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Abstract

An overview of low-order errors in LGS-based multi-beacon tomography AO is given. The effects of tilt aniso-
planatism and quadratic mode tomography error are analyzed separately, and compensation strategies evaluated
numerically. Quadratic tomography error on-axis can be as large as 50 nm if insufficient NGS null-mode correction
is supplied.

1 Introduction

A number of studies have given this phenomenon the treatment previously, such as e.g. Ellerbroek & Rigaut, 2001[2];
Flicker, Rigaut & Ellerbroek, 2003[4]; and Clare & Ellerbroek, 2006[1]. The analysis and results presented in this
brief text is meant chiefly to complement those studies by clarifying some fundamental properties that are relevant
to the NGAO design and architectural choices.

1.1 Overview

The employment of laser guide stars (LGS) for adaptive optics (AO) can offer a greater sky coverage than natural
guide star (NGS) AO, but it comes at the expense of a focal anisoplanatism (cone effect) error. Furthermore,
because of the tilt determination problem with LGS, the global tip and tilt (TT) modes must be filtered from LGS
measurements: TT are forced to be “null-modes” of the LGS AO system (they map to the null space of the LGS
interaction matrix). This leads to an additional tilt anisoplanatism error, induced by the necessity to use an off-axis
NGS for TT compensation when the science target is not bright enough or too extended to be used itself for TT
sensing. The cone effect error on an individual LGS can be countered by using multiple LGS and a tomographic
wavefront reconstruction technique, in order to estimate the refractive index fluctuations in the volume probed by the
beams. The fidelity of the tomographic estimation will be the highest where the beams overlap and the redundancy
of WFS measurements is high. While a single LGS only has two null-modes that can be measured with a single TT
NGS, the consequences of filtering TT from a multi-LGS tomography system are twofold:

1. Additional null-modes are created that produce off-axis tilt anisoplanatism. The null-modes depend on the
geometry of the LGS asterism.

2. The estimation of quadratic modes from LGS will be biased by the cone effect, and produce an additional
tomography error. This error is independent of the number and positions of LGS (see Sect. 1.2).

It should be pointed out that either or both of these effects could be (partly) solved by using LGS that provide TT
information (e.g. polychromatic LGS), or by using LGS at different ranges (e.g. combining Sodium and Rayleigh
beacons). The problem will be addressed here by instead allowing the NGS to measure and correct more modes.

The tilt anisoplanatism null-modes of item (1) can be visualized as combinations of modes with opposite signs
occurring at different heights in the atmosphere. Their modal content are constructed such that all terms of quadratic
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Figure 1: Illustration of the toy problem – schematic of a one-dimensional phase screen, and sensing with multiple LGS.

order or higher cancel out when probed by the LGS, leaving only constant and linear terms (i.e. piston and tip/tilt)
in each LGS beam, resulting in a null measurement when TT is filtered. In theory, an infinite number of these modes
exist, but by virtue of the steep slope of the Kolmogorov power spectrum, most of the power is contained within
the first few low-order null-modes created by combinations of quadratic and cubic modes. How many of these tilt
anisoplanatism null-modes one wants to measure and correct will determine how many measurements the NGS are
required to provide. To correct up to second-order null-modes, only three TT NGS are required. For third-order
null-modes, more TT NGS or a combination of TT NGS and TT+focus+astigmatism (TTFA) NGS are required.

The quadratic tomography error of item (2) is expected to be smaller than the tilt anisoplanatism and essentially
field-independent, but it can contribute a substantial error on-axis if not corrected for. The error comes about
as in the special case of quadratic modes, no more information is obtained by employing multiple LGS beacons
than is given by a single LGS, and hence the cone effect persists for these three modes. The solution is again to
invoke more and/or higher-order measurements from NGS. A NGS-based null-mode compensation system designed
to compensate at least the quadratic tilt anisoplanatism null-modes, will automatically also include correction of
the quadratic tomography error. However, the main point that is stressed here is that even if one does not require
multiple or quadratic NGS for tilt anisoplanatism correction off-axis (in e.g. an on-axis science case), this fidelity of
NGS measurements is still needed for correcting the quadratic tomography error on-axis.

1.2 A toy problem

This toy problem is an extreme simplification only to illustrate some of the effects involved. This is an old analysis
in a slightly modified context. The original discussion is given by Ellerbroek and Rigaut[2]. See some of the same
information in Lloyd-Hart and Milton[5].

