Flow, Rates and Latency 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame ransfer rate 30 </td <td></td> <td>4.2 Inte</td> <td>rfaces and Protocols</td> <td>27</td>		4.2 Inte	rfaces and Protocols	27
4.2.2 Interface to the rest of the RTC. 28 4.3 Data Flow and Rates. 28 4.3.1 To AO Control 28 4.3.2 To the Disk Sub-system. 28 4.3.3 To the rest of the RTC. 28 5. Cameras 29 5.1 HOWFS (Tomography and Point-and-Shoot). 29 5.1.1 Interfaces and Protocols. 29 5.2 Data Flow, Rates and Latency. 29 5.2.1 Interfaces and Protocols. 29 5.2.2 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization. 30 5.4.1 Interfaces and Protocols. 30 5.4.2 Frame rate 30 5.4.3 Stare Time. 30 5.4.4 Frame rate. 30 5.4.5 Stare Time. 31 6.3 Data Flow and Rates 31 6		4.2.1	Interface to the AO Control	27
4.3 Data Flow and Rates 28 4.3.1 To AO Control 28 4.3.2 To the Disk Sub-system 28 4.3.3 To the rest of the RTC 28 5. Cameras 29 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.2 Data Flow, Rates and Latency 29 5.2.1 Data Flow, Rates and Latency 29 5.2.2 Data Flow, Rates and Latency 29 5.3.1 Interfaces and Protocols 29 5.4 ConVFS (IR) 29 5.2.1 Naster Clock Generation for Camera Synchronization 30 5.4 Control 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame ransfer rate 30 5.4.3 Stare Time 30 5.4.4 Frame ransfer rate 30 5.4.5 Stare Time 30 5.4.6 How and Rates 31 <		4.2.2	Interface to the rest of the RTC	
4.3.1 To AO Control 28 4.3.2 To the Disk Sub-system. 28 4.3.3 To the Pist Of the RTC. 28 5. Cameras 29 5.1 HOWFS (Tomography and Point-and-Shoot). 29 5.1.1 Interfaces and Protocols. 29 5.2 LOWFS (IR) 29 5.2.1 Interfaces and Protocols. 29 5.2 LOWFS (IR) 29 5.2.2 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization. 30 5.4 Control. 30 5.4.1 Gain. 30 5.4.2 Frame rate 30 5.4.3 Stare Time. 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame and Protocols. 31 6.1 Wave Front Sensors (WFSS) 31 6.2 Data Flow and Rates 31 6.3 LOWFS (Icw Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2		4.3 Dat	a Flow and Rates	
4.3.2 To the Disk Sub-system 28 4.3.3 To the rest of the RTC 28 5. Cameras 29 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.1.2 Data Flow, Rates and Latency. 29 5.2.1 Interfaces and Protocols 29 5.2.1 Interfaces and Protocols 29 5.2.2 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4 Control 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 5.4.5 Clow Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow and Rates 31 6.3.3 Low Order Wave Front Sensors) 34		4.3.1	To AO Control	
4.3.3 To the rest of the RTC. 28 5. Cameras 29 5.1 HOWFS (Tonography and Point-and-Shoot). 29 5.1.2 Data Flow, Rates and Protocols. 29 5.2 LOWFS (IR). 29 5.2.1 Interfaces and Protocols. 29 5.2.2 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4.1 Inter Camera Capture Jitter 30 5.4 Control 30 5.4.1 Gain. 30 5.4.2 Frame rate 30 5.4.3 Stare Time. 30 5.4.4 Frame Transfer rate 30 5.4.5 Interfaces. 31 6.1 WFS Storter Stepsorter 31 6.2 Data Flow and Rates. 31 6.3 Low Fost Cools. 33 6.3 Low Fost Quee Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols. 33 6.3.2 Data Flow, Rates and Latencies 34 6.		4.3.2	To the Disk Sub-system	
5. Cameras 29 5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.2 LOWFS (R) 29 5.2 LOWFS (R) 29 5.2 Data Flow, Rates and Latency. 29 5.2 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4 Control 30 5.4.1 Gain 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 5.4.5 How and Rates 31 6.1 WFS Interfaces 31 6.1 WFS work of WFSs) 31 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow and Rates 31 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow and Rates 33 6.3.3 Low Order Reconstruction Engine 34 <t< td=""><td></td><td>4.3.3</td><td>To the rest of the RTC</td><td></td></t<>		4.3.3	To the rest of the RTC	
5.1 HOWFS (Tomography and Point-and-Shoot) 29 5.1.1 Interfaces and Protocols 29 5.1.2 Data Flow, Rates and Latency 29 5.2 LOWFS (IR) 29 5.2.1 Interfaces and Protocols 29 5.2.2 Data Flow, Rates and Latency 29 5.3.1 Inter Camera Capture Jitter 30 5.4.4 Gain 30 5.4.5 Stare Time 30 5.4.6 Gain 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame Transfer rate 30 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow Reconstruction Engine 34 6.4 HOWFSS (High Order Wave Front Sensors) 34 6.4.1 Centr	5	Camera		29
5.1.1 Interfaces and Protocols 29 5.1.2 Data Flow, Rates and Latency 29 5.2 LOWFS (IR) 29 5.2.1 Interfaces and Protocols 29 5.2.2 Data Flow, Rates and Latency 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4 Control 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 6.4 Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow and Rates 31 6.3 Low Order Reconstruction Engine 34 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.4.	5.		NES (Tomography and Point-and-Shoot)	29
5.1.2 Data Flow, Rates and Latency. 29 5.2 LOWFS (IR). 29 5.2 LOWFS (IR). 29 5.2 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization 30 5.4 Control. 30 5.4 Control. 30 5.4.1 Gain. 30 5.4.2 Frame rate 30 5.4.3 Stare Time. 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame Transfer rate 30 5.4.5 Interfaces. 31 6.6 Weve Front Sensors (WFSs). 31 6.1 WFS Interfaces. 31 6.2 Data Flow and Rates. 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus). 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies. 34 6.3.3 Low Order Reconstruction Engine 34 6.4.4 POMFSs (High Order Wave Front Sensors). 34 6.4		511	Interfaces and Protocols	20
5.12 COVFS (IR) 29 5.2.1 LOVFS (IR) 29 5.2.2 Data Flow, Rates and Latency		512	Data Flow, Rates and Latency	20
5.2.1 Interfaces and Protocols 29 5.2.2 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization 30 5.3.1 Inter Camera Capture Jitter 30 5.4 Control 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame Transfer rate 30 6.1 WFS Interfaces 31 6.1 DWFS (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Reconstruction Engine 35 6.4.3 Point-and-Shoot HOWFS 37 7 Tomography HoWFS 35 <		5.2 1.01	VES (IR)	
5.2.1 Data Flow, Rates and Latency. 29 5.3 Master Clock Generation for Camera Synchronization 30 5.3.1 Inter Camera Capture Jitter 30 5.4 Control		5.2 1	Interfaces and Protocols	
5.2.2 Did Prow, Nates and East and Eas		5.2.1	Data Elow Pates and Latency	20
5.3.1 Inter Code Centration for Canter a Spicino Instant 30 5.4 Control		5.2.Z	ter Clock Generation for Camera Synchronization	20
5.3.1 Inter Centrol 30 5.4 Control 30 5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame Transfer rate 30 6. Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Engine 39 7.3 Design 39 7.4 Architecture 39 7.4 Architecture 39 <td></td> <td>521</td> <td>Inter Camera Canture litter</td> <td>30</td>		521	Inter Camera Canture litter	30
5.4.1 Gain 30 5.4.2 Frame rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame Transfer rate 30 6. Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Engine 39 7.2 Algorithm 39 7.4 Architecture 39 7.4 Architecture 39 7.4.3 Processing El		5.4 Con	trol	30
5.4.1 Gamme rate 30 5.4.3 Stare Time 30 5.4.4 Frame Transfer rate 30 5.4.4 Frame Transfer rate 30 6. Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Engine 39 7.2 Algorithm 39 7.3 Design 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processi		5/1	Gain	30
5.4.2 Stare Time 30 5.4.4 Frame Transfer rate 30 6. Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Sensors) 35 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Error Requirements 39 7.3 Design 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates 41 </td <td></td> <td>54.1</td> <td>Frame rate</td> <td>30</td>		54.1	Frame rate	30
5.4.3 State Transfer rate 30 6. Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Error Requirements 39 7.3 Design 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols		5/3	Stare Time	30
6. Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Sensors) 35 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Engine 39 7.2 Algorithm 39 7.3 Design 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates 41 7.4.6 Timing and Events 41		544	Frame Transfer rate	30
6. Wave Front Sensors (WFSs) 31 6.1 WFS Interfaces 31 6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Reconstruction Engine 35 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Error Requirements 39 7.2 Algorithm 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 41 7.4.5 Data Flow and Rates 41 7.4.5 Data Flow and Rates 41 7.4.5 Data Flow and Rates		5.4.4		
6.1 WFS Interfaces. 31 6.2 Data Flow and Rates. 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols. 33 6.3.2 Data Flow, Rates and Latencies 33 6.3.3 Low Order Reconstruction Engine. 34 6.3.3 Low Order Reconstruction Engine. 34 6.4.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Engine 39 7.2 Algorithm 39 7.3 Design 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41	6.	Wave Fr	ont Sensors (WFSs)	31
6.2 Data Flow and Rates 31 6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.3.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Reconstruction Engine 35 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Engine 39 7.2 Algorithm 39 7.3 Design 39 7.4 Architecture 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates <td< td=""><td></td><td>6.1 WFS</td><td>S Interfaces</td><td></td></td<>		6.1 WFS	S Interfaces	
6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus) 32 6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4 HOWFSs (High Order Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Error Requirements 39 7.3 Design 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates 41 7.4.6 Timing and Events 41 7.4.7 Control and Orchestration of Processor States 41 7.4.7 10/20/2		6.2 Dat	a Flow and Rates	
6.3.1 Interfaces and Protocols 33 6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4.1 Gentroider and Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Reconstruction Engine 35 6.4.1 Centroider and Wave Front Reconstruction Engine 35 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Error Requirements 39 7.2 Algorithm 39 7.3 Design 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates 41 7.4.6 Timing and Events 41 7.4.6 Timing and Events 41 7.4.7 Control and Orchestration of Processor States 41 7.4.7 10/20/2009 <t< td=""><td></td><td>6.3 LOV</td><td>VFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus)</td><td></td></t<>		6.3 LOV	VFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus)	
6.3.2 Data Flow, Rates and Latencies 34 6.3.3 Low Order Reconstruction Engine 34 6.4.1 Centroider and Wave Front Sensors) 34 6.4.1 Centroider and Wave Front Reconstruction Engine 35 6.4.1 Centroider and Wave Front Reconstruction Engine 35 6.4.2 Tomography HOWFS 35 6.4.3 Point-and-Shoot HOWFS 37 7. Tomography Engine 39 7.1 Tomography Error Requirements 39 7.2 Algorithm 39 7.3 Design 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates 41 7.4.6 Timing and Events 41 7.4.7 Control and Orchestration of Processor States 41 7.4.7 10/20/2009 41		6.3.1	Interfaces and Protocols	
6.3.3Low Order Reconstruction Engine346.4HOWFSs (High Order Wave Front Sensors)346.4.1Centroider and Wave Front Reconstruction Engine356.4.2Tomography HOWFS356.4.3Point-and-Shoot HOWFS377.Tomography Engine397.1Tomography Engine397.2Algorithm397.3Design397.4Architecture397.4Systolic Arrays407.4.2Voxels407.4.3Processing Elements (PEs) and their Functions407.4.4Interfaces and Protocols417.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States417.4.710/20/2009		6.3.2	Data Flow, Rates and Latencies	
6.4HOWFSs (High Order Wave Front Sensors)346.4.1Centroider and Wave Front Reconstruction Engine356.4.2Tomography HOWFS356.4.3Point-and-Shoot HOWFS377.Tomography Engine397.1Tomography Error Requirements397.2Algorithm397.3Design397.4Architecture397.4.1Systolic Arrays407.4.2Voxels407.4.3Processing Elements (PEs) and their Functions407.4.4Interfaces and Protocols417.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States417.4.710/20/2009		6.3.3	Low Order Reconstruction Engine	
6.4.1Centroider and Wave Front Reconstruction Engine356.4.2Tomography HOWFS356.4.3Point-and-Shoot HOWFS377.Tomography Engine397.1Tomography Error Requirements397.2Algorithm397.3Design397.4Architecture397.4.1Systolic Arrays407.4.2Voxels407.4.3Processing Elements (PEs) and their Functions407.4.4Interfaces and Protocols417.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		6.4 HO	WFSs (High Order Wave Front Sensors)	
6.4.2 Tomography HOWFS .35 6.4.3 Point-and-Shoot HOWFS .37 7. Tomography Engine .39 7.1 Tomography Error Requirements .39 7.2 Algorithm .39 7.3 Design .39 7.4 Architecture .39 7.4.1 Systolic Arrays .40 7.4.2 Voxels .40 7.4.3 Processing Elements (PEs) and their Functions .40 7.4.4 Interfaces and Protocols .41 7.4.5 Data Flow and Rates .41 7.4.6 Timing and Events .41 7.4.7 Control and Orchestration of Processor States .41 7.4.7 10/20/2009 .41		6.4.1	Centroider and Wave Front Reconstruction Engine	
6.4.3Point-and-Shoot HOWFS377.Tomography Engine397.1Tomography Error Requirements397.2Algorithm397.3Design397.4Architecture397.4.1Systolic Arrays407.4.2Voxels407.4.3Processing Elements (PEs) and their Functions407.4.4Interfaces and Protocols417.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		6.4.2	Tomography HOWFS	
7. Tomography Engine 39 7.1 Tomography Error Requirements 39 7.2 Algorithm 39 7.3 Design 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates 41 7.4.6 Timing and Events 41 7.4.7 Control and Orchestration of Processor States 41 10/20/2009 10/20/2009		6.4.3	Point-and-Shoot HOWFS	
7.1Tomography Error Requirements.397.2Algorithm.397.3Design397.4Architecture.397.4.1Systolic Arrays.407.4.2Voxels407.4.3Processing Elements (PEs) and their Functions407.4.4Interfaces and Protocols.417.4.5Data Flow and Rates417.4.6Timing and Events.417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009	7.	Tomogra	aphy Engine	
7.2 Algorithm		7.1 Tom	nography Error Requirements	
7.3 Design 39 7.4 Architecture 39 7.4.1 Systolic Arrays 40 7.4.2 Voxels 40 7.4.3 Processing Elements (PEs) and their Functions 40 7.4.4 Interfaces and Protocols 41 7.4.5 Data Flow and Rates 41 7.4.6 Timing and Events 41 7.4.7 Control and Orchestration of Processor States 41 Ver. 1.1.347 10/20/2009		7.2 Algo	prithm	
7.4Architecture		7.3 Des	ign	
7.4.1Systolic Arrays		7.4 Arcl	- hitecture	
7.4.2Voxels407.4.3Processing Elements (PEs) and their Functions407.4.4Interfaces and Protocols417.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		7.4.1	Systolic Arrays	
7.4.3Processing Elements (PEs) and their Functions407.4.4Interfaces and Protocols417.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		7.4.2	Voxels	
7.4.4Interfaces and Protocols417.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		7.4.3	Processing Elements (PEs) and their Functions	
7.4.5Data Flow and Rates417.4.6Timing and Events417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		7.4.4	Interfaces and Protocols	
7.4.6Timing and Events417.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		7.4.5	Data Flow and Rates	
7.4.7Control and Orchestration of Processor States41Ver. 1.1.34710/20/2009		7.4.6	Timing and Events	
Ver. 1.1.347 10/20/2009		7.4.7	Control and Orchestration of Processor States	
		4 4 2 4 7		10/20/2000

