3 months on AO PSF reconstruction (PSF-R) with Altair/Gemini and Keck-AO

lessons learned so far

Laurent Jolissaint Julian Christou Peter Wizinowich Eline Tolstoy aquilAOptics, Switzerland Gemini Observatory W. M. Keck Observatory Kapteyn Inst. Netherlands

SPIE astronomical instrumentation 2010

with the help of

Jean-Pierre Véran, HIA/NRC Al Conrad, W. M. Keck Observatory Chris Neyman, W. M. Keck Observatory

and

Ralf Flicker

outline

- why we need PSF reconstruction
- recall Jean-Pierre Véran method
- project OPERA goal
- first results on ALTAIR/GEMINI
- the future of PSF-R on multi (L)GS/DM systems

needs for PSF-R in AO

applications

- AO astronomical data reduction
- AO system performance diagnostic

needs for PSF-R in AO

NIRC2 @ Keck NGS AO K' band - crowded young star clusters - 30 minutes exposures courtesy Jessica Lu (Caltech)

Jean-Pierre Véran (JPV) method

- J.-P.Véran et al. JOSA A, 14, 1997
- the JPV method concept:
 - WFS measures the residual wavefront error
 - keep these WFS measurements and reconstruct the long exposure PSF
- developed for single, bright NGS, on-axis
- successfully tested on PUEO/CFHT in 1997
- JPV method can be in principle adapted to any AO mode (to be confirmed/discussed)

$$\mathrm{PSF}_{\mathrm{system}}(\vec{\alpha}) = \mathcal{F}\{\mathrm{OTF}_{\mathrm{system}}(\vec{\nu})\}$$

 $\mathrm{OTF}_{\mathrm{system}}(\vec{\nu}) \approx \mathrm{OTF}_{\mathrm{telescope}}(\vec{\nu}) \times \mathrm{OTF}_{\mathrm{AO}}(\vec{\nu})$

Jean-Pierre Véran (JPV) method

$$\begin{array}{l} \operatorname{OTF}_{\operatorname{AO}}(\vec{\nu}) = \exp[-(1/2)D_{\varphi}(\lambda\vec{\nu})] \\ \\ \mbox{structure} & D_{\varphi}(\vec{\rho}) = \sum_{i,j=1}^{N} \langle \epsilon_{i}\epsilon_{j} \rangle \frac{U_{i,j}(\vec{\rho})}{U_{i,j}(\vec{\rho})} + \frac{D_{\varphi}(\vec{\rho})_{[\text{high order}]}}{D_{\varphi}(\vec{\rho})_{[\text{high order}]}} \\ \\ & U_{i,j}(\vec{\rho}) \sim \text{spatial covariance DM modes } M_{i} \& M_{j} \\ \\ \\ & \frac{\operatorname{residual modes}}{\operatorname{coefficients}} & \langle \epsilon_{i}\epsilon_{j} \rangle = \frac{R\langle \omega_{i}\omega_{j} \rangle R^{t}}{P} + \langle \alpha_{i}\alpha_{j} \rangle \quad \mbox{wFS aliasing} \\ \\ & \operatorname{covariance} & \operatorname{changes with AO run} \\ \end{array} \\ \\ \hline \\ & \operatorname{System model}(\operatorname{modes}, \operatorname{WFS}) - \operatorname{static} \\ \hline \\ & \operatorname{Turbulence}(r_{0}, L_{0}) \text{ and modes} \\ \end{array}$$

recent improvements

- diagonalize the modes covariance matrix (E. Gendron)
- direct computation of overall OTF is possible (R. Flicker)

•
$$M_i M_j = \sum_k a_k M_k$$
 with exp(-D/2)=I-D/2+(D/2)^2...

this minimize the non-stationarity issue (L. Jolissaint) WIP

previous PSF-R projects, reasons for failures

- JPV implemented successfully on PUEO/CFHT (1997)
- since then, several (~6) projects, no real success, why ?
 - I. PSF-R tools <u>never</u> finalized as reliable service to observer
 - 2. lack of human resources (HR for AO dev, PSF-R low priority)
 - 3. not enough access to telescope time
 - 4. impossible to modify AO control code to implement telemetry
 - 5. accessible telemetry only partial (variances instead of covariance matrices)...
- this makes no sense: we build complex & costly AO system but AO data reduction is limited by uncertainties in PSF knowledge

OPERA project goals (2011)