	7.5 Des	ign	41
	7.5.1	Physical Architecture of the Tomography Engine	41
	7.5.2	FPGA Design	41
	7.5.3	Board Design	42
	7.5.4	System (Multi-Board)	43
	7.5.5	System Facilities	44
	7.5.6	Mechanical Design	44
8.	DM and	T/T Command Generation	46
	8.1 DM	Control Engine	46
	8.2 Low	v Order (Woofer) (Closed Loop Operation)	47
	8.2.1	Interfaces and Protocols	48
	8.2.2	Data Flow and Rates	48
	8.3 Ope	en Loop Operations	48
	8.3.1	High Order (Science and HOWFS) Open Loop Operations	48
	8.4 Tip/	Tilt Mirrors	
	8.4.1	Tip/Tilt Control Engine	49
	8.4.2	Interfaces and Protocols	49
	8.4.3	Data Flow and Rates	49
0	Tolomot	inv and Diagnostics Data Streams	50
9.		rfaces and Drotocols	
	0.2 Date	a Flow and Patos	
	9.2 Data	ing and Events	
		chronization of AO Data Time Stamps with the Science Image Time Stamps	
	9.4 Syn	montant Note on the Telemetry Rates	
	9.5 Ann 9.6 Han	Inding System Diagnostic Functions	52
	5.0 11011		
10.	RTC Disk	c Sub-System	53
	10.1 Inte	rfaces and Protocols	53
	10.1.1	Interface to the RTC	53
	10.1.2	Interface to the System AO Control	53
	10.2 Data	a Flow and Rates	
	10.2.1	RTC Telemetry Port	53
	10.2.2	System Network	53
	10.3 Stor	age Capacity	53
11.	Timing G	Generation and Control	54
	11.1 Carr	nera Synchronization and Timing	54
	11.2 GPS	Sub millisecond Time Stamp Source	54
	11.3 Pipe	eline coordination	54
	11.4 Glob	bal Synch	54
	11.4.1	Global Reset	54
	11.5 Tom	nography System Clock	55
	11.5.1	Tomography Synch	55
	11.5.2	Tomography Clock (100 MHz)	55
	11.5.3	Tomography LVDS Clock (600 MHz)	55
12.	RTC Test	t Bench	56
13.	General	Requirements for System Components (HW and SW)	
	13.1 All (Lomponents	57
	13.1.1	Acceptance resting	57
	13.1.2	Long Term Maintenance Plan	57
	13.1.3	Software, iniaterial and Documentation Control	5/
Ver.	1.1.347		10/20/2009

	13.1.4	Spares	57
	13.1.5	Panel Retention	57
	13.2 Cust	om Components	57
	13.2.1	Documentation and Training	57
	13.2.2	Diagnostics Capability	58
	13.2.3	Trouble shooting capability	58
	13.2.4	Cable Attachment Verification	59
	13.2.5	Temperature	59
14.	Power D	stribution, Environment and Cooling	60
	14.1 Pow	er Sequencing	60
	14.2 WFS		60
	14.3 Tom	ography Engine	60
	14.3.1	FPGA Power Dissipation	61
	14.3.2	Tomography Engine Cooling	61
	14.4 DM	command Generation	61
	14.5 Disk	Sub-System	61
	14.6 Cont	rol Processor (CP)	62
	14.7 Envi	onment	62
	14.8 Pow	er and Cooling Requirements	62
15	Docume	ntation	63
тэ.			
15.	Other Ha	rdware and Software not Otherwise Covered	64
16.	Other Ha	rdware and Software not Otherwise Covered	64
16.	Other Ha	rdware and Software not Otherwise Covered nal Networking	64 64 .64
16.	Other Ha 16.1 Inter 16.2 Shut	rdware and Software not Otherwise Covered nal Networking ters	64 64 64 64
16.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase	rdware and Software not Otherwise Covered nal Networking ters r fiber In/Out actuators	64 64 64 64 64
16.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte	rdware and Software not Otherwise Covered nal Networking ters r fiber In/Out actuators r On/Off and intensity	64 64 64 64 64 64 64
16.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter	rdware and Software not Otherwise Covered nal Networking ters	
16.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter	rdware and Software not Otherwise Covered nal Networking ters	
16.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter	rdware and Software not Otherwise Covered nal Networking ters	
13.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter	rdware and Software not Otherwise Covered nal Networking	
13. 16. 17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix Appendix	rdware and Software not Otherwise Covered nal Networking	
16. 17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix A Appendix A	rdware and Software not Otherwise Covered nal Networking	
13. 16. 17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix A Appendix A	rdware and Software not Otherwise Covered	
17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix A Appendix A Appendix C	rdware and Software not Otherwise Covered	
17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix A Appendix A Appendix D Appendix D	rdware and Software not Otherwise Covered nal Networking	
13. 16. 17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix A Appendix A Appendix A Appendix I Appendix I Appendix I	rdware and Software not Otherwise Covered	
17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix A Appendix A Appendix A Appendix B Appendix B Appendix B	rdware and Software not Otherwise Covered	
13. 16. 17.	Other Ha 16.1 Inter 16.2 Shut 16.3 Lase 16.4 Lase 16.5 Filte 16.6 Inter 16.7 Inter Appendix A Appendix A Appendix B Appendix B Appendix B Appendix B Appendix C Appendix C	rdware and Software not Otherwise Covered	

Table of Figures

Figure 1	Top-level view of the AO Control's View of the RTC	4
Figure 2	Simplified View of the RTC	5
Figure 3	Point-and-Shoot HOWFS/LOWFS Pair	6
Figure 4	RTC Physical Architecture	9
Figure 5	RTC and Sub-System States Viewable by the AO Control	
Figure 6	Overall RTC Latency Components (not to scale)	
Figure 7	Non-Pipelined Latency Issues (not to scale)	
Figure 8	Pipelined Architecture Latency Issues (not to scale)	
Figure 9	Natural Guide Star Latency	24

Figure 10	RTC Control Processor (CP)	26
Figure 11	LOWFS	32
Figure 12	LOWFS Latency (not to scale)	
Figure 13	Tomography HOWFS	
Figure 14	Tomography WFS Latency (not to scale)	
Figure 15	Point-and-Shoot HOWFS	37
Figure 16	Point-and-Shoot HOWFS Latency (not to scale)	
Figure 17	RTC Boards	40
Figure 18	DM Command Generation Latency (not to scale)	46
Figure 19	Woofer Command Generation	47
Figure 20	Science Object DM Command Generation	47
Figure 21	RTC Diagnostics and Telemetry	51
Figure 22	Camera Synch and System Timing Generation	54
Figure 23	RTC Test Bench	56
Figure 24	Power Distribution	60

Table of Tables

Table 1	NGAO RTC System Assumptions	11
Table 2	NGAO RTC System Performance Requirements	12
Table 3	NGAO RTC System Parameters	21
Table 4	Tomography Transfer Latencies and Rates	22
Table 5	NGS Transfer Latencies and Rates	22
Table 6	Non-Transfer Latencies	23
Table 7	Total Latency Calculations	23
Table 8	Total NGS Latency Calculations	24
Table 9	Preliminary FPGA Power Dissipation Analysis	61
Table 10	List of sensors and actuators connected to the RTC	74
Table 11	Estimate of the Tomography Engine Array Size and Cost	75

1. Introduction and Organization

This document covers the design of the Keck <u>Next Generation Adaptive Optics Real Time</u> <u>Controller (NGAO RTC)</u>.

This section is an overall introduction and summary of the RTC architecture and implementation and the organization of the document.

Section 2 describes the overall system characteristics.

Section 2.4.3 covers the latency and timing requirements that drive the architecture and implementation decisions.

Sections 4 through 11 cover the individual sub-systems in the RTC.

Subsequent sections cover RTC issues of a general nature or related topics.

For details on the algorithm used, see [ref NGAO Algorithm Document].

1.1 Background and Context

The design of the Real-Time Processor for the Keck Next Generation Adaptive Optics system represents a radically new computational framework that blazes new territory for astronomical AO systems. The need for a new approach is due to the considerable step up in the amounts of data to be processed and controls to be driven in a multiple guide star tomography system. Furthermore, KNGAO has set ambitious new goals for wavefront correction performance that puts further pressure on processing rates and latency times that traditional compute paradigms have trouble scaling up to. Current processing requirements are in the Terra Operations per second region. Instead, the KNGAO RTC is structured around a massively parallel processing (MPP) concept, where the highly parallelizable aspects of the real-time tomography algorithm are directly mapped to a large number of hardware compute elements. These compute elements operate separately and simultaneously. With this approach, increasing problem size is handled roughly by increasing the number of processor elements, rather than processor speed.

In short, in this design, the structure of the algorithm drives the structure of the hardware. Therefore, it is necessary to understand the algorithm itself to understand the hardware architecture, so please review the companion volume [ref Algorithms Design Document], which presents the technical details of the massively parallel algorithm for AO tomography.

For the purpose of introducing the hardware design, the algorithm and hardware have three main top-level component steps: wavefront sensing, tomography, and DM control. These physically map to component blocks of hardware, see **Figure 2**. The actual physical layout of boards and connecting cables mimic this geometry. Inside the blocks, further parallelization is achieved by use of Fourier domain processing, where each spatial frequency component is processed independently. Fourier-domain algorithms have been developed in recent years for wavefront phase reconstruction [ref Poyneer] and for tomography [ref Tokovinin, Gavel].

As stated, the real-time processing takes place on small compute elements, either Field-Programmable Gate Array (FPGA) logic chips, or Graphical Processing Units (GPUs).

FPGA devices have been used in the digital electronics industry since the 1980's when they were first used as alternatives to custom fabricated semiconductors. The arrays of logic were "field-programmed" to produce any digital logic function. They grew in a role as support chips on board computer motherboards and plug-in cards. Recent versions incorporate millions of transistors and some also incorporate multiple on-chip conventional arithmetic processors. Their use is now common in many products from high performance scientific add in boards to consumer portable electronics including cell phones. Today these chips represent a fast growing, multi-billion dollar industry.

Graphical Processing Units were first introduced to offload the video processing for computer displays from the computer's CPU. They have since developed as a key processor for digital displays, which have demanding applications in computer-aided design and video gaming. GPUs specialize in geometric rotations, translations, and interpolation using massive vector-matrix manipulations. Beyond graphics, GPUs are also used in analyzing huge geophysical signal data sets in oil and mineral exploration and other scientific calculations requiring extremely high performance. GPUs can be adapted to the wavefront reconstruction problem through these means and, at this point, they remain a possible low-cost option in AO for wavefront sensor front-end video processing, but they are still under evaluation for this purpose.

The RTC uses a mix of GPUs and FPGAs to best match their individual strengths to the RTC's needs.

1.2 Design Philosophy

To insure the maximum reliability, serviceability, and maintainability, we will maximize the use of commodity parts and industry standard interfaces.

We have attempted to match the structure of the problems to the form of the solutions to the implementation. This maintains the visibility of the various aspects of the original problem as they are transformed through the algorithms and implementations.

It is not often you can examine several alternate implementations in full detail. Each of several possible algorithms has several possible implementations. We have tried within the budgeted time and resources to investigate these as far as possible.

1.3 Functions of the RTC System

Measure the atmosphere, producing wave fronts based on these measurements

Compute the tomographic reconstruction of the atmosphere

Drive DMs

Compensation for Vibrations (Reference the section)

Provide diagnostic and telemetry data.

The RTC System is a real-time digital control system that operates on a fixed clock cycle, referred to as the Frame Clock. Each Frame, the RTC takes data from various cameras, processes it, and updates the various mirrors and DMs for which it is responsible.

It runs the same program on each frame, with different data, but the same parameters, repeatedly, until the AO Control causes it to change.

The RTC interacts with the telescope system and the AO Control through two Ethernet connections: the RTC Control Processor (CP) and the RTC Disk Sub-system.

The CP is based on a conventional Linux box. It acts as the synchronizing interface between asynchronous requests coming from the AO Control and the synchronized parameter loading to the interconnected RTC components.

The "state" of the RTC is affected by the AO Control via a parameter loading process. This loading occurs in the background to the real-time cycles. Parameter updates to the PE's [define] program occur synchronized to the frame clock. The companion document [ref Processing Engine to AO Control Interface Design Document] describes the available control parameters and the update process in detail.

In order to accommodate differing natural guide star's (NGS) brightness, the rate of the camera clocks can be set differently on each wavefront sensor with respect to the tomography engine. This is useful to allow overall system optimization by trading individual wavefront or tip/tilt/focus sensor signal-to-noise ratio with sensor bandwidth. All sensor sample periods however must be less than the tomography sample period in order for the system to remain synchronized at its maximum rate. The master frame clock is derived from one of the HOWFS cameras.

Figure 1 shows a top-level view of the RTC Processor System in its computational and data flow environment.

1.4 Functional Architecture

Figure 1 and **Figure 2** depicts the overall design, emphasizing real-time signal flow. **Figure 21** highlights the flow of telemetry data and **Figure 10** highlights the flow of parameter loads and status feedback to and from the control processor.

Figure 1 Top-level view of the AO Control's View of the RTC

Figure 2 Simplified View of the RTC

1.4.1 Wave Front Sensors (WFS)

A short overview: There are two types of WFS in the NGAO RTC: low order (LOWFS) and high order (HOWFS).

1.4.1.1 LOWFS

LOWFS use an IR natural guide star (NGS) to estimate tip/tilt, focus, and astigmatism for the science field.

A low-order wavefront sensor (LOWFS) processor is responsible for converting raw camera pixel data into a tip/tilt signal, plus focus and astigmatism numbers for the one TTFA sensor. Algorithm details are given in the [Algorithm Design document]. Each LOWFS camera operates in parallel and feeds its data to the LOWFS. The LOWFS processes the data and sends commands to the science tip/tilt actuator on the Woofer and to the tomography engine.

1.4.1.2 HOWFS

Figure 3 Point-and-Shoot HOWFS/LOWFS Pair

A high-order wavefront sensor processor is responsible for converting raw Hartmann WFS camera pixel data into an array of wavefront phase measurements spaced on a regular grid in a coordinate system that defined as common throughout the AO system. HOWFS use a laser guide star (LGS) or an NGS to probe the atmosphere and determine the high order atmospheric distortion in that direction. There are two types of HOWFS:

The Point-and-shoot HOWFS first generates a wave front to correct light in the direction of the LGS. This wave front is then converted to DM commands that are used to determine the shape of a DM. This DM is used to sharpen their associated LOWFS NGS.

Tomography HOWFS provide probing of the atmospheric volume containing the science object and generate a wave front in the direction of the LGS. These wave fronts are processed by the tomography engine and used to estimate the volume in the direction of the science object. The estimate of the volume is in turn used to provide a wave front to correct light in that direction. This wave front is passed to a DM command generator to place the desired shape on the science DM.

Each HOWFS wavefront sensor has an associated wavefront sensor processor. These operate in parallel then feed their aggregate results to the tomography engine.

The architecture for the hardware for all WFSs follows the massively parallel approach. First, each wavefront sensor has an associated wave front sensor processor card, operating in parallel with but otherwise independent of (other than the frame synchronization clock) every other processor card.

At the present time, it is not established whether the WFSs will be implemented using FPGAs or with GPUs.

1.4.2 Tomography Engine

The tomography engine's processors are mapped "horizontally" over the aperture. A given processing element (PE) on this map is assigned a piece of the aperture and alternates processing a portion of either the spatial or Fourier domain of it.

All computational elements run the identical program, albeit with different parameters and data. Each processor in the tomography engine is connected to its four neighboring elements (representing the next spatial frequency over in both directions) because is it necessary to shift data to neighbors in order to implement the Fourier transform and interpolation steps in the tomography algorithm.

1.4.3 DM Command Generators

The Point-and-Shoot HOWFS's and the tomography engine's wavefronts are sent to the deformable mirror command generators for their DMs. These are dedicated units, one per DM. They take desired wavefronts in and produce DM command voltages that result in the correct wavefront, taking into account actuator influence functions and nonlinearities of each DM.

1.4.4 Control Processor (CP)

1.4.4.1 Synchronization of the RTC with the AO Control

1.4.5 Disk Sub-System

The RTC Disk Sub-System is an extremely high performance, large storage system that is designed to capture system Telemetry data that can be generated by the RTC. This data can be generated at over 36 GBytes/sec. This system is designed to be able to capture this data for an extended period, but it is not intended to be an archival system for long-term storage or access.

The system has a capacity to store up to 60 terra bytes of data, which could be filled in a matter of days of heavy use.

Likewise, no data base facilities are provided beyond normal directory services.

1.4.6 Global RTC System Timing

Sub msec accurate time stamping of data will be provided for the telemetry stream. This will provide

1.4.7 Diagnostics and Telemetry Streams

All major data signals can be sent to the Telemetry/Diagnostic data path at the request of the AO Control. Any data in this path can be sent to either-or-both the AO Control, for diagnostics, or the RTC disk sub-system, for storage. See: Section 8.

Data that can be saved through Telemetry or viewed through Diagnostics include (See Section 9):

- 1. Raw Camera Data
- 2. Centroids
- 3. Wave Fronts
- 4. Tomographic Layers
- 5. Science on-axis High Order Wave Front
- 6. Science on-axis Woofer Wave Front
- 7. Science on-axis High Order Commands
- 8. Science on-axis Woofer Commands
- 9. RTC Current Parameter Settings

All Diagnostic information is time stamped accurate to one Frame Time.

1.5 Physical Architecture

The RTC is physically divided between the Naismith and the computer room below the telescope. The cameras and their controllers and the DMs and their are located on the Naismith. The rest of the RTC, the WFS, tomography engine, disk sub-system, DM command

generators, control processor, and clock generator are located in the computer room. The two sections are connected by high speed fiber links.

Figure 4 RTC Physical Architecture

1.6 Implementation Alternatives

1.6.1 Multi-core CPUs

1.6.2 FPGAs

XXXX

FPGAs have a significant advantage over traditional CPUs in that you can change both their hardware and software.

1.6.3 GPUs

XXX

We are examining different candidate technology implementations for the WFS and the DM Command Generators.

The WFS can be implemented using conventional CPUs, FPGAs, or GPUs. We are currently determining the best fit between the requirements and implementation technology.

The Tomography Engine is currently being developed using Field Programmable Gate Arrays (FPGAs). No alternate implementation is being pursued.

The DM Command Generation can be implemented using custom logic or GPUs. We are currently determining the best fit between the requirements and implementation technology.