- OPERA is a PSF-R code for Altair (Jolissaint+Veran 2003)
- Project GOAL: implement PSF-R for good, simplest case
 - ★ on-axis, bright NGS
 - ★ SH-WFS system
- finalize the tool as a service to the observer
- NO new theoretical developments: finish the job first !
- THEN, we can move on to
 - \star dim guide stars
 - ★ off-axis NGS (Britton, PASP 118, 2006)
 - ★ laser systems, multiple GS
 - ★ tomography, multiple DMs

OPERA project for ALTAIR/Gemini-N

ALTAIR NGS mode

- telemetry data is operational and COMPLETE
- OPERA tested successfully only ONCE on ALTAIR / lab
- ALTAIR does not perform as expected a risk for PSF-R
- Julian Christou at Gemini now testing ALTAIR (see paper at this conference: ALTAIR performance and updates at Gemini North)
 - ★ lots of bright NGS data available
 - \star easy access to telescope time
- apply OPERA on sky data, test the code, debug, finalize

OPERA project for Keck AO

Keck AO PSF-R project - CfAO funded

- critical to have another AO system + telescope
- people in charge of project not here anymore
- implement/continue the work of Ralf Flicker
- zonal control, JPV model so far is modal (requires dev)
- telemetry data acquisition functional and COMPLETE
- finalizing PSF-R for NGS mode, with user-oriented tool

OPERA-ALTAIR laboratory results - 2003

- we actually had the chance to test OPERA on Altair without all the troubles of a real telescope (lab, 2003)
- optical turbulence generator
- experience showed that algorithm was
 - (1) working smoothly
 - (2) reproduce *reasonably* well the actual PSF

OPERA-ALTAIR laboratory results - 2003

first step: estimate Fried parameter ro

OPERA-ALTAIR laboratory results - 2003

second step: structure functions & OTF

• H-band Strehl: 12.5% instead of 15% (about 350 nm WFE)

- known that JPV method pessimistic for low Strehl conditions
- 20% error not great but OK for 1st run
 - NIRI Strehl estimate was uncertain, "telescope" OTF not really known...

- 20 nights December 2009
- bright NGS (mV<8)
- 60 seconds exposure
- loop full speed at 1 kHz

seeing and outer scale estimate

fit DM modes variances to von Karman model (r0, L0)

compatible with median seeing & L0 at Mauna Kea

variances of the residual modes (post-AO)

- systematic excess for certain modes the ones in $\rho^m \cos{(m\theta)}$
- tilt excess ? (extrapolated red line)
- special nights:
 - Dec 16: higher than usual tilt
 - Dec 18: bad seeing (wo 1.4")
- no problem if not pure Kolmogorov

measured tilt RMS and reconstructed PSF FWHM excess

- excellent agreement WFS tilt & PSF fwhm
 - <u>PSF-R works well for tip-tilt (critical)</u>
- tilt RMS 10 to 18 masec (med 14 masec)
 - compatible with Christou's data
- tilt-based Strehl (K-band) is 71%
 - what would be the minimal tilt w/o telescope/instrument vibrations?
- nights dec 16 & dec 18:
 - excess of 1.6 masec due to higher orders

sqrt(PSF)

- S(opera) = S(niri) + X(?)
 - I was expecting a product
- at least some correlation
- dec 16: tilt dominates other errors: good reconstruction of core

measured tilt RMS and REAL PSF FWHM excess

- FWHM excess on REAL PSF is twice what we expect from WFS measurements
- post-AO vibrations ? NCPA vibrations ?

a typical NIRI PSF (the wings only)

nothing to do with the reconstructed PSF ...

wings populated with residual speckles and/<u>or</u> permanent ones ?

- I had no clue on telescope+instrument PSF so had to assume perfect ones (no telescope WFE)
- there <u>ARE</u> telescope errors:
 - low orders partially corrected by AO
 - high orders uncorrected
- there <u>ARE</u> instrument errors & NCPA:
 - not corrected at all or generated by AO
- JPV method as it is now treats <u>only turbulent</u> <u>aberrations</u>

- we need to add the telescope and NCPA errors into JPV model
- we have a model for the telescope errors based on the same approach as JPV (covariance of modes):

Analytical modeling of the optical transfer function of a

- good for Keck AO
 <u>segmented</u> telescope with/without adaptive optics correction of the telescope's dynamical aberrations;
 Jolissaint, Ellerbroek, Angeli SPIE 6271, 2006
 - telescope errors need to be calibrated/measured
 ★ can we identify these into the WFS measurements ?
 - NCPA: independent measurement, then implement into code.