2. System Characteristics

2.1 Assumptions and Performance Requirements

ltem No.	Item	Value	Units	Ref
1	Wind		m/sec	
2	rO		cm	
3	Max Zenith Angle	54	degrees	
4	Frame Rate	2	Hz	
5	Stare Time HOWFS	500	µsec	
6	Stare Time LOWFS	4,000	µsec	
7	Sub Apertures	64		
8	Number of Tomography Layers	5		
9	Number of Tomography WFSs	4		
10	Number of WFSs for Tip/Tilt, focus, and astigmatism	3		
11	Number of Science Objects	1		
12	MTBF		per KHr	
13	MTTR		per KHr	
	Table 1 NGAO RTC System Ass	umptions		
ltom		1	1	1

ltem No.	Item	Value	Units	Ref
1	Wind		m/sec	
2	r0		cm	
3	Max Zenith Angle	54	degrees	
4	Frame Rate	2	Hz	
5	Stare Time HOWFS	500	μsec	
6	Stare Time LOWFS	4,000	μsec	

7	Sub Apertures	64		
8	Number of Tomography Layers	5		
9	Number of Tomography WFSs	4		
10	Number of WFSs for Tip/Tilt, focus, and astigmatism	3		
11	Number of Science Objects	1		
12	MTBF		per KHr	
13	MTTR		per KHr	

Table 2 NGAO RTC System Performance Requirements

2.2 **RTC States Visible to the AO Control**

There are multiple levels of states in the AO system. This section describes only those states that the RTC keeps track of. These states are limited and insure only that the RTC cannot damage itself, will not give invalid data, and that it can be controlled to move between states become functional or be shut down.

Figure 5 shows the states visible to the AO control.

Finer grained information may be available for diagnostics, but are not presented here.

Figure 5 RTC and Sub-System States Viewable by the AO Control

The RTC CP will not honor a request to do something that is not valid, given its current state, and will return an appropriate error to the AO Control.

Examples:

- 1. If a sub-system has not been configured and the AO Control attempts to start the subsystem, the RTC will return an error indicating "Not Configured".
- 2. If the AO Control attempts to set a parameter with a value that is out of the allowable bounds for that parameter, the RTC will return and error indicating "Out of Bounds" with an additional message that indicates the allowable bounds. This is not really a "state" issue, but is mentioned here for clarity.
- 3. However, if the AO Control attempts to set a parameter with a valid value but one that does not make sense in the presence of other parameters that have been set, the RTC will simply set that parameter. The states represented by various combinations of settable parameters have meaning to a higher level of control than the RTC and should be controlled by that level.

2.3 Timing and Control of Internal States of the RTC

See Section 2.2 for a discussion of the States of the RTC visible to the AO Control.

Several sub-systems of the RTC run at different rates or start at different times during operation. The LOWFSs run at approximately 250 Hz while the HOWFSs run at approximately 2 KHz. In addition, commands to change parameters come from the AO Control asynchronously. The RTC synchronizes these changes in parameters or data to occur at the start of the basic frame, ~2 KHz. This ensures that all processing that occurs during a frame is done with the same parameters and input data.

Anything arriving too late to be applied at the start of a frame will be applied at the start of the next frame.

- 2.4 Sizing and Scaling
 - 2.4.1 Sizing the Problem
 - 2.4.2 Sizing the Solution
 - 2.4.3 Scaling to Different Sized Problems

2.4.4 Scaling to Different Speed Requirements

2.5 Reconfigurability

2.6 Reliability and Recoverability

2.6.1 SEUs

2.6.2 BER

2.6.3 Diagnostic Tools

3. Error Budgets, Latency, and Data Rates

3.1 Error Budgets

Ref [_____]

3.1.1 Latency

3.1.2 Accuracy

The accuracy of a system is determined by several factors. In our system, they are the accuracy of the:

- Camera data
- Parameters used in calculations
- Algorithms used
- Arithmetic operations
- Output hardware

3.1.2.1 Camera Data

The camera data supplied is 16 bits. We have assumed that the camera data is accurate to 14 bits.

3.1.2.2 Parameters

All fixed parameters and arrays used in calculations are represented as 18-bit numbers for real values with an added 18-bit imaginary part if they are complex. Examples of the parameters are C_n^2 , Fourier coefficients, Kolmogorov filter coefficients, asterism parameters, DM modeling tables, etc.

3.1.2.3 Algorithms

Don, do you want to say something here?

3.1.2.4 Arithmetic Operations

Individual arithmetic operations take 18-bit values and accumulate a 45-bit result.

3.1.2.5 DACs

The DM's are supplied with 14-bit values.

3.2 Latency

The most significant element to overcome in an AO system is the latency between sampling the atmospheric turbulence and applying the compensation for it. See Appendix C for calculations on the impact of latency components on the wavefront error.

It and the spatial sampling determine the rate at which calculations and data transfers must be made to achieve a given level of compensation.

These in turn determine the size of the computation engine that is needed to handle the problem. For the current NGAO specification, this is a terra operation per second problem, which directly affects and limits the choices of algorithms, architectures, and implementations.

The total RTC latency is made up of several components, illustrated below (not to scale).

3.2.1 Calculating Latency

Reference _____

3.2.1.1 ¹/₂ Frame for stare time

3.2.1.2 ¹/₂ Frame for DM hold time

Description of each element

Figure 6 Overall RTC Latency Components (not to scale)

Example Timing

The total latency is calculated from the midpoint of the camera stare time to the midpoint of the subsequent DM hold-time. Computational Latency includes only the portion of time due to our actual processing of the data.

3.3 Non-Pipelined vs. Pipelined Architectures and Latency

Processing system architectures can be divided into two major categories: non-pipelined and pipelined.

3.3.1 Non-Pipelined Architectures

In a non-pipelined system, data is brought in, processed by a single processing unit, and the results are used, with latency, L (refer to non-pipelined diagram), and an effective cycle time of L. New data is brought in at time T_0 and corrections are made at time $T_0 + L$, whereupon new data is brought in again. The update rate is 1/L.

Figure 7 Non-Pipelined Latency Issues (not to scale)

Example Timing

In a non-pipelined system, the frame rate is determined by the total latency of handling the data. In this case, it is the time to read the CCD plus the computational latency.

All calculations must be finished before new calculations can start. The total latency is two frames (1 frame to handle the data, plus ½ a frame on the front end to account for the integration time of the camera and ½ a frame at the end to account for the integrated effect of the DM hold time).

3.3.2 Pipelined Architectures

In a pipelined system, the processing is divided amongst several units. Each unit processes the data and passes it on to the next unit with the total time still being L, as above (assuming transfer times between units are negligible). This means the computational latency is the same, L. However, it can be seen that new data can be brought in as soon as the first unit is through processing its last data, and the output can be updated as soon as the last unit has processed its data. The update rate here is 1/M where M is the largest time spent by any individual unit. This rate is considerably faster than that in the non-pipelined case.

Figure 8 Pipelined Architecture Latency Issues (not to scale)

Example Timing

In this system, each element of the data processing is handled by separate hardware. This allows us to have several frames of camera data being processed somewhere in the pipe at the same time, just not in the same piece of hardware. The maximum frame rate is determined by the longest time it takes for any single element to process its data.

In our situation, the frame rate is determined by the CCD read time, which happens to be 500 μ sec. All other individual computational elements are less than this. The time to handle the data is the time to read the CCD plus the Computational Latency (~3 Frames). The total latency is 4-2KH frames (3 frames to handle the data, plus ½ a frame on the front end to account for the integration time of the camera and ½ a frame at the end to account for the integrated effect of the DM hold time).

While in Figure 8, the computational Latency ends on a frame boundary, it is actually asynchronous to the frame clock. This means the DM operates on a clock that is the same frequency as the frame clock, but shifted by a not necessarily integral amount. See Figure

Assuming the time to handle the data is the same for both the pipelined and the non-pipelined case, the pipelined architecture will provide less total latency. It can require more hardware, however.

For the NGAO RTC, we use a pipelined architecture.

3.4 *Latency Calculations*

Latency can be divided into three categories: transfer, compute, and fixed latencies.

Transfer latency is the result of moving data from one place to another, usually between physically distinct hardware.

Compute latency is due to the time it takes to apply an algorithm on the data, and includes any minor transfer latency that may occur during that process.

Fixed latency is due to system architecture issues that are separate from the above. In the case of the RTC, it is the result of the value of the frame clock and the time read the data out of the CCD subsequent from the actual time to transfer it to the WFS frame grabber.

Detailed latency analysis can be found in Appendix C.

Table 3 shows the system parameters used in the following latency analysis.

Extended Sub Apps are the total subapertures we use in computations to account for the FOV and zenith angle.

Table 3 NGAO RTC System Parameters.

The frame rate of 2 KHz is driven by the maximum tomography error allowed (see Appendix C and [Requirements Doc]).

There are 64 subapertures across the primary aperture.

In order to avoid artifacts due to wrapping while processing Fourier data, the number of apertures used internally is 88.

3.4.1 Transfer Latency

Table 4 shows the transfer latencies that affect the total latency of the RTC. Also shown are the data rates needed to support the required Telemetry of system data during operation.

Ver 1.1	1 Sept, 20	09	Tomographic Data Rates And Latency Calculations						
					Operational				
				Total	Xfer				
		Size per	Rate for	Diag/Telem	Latency	Operation	Transfer	Total Op.	
	Number	Frame	Diag/Telem	Rate	Budget	Rate (MB	Rate	Rate	
Transfer Latencies	of Items	(B)	(MB/Sec)	(MB/Sec)	(µSec)	/Sec)	(GB/Sec)	(MB/Sec)	Notes
WFS CCD Read Out	1	131,072	N/A	N/A	500	N/A	N/A	N/A	
HOWFS Camera to Frame Grabber	4	131,072	262.14	1,049	50	2,621	N/A	10,486	1
HOWFS Frame Grabber to Centroider	4	131,072	262.14	N/A	50	2,621	N/A	10,486	2
HOWFS Centroider to Telemetry	4	30,976	61.95	248	N/A	N/A	N/A	N/A	3
HOWFS Wave Front	4	15,488	30.98	124	8	2,000	2.00	8,000	4
Tomography Layer	5	15,488	30.98	155	8	2,000	2.00	10,000	5
DM Cmd	4	8,192	16.38	66	50	N/A	N/A	N/A	6
Total Tomographic Transfer Time				1,641	665			38,972	

Table 4 Tomography Transfer Latencies and Rates

Ver 1.1	1 Sept, 2009		NGS Data Rates And Latency Calculations						
	Number	Size per	Rate for	Total Diag/Telem	Operational Xfer Latency Budget	Operation	Transfer	Total Op.	
Transfer Latencies	of Items	(B)	(MB/Sec)	(MB/Sec)	μSec)	/Sec)	(GB/Sec)	(MB/Sec)	Notes
WFS CCD Read Out	1	131,072	N/A	N/A	500	N/A	N/A	N/A	
HOWFS Camera to Frame Grabber	3	131,072	262.14	786	50	2,621	N/A	7,864	1
HOWFS Frame Grabber to Centroider	3	131,072	262.14	N/A	50	2,621	N/A	7,864	2
HOWFS Centroider to Telemetry	3	30,976	61.95	186	N/A	N/A	N/A	N/A	3
HOWFS Wave Front	3	15,488	30.98	93	8	2,000	2.00	6,000	4
DM Cmd	4	8,192	16.38	66	50	N/A	N/A	N/A	6
Total NGS Transfer Time				1,131	658			21,729	

Table 5 NGS Transfer Latencies and Rates

Notes:

Operational transfer times must take place in a small part of a frame (~50 μ sec ~10% of a frame) whereas Diagnostic/Telemetry transfers may take an entire frame (~500 μ sec). This leads to a much higher rate for Operational transfers.

The two key parameters calculated are the "Total Diagnostic/Telemetry Rate" and the "Operational Transfer Time". The former determines the characteristics of the RTC Disk Sub-System and the later is part of the Total RTC latency calculation.

- This is the time for a single camera to transfer the camera data to the Frame Grabber. A time of 50 μsec has been allocated which is consistent with a transfer using Camera Link full configuration. Also shown is the total data rate needed to save the camera data for all 7 cameras through the Diagnostic/Telemetry port.
- If the frame grabber is a separate piece of hardware from the rest of the WFS, this is the time to transfer the camera data from it to the next stage of the WFS. Since camera data has already been saved if desired, there is no load indicated for the Diagnostic/Telemetry port.

- 3. If it is desired to save the centroids, this number is the amount of time to transfer the data over the Diagnostic/Telemetry port. No additional operational transfer load is required.
- 4. After the WFS has calculated the wave front, these numbers are the amount of time needed to transfer it to the tomography engine and the Diagnostic/Telemetry Port.
- 5. After the Tomography Engine has estimated the atmospheric volume, the data needs to be transferred to the DM Command Generator. If it is also desired to save the tomographic layer information, the amount of time to transfer the data over the Diagnostic/Telemetry port is also given.
- 6. The DM information from the Tomography Engine is in a spatial measure and the DM Command Generator generates the correct DM actuator voltages to best match the desired DM shape. These numbers are the amount of time it takes to transfer the correct shape to the DM. Additionally, the data rate for the Diagnostic/Telemetry Port is shown if the data is to be saved.

3.4.2 Non-Transfer Latencies

Non-Transfer Latencies	(µSec)	Туре
Camera Stare	500	Fixed
WFS	300	Compute
Tomography	450	Compute
DM Cmd Gen	200	Compute
DM Hold	500	Fixed
Total Fixed Time	500	
Total Compute Time	950	

Table 6 Non-Transfer Latencies

3.4.3 Total Latency for Tomography Operations

See Figure 8 for a representative timing diagram.

Total Tomographic Latency Calculations				
Total Computation Time	950			
Total Fixed Time	500			
Total Op. Xfer Time	665			
Total Tomographic Latency	2,115			

Table 7 Total Latency Calculations

3.4.4 Total Latency for NGS Operations

Total NGS Latency Calculations				
Total Computation Time	500			
Total Fixed Time	500			
Total Op. Xfer Time	658			
Total NGS Latency	1,658			

Table 8 Total NGS Latency Calculations

Figure 9 Natural Guide Star Latency

Preliminary Timing

3.5 **Telemetry and Diagnostics Data Rates**

In addition to the latency associated with processing the AO data and controlling the actuators, the NGAO system needs to be able to save key system telemetry data. This feature allows subsequent processing of the science data, atmospheric and system analysis, and the display real time diagnostics information.

The amount of data it is possible to save is huge (many Giga Bytes per second) and a very large, fast disk sub-system is needed to capture this data prior to analysis.

4. RTC Control Processor (CP)

The RTC Control Processor (CP) provides an asynchronous interface between the RTC system the AO Control.

It is built on a normal Linux box.

We recognize that the RTC system is a key component to the overall AO system and the rest of the telescope environment and the CP interface will adhere to the component architecture defined in [_____].

Figure 10 RTC Control Processor (CP)

4.1 AO Control System Feature Support

See the AO Control Interface Document (ref_____) for details on these features.

4.1.1 Commands

The CP accepts commands from the system AO Control (or alternatively from a telnet session) over sockets. Data is passed as part of the command or as a system address from which the CP will fetch the data.

See [ref CP interface spec]

4.1.2 Monitoring

4.1.3 Events

Events within the RTC are generated by the individual sub-systems and monitored by the CP. The CP in turn generates events for the AO Control as required by the AO Control.

4.1.4 Alarms

4.1.5 Log Messages

4.1.6 Configuration

Low-level configuration is handled by the CP under control of the AO Control

4.1.7 Archiving

AO data is saved short term in the RTC disk sub-system. Long term archiving is provided by the telescope archiving systems.

4.1.8 Computational Load

Boxcar averaging of camera frame or other data will be provided prior to transfer to the AO Control.

This may require some added hardware, on the order of an additional processor. This is not significant and an analysis is ongoing to determine the exact implementation and hardware/software impact.

4.2 Interfaces and Protocols

4.2.1 Interface to the AO Control

The interface is over Ethernet using sockets and the details of this interface are covered in a separate document [ref CP interface spec].

The compute load of the CP is expected to be relatively low. Therefore, it is possible that the AO Control functions and the CP functions could be integrated into a single hardware platform if desired.

4.2.2 Interface to the rest of the RTC

The CP's interface to the rest of the RTC is through Gbit Ethernet, LVDS, or Camera Link busses as appropriate.

4.3 Data Flow and Rates

- 4.3.1 To AO Control
- 4.3.2 To the Disk Sub-system
- 4.3.3 To the rest of the RTC

5. Cameras

5.1 HOWFS (Tomography and Point-and-Shoot)

5.1.1 Interfaces and Protocols

The interface between the HOWFS camera sub-systems and the RTC will be through Camera Link[™] using the Camera Link[™] Full configuration.

5.1.2 Data Flow, Rates and Latency

The following are the specifications the camera systems must meet in order for the RTC to meet the required error budget.

5.1.2.1 Camera Frame Rate

The HOWFS camera must be able to sustain a 2 KHz frame rate.

5.1.2.2 CCD Read Time

After each frame is exposed, the CCD transfers the frame data to holding registers and starts exposing the next frame. The CCD must be able to transfer this data to the camera controller at a 2 KHz rate without affecting the simultaneous science object acquisition.

5.1.2.3 Camera Transfer Latency

The data latency between the last byte transferred from the CCD and the last byte sent to the frame grabber must be less than 50 µsec. See: **Table 4**.

5.2 LOWFS (IR)

5.2.1 Interfaces and Protocols

The interface between the camera sub-systems and the RTC will be through Camera Link[™] using the Camera Link[™] Full configuration.

5.2.2 Data Flow, Rates and Latency

The following are the specifications the camera systems must meet in order for the RTC to meet the required error budget.

5.2.2.1 Camera Frame Rate

The LOWFS IR cameras must be able to sustain a 250 Hz frame rate [REF].

5.2.2.2 CCD Read Time

After each frame is exposed, the CCD transfers the frame data to holding registers and starts exposing the next frame. The CCD must be able to transfer this data to the camera controller at a _____ rate without affecting the simultaneous science object acquisition.

5.2.2.3 Camera Transfer Latency

The data latency between the last byte transferred from the CCD and the last byte sent to the frame grabber must be less than 50 μ sec. See: **Table 5**.

5.3 Master Clock Generation for Camera Synchronization

Cameras will be able to synchronized to an external Frame Clock or be able to generate a Frame Clock to which other cameras can be synchronized. Ideally, one camera will be designated as the master RTC camera. All other cameras will be synchronized to this camera.

5.3.1 Inter Camera Capture Jitter

The time between the synchronization signal and the start of the camera exposure will be a Maximum of _____ μ sec for cameras of the same frame rate.

5.4 **Control**

The AO Control will control all camera parameters through facilities provided by the CP. The following controls will be supported be each camera:

5.4.1 Gain

5.4.2 Frame rate

The frame rate is the frequency at which new frames are captured.

Whatever rates are required by the system, i.e. 2 KHz, 1 KHz, 500 Hz, 100 Hz.

5.4.3 Stare Time

Whatever times are required by the system. Ref (_____)

5.4.4 Frame Transfer rate

The frame transfer rate is the speed of the link between the camera and the frame capture card.
6. Wave Front Sensors (WFSs)

We intend for all WFSs to have a common architecture and implementation. This brings the advantage of lower spares cost, easier trouble shooting and development, and faster debug time during operation.

6.1 WFS Interfaces

The interfaces to the WFSs are shown in the following figures: LOWFS in **Figure 11**, Point-and-Shoot HOWFS in **Figure 15**, and Tomography HOWFS in **Figure 13**. Input will be via the machine-vision industry's standard Camera Link cabling and communications protocol using the full configuration, unless otherwise noted. Output will connect to the tomography engine also via Camera Link communication. The 24 bits data width in this standard can represent two camera pixels each with a dynamic range of up to 2^12 = 4096 counts per pixel, which is above the maximum counts anticipated in NGAO wavefront sensing. The computed result from the WFSP does not increase the measurement limited signal-to-noise ratio so this 24 bit word width is also sufficient for transfer to the tomography engine, even though the tomography engine will ultimately be using a 36 bit internal word width to maintain computational accuracy.

The Camera Link interface cable is serialized low-voltage differential signaling (LVDS) pairs on an engineered standard cable (e.g. 3M's Mini D Ribbon). The base configuration allows a throughput of up to 2.04 Gbit/s. For the 256x256 WFS chip running at 2 kHz frame rate, and 12 bits per pixel, the pixel data rate is 1.573 Gbit/s, which is under the base configuration limit and so does not demand an enhanced bandwidth configuration. Since the bit rate of Camera Link is generally faster than the processor clock (in the case of FPGAs), standard serializer/deserializer (SERDES) transceivers are needed to terminate the connections on each board.

Wavefront sensor processor cards are assigned one per wavefront sensor, while the tomography engine processors are mapped over the aperture, it is necessary for the four tomography WFSPs (each containing a full aperture's worth of data) to distribute their results over the tomography engine processors. The distribution is accomplished using a specialized interface located along the left side of the tomography engine array, as shown in **Figure 17**. This interface makes sure the correct data are shifted in along each row of tomography processors. The cable connection from the WFSPs to the tomography engine uses the same LVDS / Camera Link 2 Gbit/s standard as used for the input to the WFSPs, only this time there is far less data to transfer. The full-frame transfer of 64x64x2x12bit numbers (an extra factor two for complex Fourier coefficients) is accomplished in 50 microseconds, about 10% of a 2 KHz frame cycle. A doublewide Camera Link interface can be used if this is deemed to take too much of the latency budget.

6.2 Data Flow and Rates

6.3 LOWFSs (Low Order Wave Front Sensors) (for T/T, Astigmatism and Focus)

The LOWFSs take inputs from the 3 IR Tip/Tilt/focus and astigmatism cameras. The cameras feeding the LOWFSs are focused on natural guide stars (NGS). They generate low order control for the on-axis correction of the light for both science and AO paths.

Preliminary Timing

6.3.1 Interfaces and Protocols

6.3.1.1 Inputs

The Inputs are from 3 IR cameras over Camera Link base configuration at 250 Hz frame rate:

- Two tip/tilt cameras (Size?)
- One focus/astigmatism camera (Size?)

6.3.1.2 Outputs

The outputs are:

- An analog X/Y controls to the on-axis Tip/Tilt stage of the Woofer at a 250 Hz frame rate.
- 3 analog X/Y controls to the tip/tilt mirrors associated with the 3 LOWFS cameras at a 250 Hz frame rate.
- Digital Tip/tilt, focus, and astigmatism information sent to the tomography engine at a 2 KHz frame rate to synchronize with the Tomography's frame rate.

6.3.2 Data Flow, Rates and Latencies

6.3.2.1 Camera Data

Each LOWFS camera has an image size of _____ and a data width of _____. This yields a data rate of _____ B/frame and a total rate of _____ B/sec. This data is sent to a frame grabber in the LOWFS and alternatively to the Telemetry/Diagnostic signal path.

The LOWFS IR camera has a stare time of 4 msec [REF] for a frame rate of 250 Hz.

6.3.2.2 Tip/Tilt Signals

The tip/tilt signals are analog voltages < ± 10 V, with a rise/fall time of < 10 μ sec, and a frame rate of 2 KHz.

6.3.2.3 Astigmatism and Focus

The astigmatism and Focus data are sent to the tomography engine as digital data over 1 LVDS port.

6.3.3 Low Order Reconstruction Engine

See the _____ document for the details on the algorithms for extracting tip/Tilt, focus, and astigmatism from the camera data.

6.4 HOWFSs (High Order Wave Front Sensors)

Seven HOWFSs generate seven wave fronts used by the AO RTC system.