AO correction of dynamic & static telescope errors

open the bracket

- Inputs are
 - Segment modes FT (pre-computed, cst.)
 - Aberrations covariance segment-to-segment & modes-to-modes
- 1) Apply AO filter on modes Fourier Transforms (AO mode on)
- 2) FT{Structure function} ~ sum (covariance * FT{Modes})

$$\begin{aligned} FT[numerator \,\overline{D}(\lambda \,\vec{f})] &= \\ 2\,\widetilde{P}(\vec{v}) \sum_{k,l=1}^{Nm} i^{p_{k,l}} FT[M_k(\vec{r})M_l(\vec{r})] \sum_{i=1}^{Ns} \gamma_{i,k;i,l} \cos(2\pi \,\vec{v} \cdot \vec{r}_i + p_{k,l}\pi/2) \\ &- 2\sum_{i,j}^{Ns} \sum_{k,l}^{Nm} \gamma_{i,k;j,l} \widetilde{M}_k^*(\vec{v}) \,\widetilde{M}_l(\vec{v}) \exp[i2\pi \,\vec{v} \cdot (\vec{r}_i - \vec{r}_j)] \end{aligned}$$

Cosine wave across the mirror (here 37 seg):

$$W(\vec{r},t) = A \cos(\vec{k}\,\vec{r} - \omega t)$$

NOT TMT pupil (37 segments, Keck-like example)

TMT.SEN.PRE.06.024.REL01

close the bracket

• it is important to realize that PSF-R objective is not to debug the AO system but to reproduce what is seen on the focal plane, <u>no matter what</u>

 if unwanted errors cannot be controlled but can at least be modeled, that's already a good point for AO data reduction

Gemini telescope M2 print-through the big offender a typical (annoying) telescope error

acquisition camera image of a very bright star, which display a ghost image (heavily defocused) courtesy JPVéran

detected at the manufacturer premises <u>but WFE was within specs</u> measured: 17 nm RMS, 389 nm P2V

J-PVéran (2003) analysis Output ALTAIR static map RMS 55-80 nm P2V 350-540 nm This is high spatial frequency stuff, above ALTAIR WFS capacity (12-by-12 SH)

appr. 100 nm RMS of high order WFE

appr. 30-150 nm RMS median 80 nm of low order WFE from WFS aliasing

equivalent K-Strehl 70%

not accounted for in our PSF-R model (I will not wait too long...)

KECK-AO PSF - a diversity of cases...

0.1 seconds exposure K' filter

tip-tilt only 30 seconds

TT + DM 30 seconds dim NGS

- short exposure
- tip-tilt only
- dim NGS star (low bandwidth) NONE of these cases covered yet... while these are frequent observing conditions

the old way

- I. build a telescope
- 2. add an AO system
- 3. hire a postdoc to do the PSF-R

- hidden aberrations from telescope + others
- telemetry can be difficult
- cannot modify control software (where is the doc?)
- cannot measure WFE <u>where</u> we need it
- not enough access to telescope time if high pressure

postdoc forced to play WFE detective... no fun

the current way

- I. build a telescope with AO specs
- 2. hire a postdoc to do the PSF-R

- might need to improve/implement telemetry (data storage, pre-processing...)
- is calibration really understood/efficient ?
- can we modify the control software ?
- ... can I get telescope time ?

probably better though...

the best way

- I. build a telescope with AO specs and include everything (software, hardware, telescope time) needed to do and finalize the PSF-R
- 2. hire a postdoc

now that sounds right

in any case: this is mandatory now as astronomers are specifically requesting PSF-R for ELTs

- but would this ideal case be sufficient ? not sure ...
 - ★ Keck NGS: 7 entries in the WFE budget
 - ★ Keck LGS: ~ 12 entries
 - ★ ATLAS/E-ELT (LTAO): ~ 16 entries
 - ★ NFIRAOS/TMT (MCAO): > 20 entries
- are we going to build a JPV-like model for <u>all these errors</u> ? not looking good...

Other alternatives for PSF-R

(I) AO seen as a black box:

a dedicated PSF calibration source at the system input(s) + a dedicated PSF detector or WFS at the system output(s) no model assumption, we take everything

(2) poor man's PSF-R:

PSF modeling using Fourier models, feed by AO system parameters and measured turbulence parameters - excellent match in GLAO

to conclude...

- we believe JPV method works well but needs an update with telescope errors and NCPA
- PSF-R at Gemini-N / Altair on its way
- PSF-R at Keck has just started
- importance of including PSF-R at the <u>beginning</u> of AO system planning to ensure success
- we can start developing PSF-R theory for LTAO/ MCAO/MOAO but keep an eye on NGS mode projects on real telescope environment
- exploring back-up solutions critical, start now