- Four tomography HOWFSs generate wavefronts used by the tomography engine that in turn generates on axis wavefronts used by the woofer and high order DM(s) to correct for atmospheric aberration affecting the science object(s). Currently there is only one science object, but we have the possibility of supporting more if needed.
- Each of three point-and-shoot HOWFSs compensate for atmospheric aberrations affecting a corresponding LOWFS NGS used for T, astigmatism, and focus.

To generate these wave fronts, the HOWFSs take inputs from the tomography or point-andshoot cameras. These cameras are focused on laser guide stars (LGS).

The images are first corrected for dark current, thresholded, and then processed to produce centroids corrected for reference centroids and offsets.

Tip/Tilt is then extracted from the centroids and subtracted from them.

The Tip/Tilt removed centroids are then processed to produce a corresponding tip/tilt removed wavefront.

6.4.1 Centroider and Wave Front Reconstruction Engine

6.4.1.1 CPU Implementation

This would be a conventional implementation using vector-matrix multiplication for the reconstruction. It is the current implementation plan for the HOWFS reconstructors and uses standard off the shelf components.

6.4.1.2 GPU implementation

A 64 subaperture across (88 across for zero padding) reconstructor has been implanted on a single Nvidia Graphics Processor card. This presents a simple solution for the HOWFSs that could be built with standard off the shelf components. It would potentially provide lower latency than the CPU implementation and fewer racks of equipment since multiple HOWFSs could be supported by a single computer.

The GPU would reside on a PCI-E backplane slot on a CPU motherboard. The CPU can be used to configure and run the GPU. Additional PCI-E slots would house Camera Link interface cards, which in turn connect to the WFS camera for input and to the tomography engine for output.

We are currently analyzing whether we can utilize the GPU in the system at a 2 KHz frame rate under a real-time OS.

6.4.1.3 FPGA implementation

Using FPGAs, it is possible to implement a centroider and reconstructor in a small number of chips that implement a variety of algorithms. These would be custom boards but have the potential for the lowest latency implementation.

The Tip/Tilt extracted by each HOWFS is used to control the tip/tilt mirror associated with that particular HOWFS camera.

There is a small difference between a Tomography HOWFS and a Point-and-Shoot HOWFS.

6.4.2 Tomography HOWFS

The Tomography HOWFS sends the reconstructed wave front to the Tomography Engine. See **Figure 13**.

The latency contributed to the total RTC latency in **Table 6** is the computational Latency shown in **Figure 14**.

Figure 13 **Tomography HOWFS**

Preliminary Timing

6.4.3 Point-and-Shoot HOWFS

The Point-and-Shoot HOWFS, however, further processes the reconstructed wave front to generate DM commands which are sent to a DM that corrects the laser spot associated with its corresponding camera, see **Figure 15** and Section 8. **Figure 15** illustrates the Point-and-Shoot HOWFS latency.

Ver. 1.1.347

Preliminary Timing

7. Tomography Engine

The tomography engine is implemented as a systolic array mapped to the physical volume of the atmosphere above the telescope. This is not your typical tower or rack-mounted PC. It is specifically designed to implement very high-speed vector/matrix operations with very small latency requirements. The total throughput rate is in the terra operation per second range with latencies of less than a microsecond.

7.1 **Tomography Error Requirements**

Don, do we need to specify the Tomography error requirements separately?

7.2 Algorithm

The tomography algorithm is an iterative solver, using Arithmetic Reconstruction Tomography (ART) [1]. For details of the algorithm see ______.

7.3 Design

The design _____

7.4 Architecture

We have modeled the algorithm implementation after the tomography problem itself. We divide the atmosphere into regions called voxels. We use an iterative algorithm to calculate the influence of each voxel. These calculations are highly parallel, very simple, have minimum memory requirements, and minimum communication requirements with other voxels. Our implementation follows this model. We assign a very simple processor called a processing element (PE) to a small number of voxels. We place a large number of these processors on a field programmable gate array (FPGA). Each FPGA contains all of the voxels for one column of the atmosphere above the telescope. Multiple FPGAs, then, are used to hold all of the voxels for the space above the telescope.

This implementation maintains the visibility of all aspects of the original problem through the various phases of the solution.

The Tomography Engine PE is a wide word SIMD architecture.

7.4.2 Voxels

7.4.3 Processing Elements (PEs) and their Functions

One PE can process data for multiple sub apertures. This allows us to trade off processing speed for system size.

7.4.4 Interfaces and Protocols

- 7.4.5 Data Flow and Rates
- 7.4.6 Timing and Events

7.4.7 Control and Orchestration of Processor States

7.4.7.1 On-Line Parameter Loading

7.4.7.2 Off-Line Parameter Loading

7.5 **Design**

7.5.1 Physical Architecture of the Tomography Engine

7.5.2 FPGA Design

Xilinx Virtex 5 or 6

Higher logic density may lead to timing and pin-out issues Higher density logic may lead to more susceptibility to SEU's

7.5.2.1 Basic Cell Layout

7.5.2.2 FPGA Configuration

7.5.2.3 System Monitor

The System Monitor monitors the core temperatures and voltages of each FPGA. They are linked serially, so that the health of each FPGA in the tomography processor can be monitored independent of the operation state of the system.

7.5.2.4 Clocks

7.5.2.5 Data

7.5.2.6 System Signaling

Diagnostics and Telemetry

7.5.2.7 Position Detection

7.5.2.8 Power

7.5.2.9 Power Supply Bypassing

7.5.2.10 Heat Removal

7.5.3 Board Design

7.5.3.1 Stack-up

7.5.3.2 FPGA Configuration

7.5.3.3 Power Regulators

Each board will have its own power regulator for the critical core voltages: ______ These voltages must be $< \pm$ for all FPGA's on the board.

7.5.3.4 Power Supply Bypassing

7.5.3.5 Voltage Monitors

7.5.3.6 Temperature Monitor

7.5.3.7 Signal Routing

7.5.3.8 Connectors

Power

Clock

Data

7.5.3.9 System Signaling

Diagnostics and Telemetry

7.5.3.10 Position Detection

7.5.3.11 Clock Issues

7.5.3.12 Heat Removal

7.5.4 System (Multi-Board)

7.5.4.1 Board to Board

7.5.4.2 Data

7.5.4.3 Clock

7.5.4.4 System Signaling

Diagnostics and Telemetry

7.5.5 System Facilities

7.5.5.1 Power Supplies

All power supplies are to be digitally programmable and monitored.

Number and size

Do they need to be redundant?

7.5.5.2 Clocks

7.5.5.3 Communication to and from the CP

7.5.5.4 Communications to the Telemetry Stream

7.5.5.5 Communications to the Diagnostic Stream

7.5.6 Mechanical Design

7.5.6.1 Ease of use

7.5.6.2 Cooling

7.5.6.3 Cabling

7.5.6.4 Power

7.5.6.5 Data In and Out

7.5.6.6 Power Control (Pulizzi)

8. DM and T/T Command Generation

The DM and T/T command generator sub-systems convert wavefront information into mirror voltage commands to result in the desired wavefront.

8.1 DM Control Engine

Preliminary Timing

Figure 19 Woofer Command Generation

Figure 20 Science Object DM Command Generation

Add HOWFS Command Gen Diagrams

8.2 Low Order (Woofer) (Closed Loop Operation)

The low order DM (woofer) operates closed loop.

8.2.1 Interfaces and Protocols

8.2.2 Data Flow and Rates

8.3 **Open Loop Operations**

The high order science DM and the HOWFS DMs all operate open loop.

8.3.1 High Order (Science and HOWFS) Open Loop Operations

8.3.1.1 Algorithm Description (Brief)

Ref(____

8.3.1.2 Non Linear Look-Up Tables

8.3.1.3 Interfaces and Protocols

8.3.1.4 Data Flow and Rates

8.4 *Tip/Tilt Mirrors*

The RTC controls 10 tip/tilt mirrors (one for each WFS) and 1 on-axis tip/tilt actuator on the Woofer:

- 3 T/T mirrors associated with the 3 LOWFS cameras
- 7 T/T mirrors associated with the 7 HOWFS cameras

• 1 T/T actuator on the Woofer

8.4.1 Tip/Tilt Control Engine

- 8.4.2 Interfaces and Protocols
- 8.4.3 Data Flow and Rates

9. Telemetry and Diagnostics Data Streams

All major data signals can be sent to the Telemetry/Diagnostic data path at the request of the AO Control. Any data in this path can be sent to either-or-both the AO Control, for diagnostics, or the RTC disk sub-system, for storage. (See: Section 8)

These signals include:

- 1. Raw Camera Data for 4 tomography WFSs, 3 point-and-shoot WFSs, 2 T/T, and 1 TT/focus/astigmatism sensor cameras
- 2. Centroids all HOWFS
- 3. Reconstructed Wave Fronts supplied as input to the Tomography engine from the Tomography HOWFS.
- 4. Tomography Layers
- 5. Science on-axis High Order Wave Front produced by the Tomography engine after forward propagating from the science object through the tomographic estimate of the atmosphere. This is the open loop control wave front for the High Order DM.
- 6. Science on-axis Woofer Wave Front produced by the Tomography engine after forward propagating from the science object through the tomographic estimate of the atmosphere. This is the closed loop control wave front for the Low Order DM.
- 7. Science on-axis High Order Commands
- 8. Science on-axis Woofer Commands
- 9. All RTC Current Parameter Settings including the settings of the following: shutters, laser fiber In/Out actuators, laser On/Off state and intensity, filter wheel position, interlocks.

Figure 21 RTC Diagnostics and Telemetry

Diagnostic data is captured at rates of approximately one sample per second, as determined by the AO Control.

A separate frame grabber associated with the disk sub-system captures camera data for diagnostics and telemetry. This data is a parallel stream supplied by a Camera Link splitter, shown in **Figure 21 RTC Diagnostics and Telemetry**.

9.1 Interfaces and Protocols

9.2 Data Flow and Rates

9.3 *Timing and Events*

9.4 Synchronization of AO Data Time Stamps with the Science Image Time Stamps

The RTC system will have a sub millisecond accurate clock, GPS based to time stamp the AO data for telemetry and diagnostics and provide to the SRT.

- How will we use atmospheric data collected during the capture of science images for post processing (e.g. PSF)?
- To what accuracy must the time stamps on the science image and the AO data match?
- How to determine what time slice of the atmospheric data corresponds to a science image?
- Currently, science image shutter open and close times are time stamped to a precision nominally of a small fraction of a second but may be as much as ±30 seconds in error (see Appendix A, Time-related keywords in Keck Observatory FITS files).
- To what do we reference the RTC data and how?
- How to relate the AO data time stamps to the times in the science data at which the shutter was actually opened and closed?

9.5 An Important Note on the Telemetry Rates

Since the total storage rate can exceed 36GB/sec, if all possible data sets are captured, care should be taken to insure there is enough space remaining in the disk sub-system to save the data. The disk sub-system can support multiple TB of data, but after a number of nights of heavy use, a great deal of the storage may be used.

The disk sub-system is not meant to archive data. Its purpose is merely to store it temporarily until the desired data can be archived to another location and the unneeded data can be deleted.

9.6 Handling System Diagnostic Functions

The RTC does not need to know that a wave front was generated by a star or a laser diode (with or without simulated turbulence). Its job is the same; calculate the wave front and tomography. No special features are in place for system diagnostics beyond the normal diagnostics described here.

10. RTC Disk Sub-System

All major data signals can be sent to the Telemetry/Diagnostic data path at the request of the AO Control. Any data in this path can be sent to either-or-both the AO Control, for diagnostics, or the RTC disk sub-system, for storage.

Since the total storage rate can exceed 36GB/sec if all possible data sets are captured, care should be taken to insure there is enough space remaining in the disk sub-system to save the data. The disk sub-system can support multiple TB of data, but after a number of nights of heavy use, a great deal of the storage may be used.

The disk sub-system is not meant to archive data, merely to store it temporarily until the desired data can be archived to another location and the undesired data can be deleted.

10.1 Interfaces and Protocols

10.1.1 Interface to the RTC

10.1.2 Interface to the System AO Control

10.2 Data Flow and Rates

10.2.1 RTC Telemetry Port

10.2.2 System Network

10.3 Storage Capacity

11. Timing Generation and Control

Figure 22 Camera Synch and System Timing Generation

- 11.1 Camera Synchronization and Timing
- 11.2 GPS Sub millisecond Time Stamp Source
- 11.3 Pipeline coordination
- 11.4 Global Synch
 - 11.4.1 Global Reset

- 11.5 Tomography System Clock
 - 11.5.1 Tomography Synch
 - 11.5.2 Tomography Clock (100 MHz)
 - 11.5.3 Tomography LVDS Clock (600 MHz)

12. RTC Test Bench

RTC Test Bench System

<u>Test Bench System</u> The Test Chassis is designed to perform bench

tests on RTC major or sub units. Two permanent benches will be maintained: one

at Keck and one at Santa Cruz. Their purpose is to provide rapid and accurate acceptance, functional, development, diagnostic and debug test of all major RTC components

It can plug into the LVDS or Camera Link output from a Camera, a WFS, a tomography engine card, or a DM Command Generator and capture and analyze their outputs.

It can supply simulated input information to WFS, tomography engine cards or DM Command Generators and simultaneously capture their outputs to validate unit functionality.

It is meant as a bench tool in the lab rather than as an operational piece of the RTC.

It has all facilities necessary to provide the correct control to the devices through either LVDS, camera link or Ethernet.

Two types of tests will be provided: 1. push button (Go/No Go) confidence tests to validate the basic functionality of the unit; 2. manually run tests to de detailed analysis of the functionality or performance of the unit.

To test the Tomography Engine boards, a special jig will be supplied that includes power supplies and cables, clock generators and speed selection, monitoring and <u>cooling</u>.

Ver 1.3 18 July, 2009

Figure 23 RTC Test Bench

13. General Requirements for System Components (HW and SW)

13.1 All Components

13.1.1 Acceptance Testing

All components must have an established acceptance test requirement as part of their individual design package.

13.1.2 Long Term Maintenance Plan

The cost of ownership of a complex system such as the NGAO RTC is significant and may exceed the acquisition cost over time. A clear plan must be in place for any custom hardware or software that will describe how the product will be maintained over time. This must include:

- 1. Types of personnel required for various levels of maintenance including upgrades, feature additions, or bug fixes; i.e., what tasks would it be expected for astronomers, telescope technicians, software or hardware staff
- 2. A maintenance agreement must be included by the vendor that covers the delivered product for bug fixes for a minimum of 1 year after acceptance.

13.1.3 Software, Material and Documentation Control

All elements of the system are revision controlled with CVS or a functional equivalent.

13.1.4 Spares

13.1.5 Panel Retention

All panels shall be held in place with self-retaining screws.

13.2 Custom Components

Custom components include systems that are built from an aggregate of standard components, but combined into a custom configuration.

13.2.1 Documentation and Training

These products will need a variety of levels of documentation and training targeted at different audiences:

13.2.1.1 Operator Manuals

13.2.1.2 Diagnosis of Problems

13.2.1.2.1 Development of New Features

13.2.2 Diagnostics Capability

Each board must have the ability to have a minimum set of diagnostics performed on it while in the system and operating normally. The following are required for all boards. Requirements for specific board types are specified in their section.

13.2.2.1 Software Module Identification

All software modules must contain a revision number and build date that can be queried during diagnostics to track currently installed module revisions. This applies to each module in any compiled unit and any .DLL or .so, which is a custom piece of code.

Further, any executable must have a command that can be given during diagnostics that will list the information recursively for **all** such modules with which it is built or to which it is linked.

13.2.2.2 Board ID, S/N, location reporting

13.2.2.2.1 Board ID

13.2.2.2.2 S/N

13.2.2.2.3 Location

If there are multiple identical board of identical types installed (i.e., Tomography boards or WFS boards) there must be a means of identifying in which position the board sits in the arrangement of identical boards. To insure that it this cannot be incorrectly set, this should be set automatically by its position in the installation.

13.2.2.3 Power supply monitoring

Sampling rate, sample depth, trigger capabilities, threshold capabilities.

13.2.2.4 Clock monitoring

Clock monitors

13.2.3 Trouble shooting capability

Basic trouble shooting procedures will need to be performed occasionally: voltage or waveform viewing with a meter or scope,

If an extender is to be used to perform these operations, the operation of the board in a system during normal operations must be demonstrated using such an extender.

13.2.4 Cable Attachment Verification

Cables and connectors should be designed in such a manner that a device at one end can determine whether the cable is plugged in to the receptacle at the other end.

Circuitry will be included in each board for each cable to perform this analysis and report its result during diagnostics.

Note: If this feature cannot be implemented, then this requirement must be specifically waived for the specific board type and connector in question.

13.2.5 Temperature

14. Power Distribution, Environment and Cooling

Power to the various sub-systems will be controlled by a networked power control system such as a Pulizzi. These are controlled by commands through the CP by the AO Control. The power to the CP and the Disk Sub-System will be controlled directly by the AO Control.

Figure 24 shows the power control for the RTC.

Figure 24 Power Distribution

- 14.2 **WFS**
- 14.3 Tomography Engine

^{14.1} Power Sequencing

14.3.1 FPGA Power Dissipation

The majority of the power dissipated by the tomography engine is in the FPGA's. There will be approximately 150 FPGAs, each dissipating a maximum of approximately 15 Watts for a total of 2.25 KW.

14.3.1.1 Sample Chip and Configuration

The initial evaluation of the FPGA design was based on the following estimated parameters in **Table 9**:

MAKE THIS A LINK

Item	Value	Comment
Chip:	VSX95T	
System Clock:	100 MHz	
LVDS Clock:	600 MHz	
Sub apertures per chip:	100 (4 sub apertures per PE)	
Process Parameters	Nominal	
Ambient Air Temp	30° C	
Air Flow	250 LFPM (moderate air	
	flow)	
Heat Sink	High Profile (I like cool	
	junctions)	
Junction Temp (θJ)	52° C (Nice)	
I/O utilization:	100%	
DSP-48 Mult/Acc	40%	
utilization		
Logic utilization	56%	

 Table 9
 Preliminary FPGA Power Dissipation Analysis

14.3.1.2 Initial Power Estimates per Chip

It results of the preliminary power estimate per chip was a worst case of < 15 Watts.

14.3.2 Tomography Engine Cooling

The initial results of the pre-design power estimator tool look good. We are not pushing any limits yet. No exotic cooling requirements seem indicated. A more detailed examination will be done later with a sample design actually synthesized and routed into a chip.

14.4 DM command Generation

14.5 Disk Sub-System

14.6 Control Processor (CP)

14.7 Environment

14.8 Power and Cooling Requirements

15. Documentation

16. Other Hardware and Software not Otherwise Covered

- 16.1 Internal Networking
- 16.2 Shutters
- 16.3 Laser fiber In/Out actuators
- 16.4 Laser On/Off and intensity
- 16.5 Filter wheel operation
- 16.6 Interlocks

16.7 Inter-Unit Cables

Cables between units must provide the ability to verify the physical connection has been made between both units from a remote location. An example would be a loopback pair in the cable with a permanent jumper between the pins on the connector. Other methods can be used, but the requirement is a direct method to insure connectivity from a remote location.

17. Appendices

Appendix A Glossary

Item	Description
Junction Temperature	
Container/component	
СР	Control Processor
Pipelined	
MTBR	Mean Time Before Repair
MTBF	Mean Time Between Failures
Camera Link™	
Centroid	
DAC	Digital to Analog Converter
DM	Deformable Mirror
FPGA	Field Programmable Gate Array
GPU	
HOWFS	High Order Wave Front Sensor
Latency	
LGS	Laser Guide Star
LOWFS	Low Order Wave Front Sensor
LVDS	Low Voltage Differential Signaling
NGS	Natural Guide Star
RTC	Real Time Computer
Tip/Tilt Mirror	
Tomography	
WFS	Wave Front Sensor
Appendix BTime-related keywords in Keck Observatory FITS files[2]

As an overview of the time-related keywords found in FITS files from the optical instruments at Keck Observatory please, see this <u>computer-generated documentary list</u>.

The two meanings of "keyword" at Keck

In the subsequent discussion, it is important to distinguish between KTL keywords and FITS keywords.

KTL keywords are obtained by interprocess (and often inter-machine) communication when a client process indicates interest. The values of the KTL keywords communicate information about the state of the various subsystems of the Keck telescopes and instruments. Depending on the nature of the quantity described by the keyword it may be continuously varying during an observation or it may never change. Each KTL keyword is associated with a "service" that corresponds to some subsystem of the operations at Keck. Some KTL services are the responsibility of the Keck staff and describe observatory-wide systems (e.g., DCS describes the telescope pointing and dome, ACS describes the primary mirror). Other KTL services are associated with the particular instrument (e.g., CCD subsystems, motor control subsystems, etc.).

FITS keywords are recorded in the headers of the files, which are produced by the instrument systems when they obtain an image. In many cases, there is a one-to-one correspondence between KTL keywords and FITS keywords. There are, however, a number of FITS keywords inserted into every image that do not correspond to any KTL keyword. There can also be FITS keywords, which correspond to KTL keywords, but where the FITS keyword name does not match the KTL keyword.

Finally, it is relevant to note that the FITS DATE keyword indicates a time stamp related to the construction of the FITS file itself. There should be no expectation that the value of the FITS DATE keyword is related to the time at which the data in the FITS file were acquired.

Historical review of Keck timing keyword systems

During the development of the keyword handling systems at Keck Observatory, there was no requirement for a method of obtaining a precise time stamp. None of the specifications for the initial optical instruments at Keck (HIRES, LRIS, ESI, DEIMOS) included any requirements for precise timing. As a result, the ability of these instruments at Keck to indicate the time for any exposure-related event is haphazard.

The Keck telescope pointing control system (DCS) uses commercial GPS receivers as the time base. The time provided by these receivers has experienced "interesting" events during the GPS W1K rollover in 1999 and during theater-level GPS jamming experiments conducted by DoD. It is not clear what the DCS system reports during a leap second. Other than in these exceptional conditions, the time base used by DCS is relatively reliable.

Any of the Keck instruments is able to ask DCS for its current values of its timing keywords. Most notable among these KTL keywords are DATE-OBS, UTC, and MJD. Reading the KTL DATE-OBS keyword from DCS provides a FITS Y2K-agreement-compliant value of the calendar date according to Coordinated Universal Time. Reading the KTL UTC keyword from DCS provides a sexagesimal character string representation of the value of Coordinated Universal Time. It is important to note that these are two separate keywords. It is not possible to request both keywords simultaneously, nor to receive values, which are guaranteed to refer to the same instant. As a result, it is possible that around 0 hours UTC the values of the KTL DATE-OBS and UTC keywords from DCS can refer to different calendar days -- thus resulting in a one-day discrepancy in the available notion of the time. (Given that 0 hours UTC occurs around mid-day in Hawaii this will probably never be an issue for observational data.)

The manner by which DCS can be queried for date and time is a KTL keyword request. In the current scheme, the KTL keyword read generates a EPICS request that is sent over the network to the DCS systems. After that request is received and processed in DCS the resulting value is sent back over the network to the KTL requestor. The design of the system provides no guarantees about how long this round trip takes. Under normal circumstances the response to the KTL read is received within a small fraction of a second, but under adverse circumstances the DCS system has been observed to take as long as 30 seconds. In these adverse circumstances, it is not clear how to ascertain what point in the transaction is represented by the time value.

Gathering the time-related keywords at Keck

The initial optical instruments at Keck (HIRES, LRIS, ESI, DEIMOS) monitor the sequence of events of an exposure using a process named watch_ccd. The watch_ccd process is responsible for gathering most of the KTL keywords, which will be written, into the FITS file along with the image data of an exposure. The watch_ccd process has a list of KTL keywords, which indicates when each keyword should be gathered during the exposure sequence. The three points during the exposure are erase, shutter open, and shutter close.

In these instruments, the computer, which has command of the CCD, is called the CCD crate. The CCD crate issues signals to the CCD controller to initiate all operations of the CCD electronics and the shutter. When the CCD crate issues exposure-related signals to the CCD controller, it also transmits a MUSIC broadcast message to the traffic process. The traffic process then re-transmits that MUSIC broadcast message to every other process, one of which is watch_ccd. Each of these hops between processes on the network takes time.

When watch_ccd receives an exposure-related event it proceeds to issue KTL read requests for each of the keywords whose value is desired at that event. These KTL read requests are issued sequentially. Each request must complete before the next KTL read is done. A successful KTL read involves a round trip between watch_ccd and the system(s), which know(s) the value(s) of each keyword. Usually each KTL read succeeds in a small fraction of a second, but under adverse circumstances, the servers for the keywords may respond slowly, or not respond at all.

Each KTL keyword read has a timeout. If the server does not respond within that timeout a KTL read will fail, and watch_ccd will proceed to read the next keyword in its list. There are often

dozens, even hundreds of keywords in the lists that watch_ccd has to acquire. The total time to gather the keywords, even under ideal circumstances can be several seconds, and under adverse circumstances, it has been monitored to be as many as 30 seconds or more. If the delay is long then the values of the KTL DATE-OBS and (more importantly) UTC keywords from DCS may not bear much relation to the instant at which the shutter events happened.

Strategies employed to get the best possible time stamps

These issues regarding the validity of the time-related keywords came to the attention of the UCO/Lick Scientific Programming Group during the retrofit, which added the exposure meter to HIRES. Starting with that deployment the CCD readout software has been tailored to provide the best possible indication of event times given the constraints of systems, which were not specified with that as a design requirement. These principles are now in use with HIRES and DEIMOS. They will be applied to LRIS during the Red Mosaic upgrade.

The first remedy was to carefully arrange the order of the keywords in the lists provided to watch_ccd. In the more recent deployments, the list has the KTL uTC keyword as the first in the list. There can be no quicker way of getting that keyword from DCS.

Another remedy was to enhance watch_ccd to distribute the keyword collection over three events rather than two. Initially the keywords were only gathered in response to shutter open and shutter close. Those lists were rather large, and not optimally arranged. In the more recent versions of watch_ccd, it is possible to gather keywords in response to the initiation of the erase of the CCD prior to opening the shutter. The objective is to gather keywords whose value tends not to change during erase, and thus reduce the length of the lists of keywords desired at shutter open and shutter close.

Another remedy was to enhance watch_ccd to be able to rename a KTL keyword when writing it to the FITS file. This renaming is often done when it is desired to sample the value of a KTL keyword more than once during an observation. In the case of HIRES the KTL UTC and DATE-OBS keywords are read in response to both shutter open and shutter close. For shutter open, they are written to the FITS file with the same name, and for shutter close, they are written to the FITS file with the names UTC-END and DATE-END. This has been in use for all instruments deployed or upgraded since the HIRES exposure meter. (Note that in the unusual case of an exposure very near to 0 h UTC the combination of all four of these keywords can probably be used to ascertain whether the pair of keywords for one of the shutter events may have straddled the day boundary.)

The most definitive remedy was to create an independent method for watch_ccd to give some indication of the times of the shutter events. In recent versions when watch_ccd receives the shutter events, it immediately queries the system to get the UNIX system time. The values of these queries are inserted into the KTL keywords DATE_BEG (for shutter open) and DATE_END (for shutter close). These keywords are only as precise as one second. Furthermore, these keywords rely on the UNIX system clock being set correctly. In normal operation, the Keck systems should be using NTP to keep their clocks on time, but this is not guaranteed.

Interpretation of time keywords in Keck FITS files

In any instrument, which supplies the FITS DATE_BEG and DATE_END keywords along with the UTC and UTC-END keywords, it is prudent to inspect their values. If the various subsystems were operating nominally then the keywords for shutter open will be in reasonable agreement, as will the keywords for shutter close. Furthermore, the difference between the times of shutter close and shutter open should be in reasonable agreement with the various keywords that indicate the duration of the exposure. If all of these agree, then their values are probably reliable. If they do not agree, then their discrepancies give some indication of how unreliable the time stamps may be.

Appendix C Wavefront Error Calculations Due to Latency

Appendix D Split Tomography Issues

<u>Appendix E</u>

System Synchronization

Appendix F RTC Sensors and Actuators

Ver 1.1	1 Sept, 2009		NGAO C	urrent Targe	t Design							
	WFS	DM	LOWFS	OWFS Tip/Tilt								
Element	Cameras	Size (K)	Cameras	Mirrors	Actuators	Comments						
LOWFS 1*	N/A	1024	1	1	N/A	LOWFS DMs get their wavefront correction from the POS WFS						
LOWFS 2 *	N/A	1024	1	1	N/A	LOWFS stars are at 2am to preserve sky coverage.						
LOWFS 3 *	N/A	1024	1	1	N/A	LOWFS get their T/T from the LOWFS, not a LGS						
PAS 1 **	128x128	N/A	N/A	1	N/A	Point and Shoot LGSs are used only for correcting the						
PAS 2 **	128x128	N/A	N/A	1	N/A	wavefront of their LOWFS star, not for tomography						
PAS 3 **	128x128	N/A	N/A	1	N/A							
Tomog 1	256x256	N/A	N/A	1	N/A							
Tomog 2	256x256	N/A	N/A	1	N/A							
Tomog 3	256x256	N/A	N/A	1	N/A							
Tomog 4	256x256	N/A	N/A	1	N/A							
Woofer	N/A	400	N/A	0	1	Woofer T/T value is calculated from the on-axis						
						tomography						
MOAO 1	N/A	4096	N/A	0	N/A	Woofer will serve as T/T for the central science object						
MOAO 2	N/A	(1K)	N/A	(1)	N/A	MOAO T/T values are calculated from off-axis tomography						
MOAO 3	N/A	(1K)	N/A	(1)	N/A							
MOAO 4	N/A	(1K)	N/A	(1)	N/A							
MOAO 5	N/A	(1K)	N/A	(1)	N/A							
MOAO 6	N/A	(1K)	N/A	(1)	N/A							
MOAO 7	N/A	(1K)	N/A	(1)	N/A							
Totals	7	5	3	10	1							
() Indicates possible future expansion												
MOAO 2 - 7 may not be installed in initial configuration, but the RTC must be able to handle them, if and												
when the	y are installe	d, while still	meeting the	PRD require	ments: 2KHz	, etc.						
* What size a	are the T/T an	d Truth came	eras?									

** T/T mirrors for the LOWFS LGS get their value from their LOWFS LGS, not their LOWFS star

*** T/T mirrors for the HOWFS get their values from their HOWFS, not from tomography

Table 10 List of sensors and actuators connected to the RTC

<u>Appendix G</u>

Tomography Array Size and Cost Estimate

			Estimate of the Tomography Engine Array Size and Cost															
					(Cost does not include power supplies, fans, rack, etc.)													
Wd Size (bits)	PE Clock Speed (MHz)	Req. bit Rate per Voxel (Gb)	LVDS Xfer Rate (Mb)		LVDS Ports Needed per Voxel	Array Size (per side)	Layers	Number of Chips per Board 9										22 July, 2009 ver 1.5
10	100	1.00	000											<u> </u>				101 215
	DSP-48s	DSP-48s	I/O Pins Avail per	I/O Not Used per	I/O Pins Avail. per	LVDS Ports Avail.	GTP		Max. Voxels	Data Rate Needed Per Face	Sub Aps per chip (5 layers, 1 Voxel per	Sub Aps per chip (5 layers, 4 Voxels per	Total	Number of	Est. Cost per	Dist Cost for	Total Chip Cost	Total Array
Chip	Avail.	Req.	Chip	Chip	Face	per Face	(3Mb)	GTX (5Mb)	per Face	(Gb)	PE)	PE)	Chips	Boards	Board (\$)	1 chip (\$)	(\$K)	Cost (K\$)
VSX35T	192	90	360	0	90	45	8	0	15	27	9	36	245	28	\$1,500	\$500	\$123	\$165
VSX50T	288	160	480	0	120	60	12	0	20	36	16	64	144	17	\$1,500	\$1,000	\$144	\$170
VSX95T	640	250	640	40	160	80	16	0	26	46.8	25	100	96	11	\$1,500	\$3,000	\$288	\$305
VSX2401	1,056	640	960	0	240	120	24	0	40	12	64	256	42	5	\$1,500	\$14,100	\$592	\$600
VEX100T	256	250	680	80	170	95	0	16	29	50.4	25	100	96	11	\$1 500	\$2,200	\$221	\$227
VFX100T	256	250	680	80	170	85	0	20	28	50.4	25	100	96	11	\$1,500	\$4,050	\$389	\$405
VFX200T	320	N/A	840	0	210	105	0	24	35	63	49	196	53	6	\$1,500	\$7,700	\$408	\$417
							-								+_,	<i></i>		, , , ,
Wd Size PE PE Clock Speed Req. bit Rate per Voxel LVDS Xfer Rate LVDS Ports Needed per Voxel Array Size Layers Number of Chips per Board Chip DSP-48s Avail. DSP-48s Req. L/Os L/Os per Face LVDS Ports Avail. per Face LOS Per Savel					We use 18 bits per word and we want to transfer 1 word per clock													
GTP/GTX Voxels per	Face				Ignore How many voxels will fit, given the "Ports Avail. per Face" and "PortsNeeded per Voxel" Each chip is a cube that is "Sub Apertures" x "Sub Apertures" at the base and "Layers" high. So, each x and y face of the cube (chip) has Sub Apertures x Layers number of voxels needing to connect to the next chip Each chip is a cube that is "Sub Apertures" at the base and "Layers" high.													
Data Rate Needed per Face					Given the "	Voxels pe	r Face" and	the "Rea. Ra	ate per Vox	el" what is t	he required	data rate nee	eded ner f	ace?	μηρ			
Sub Aps per chip (5 layers, 8KHz)				Given "Vox	els per Fa	ce" and "La	yers" how m	any sub ape	ertures wou	ld fit in this	chip at 1 proc	essing ele	ement per vo	kel				
Sub Aps per chip (5 Layers 2KHz)					If we shared one processing element among 4 voxels, how many sub apertures would fit in this chip?													
Total Chips					Given the "Array Size" and the "Sub Aps (2KHz)", how many chips will we need?													
Number of Est. Cost pe Dist Cost fo	Boards r board r 1 chip				Number of Estimated of Catalog priv	boards ne cost of one ce for 1 chi	eded giver board not p from a di	the "Numbe including the stributor	er of Chips e above chi	per Board" a ps.	ind "Total Ch	nips"						
Total Chip C	Cost				Cost of the	chips in th	e array bas	ed on the "D	ist Cost"									
Total Array	Cost				Total array	cost with o	hips and b	oards										

Table 11 Estimate of the Tomography Engine Array Size and Cost

18. References

- 1 Kak, TOMOGRAPHY
- 2 Steve Allen, <u>http://www.ucolick.org/~sla/fits/kecktime.html</u>, Jan 28, 2009

PAGEREF