Consider one dimensional telescope, coordinates in the aperture are x. The vertical extent of the atmosphere is
described by coordinate h. The atmosphere is composed of only a single thin phase screen at distance, h, above the
telescope aperture, see Fig. 1 for a diagram. The screen is assumed to only contain a focus aberration described by

s = ax2. (1)

In all that follows we assume geometrical optics, and use the standard summation over phase screens for propagation
through the atmosphere. For an NGS source on axis the wavefront phase measured at the aperture will be

ϕn(0) = s(x) = ax2. (2)

Similarly for an off-axis source, denoted by, θ, the wavefront phase at the aperture will be

ϕn(θ) = s(x + hθ) = a(x2 + 2xhθ + h2θ2). (3)
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The last term in the expansion is a constant (piston) term in the wavefront and is not usually measured (I do not
consider interferometry). The term linear in x is a tilt term, as I move off axis the amount of tilt in the wavefront
increases. The x2 term is a focus error. Now consider probing this screen with an on-axis LGS that samples the phase
screen with an expanding spherical wavefront. The height of the laser is H . Replace x by xγh where γh = 1− h/H .

ϕl(0) = s(xγh) = ax2γ2

h. (4)

To summarize, for a conventional single LGS system with both the science target and LGS on-axis the two measured
wavefronts are

ϕn(0) = ax2, (5)

ϕl(0) = ax2γ2

h = ax2

(
1 −

h

H

)2

. (6)

The difference between the wavefronts is just the usual single LGS focus anisoplanatism term, note that if the phase
screen altitude goes to zero, h = 0, or the LGS altitude H goes to infinity, then the two wavefronts are identical and
no wavefront error results. In order to make a perfect estimate of the wavefront one needs to know both a and h,
which is impossible with a single LGS.

Next consider attempting to minimize focus anisoplanatism by adding in more LGS slightly off axis, these LGS
positions will be denoted by θi, for the ith LGS. For a LGS beam located off-axis replace x with xγh + hθi, and the
resulting measurement from the laser guide star is

ϕl(θi) = s(xγh + hθi) = a
(
x2γ2

h
+ 2xγhhθi + h2θ2

i

)
. (7)

Like the NGS case the piston term is not important and is filtered out. The term that is proportional to x is a tilt
term; this cannot be sensed by conventional LGS because of position uncertainty in the LGS. We filter these terms
out resulting in the surprising result that

ϕl(θi) = ax2

(
1 −

h

H

)2

. (8)

It appears that off axis LGS give no new information about the focus error in the phase screen, adding more LGS does
not improve your measurement. Note this is only a problem for x2 type aberrations. If the phase screen contained
a pure cubic aberration (x3) then

ϕn(θ) = a(x + hθ)3 = a(x3 + 3x2hθ + 3xh2θ2 + h3θ3) (9)

ϕl(θi) = a(xγh + hθi)
3 = a(x3γ3

h
+ 3x2γ2

h
hθi + 3xγhh2θ2

i
+ h3θ3

i
). (10)

Dropping tilt terms (just LGS) and piston (NGS and LGS) terms, the result is

ϕn(θ) = a(x3 + 3x2hθ + 3xh2θ2) (11)

ϕl(θi) = a(x3γ3

h
+ 3x2γ2

h
hθi). (12)

In this case adding more LGS does provide new information and a clever tomography algorithm should be able to
improve the wavefront estimate with more LGS. It is important to note that the problems arise from the lack of tilt
information provided by LGS. I have not invoked anything more complicated. Specifically this discussion does not
depend on the details of MCAO, MOAO, LTAO, or the specifics of the tomography algorithm.

1.2.1 Discussion

The problem can be eliminated by one of the following techniques, at least in the simple 1-d problem:

1. Use the on-axis science target to measure the quadratic terms directly, i.e. measure focus with the NGS.

2. Use (at least) three off-axis TT NGS to measure tilt in multiple directions, estimate quadratic terms and height
of phase screens.

3



3. Use a LGS at a different height H , say a Rayleigh beacon, and use the two LGS to estimate quadratic terms
and height of phase screens.

4. Use a MASS/DIMM to measure h directly (possible in the toy problem; probably not in reality)

5. Ignore the problem if it is a small correction factor (unfortunately not always the case, see Sect. 4)

In the toy problem you have two unknowns: a the phase screen strength and h the distance to the phase screen. In
a real atmosphere you don’t have a single phase screen with just a focus aberration however the focus component
in the upper atmosphere will be measured incorrectly by a laser guide star. In the single LGS case this error is just
lumped into the focus anisoplanatism term in the error budget. A modal decomposition of this error term, reveals
that focus, and the two astigmatisms are the dominate terms, see e.g. Esposito et al. 1996[3].

2 Tomography error analysis

What follows is a modal tomography approach to estimating the residual wavefront error from LGS null-modes in a
combined LGS+NGS tomography AO system. The methodology is in principle equivalent to that given in [1], but
the transformation matrices are here calculated by geometric integration in a numerical simulation instead of via
analytical formulas based on monomial transformations.

2.1 System type and corrector geometry

To forestall confusion on this point, it is addressed here what it implies for the analysis if the AO system is operating
in multi-conjugate (MCAO) mode, multi-object (MOAO) mode, or in laser tomography (LTAO) mode. As always
with wavefront reconstruction in tomographic AO systems, the two steps of wavefront estimation and correction can
be separated. The first step entailing wavefront estimation depends only on the geometry of NGS and LGS and
the number of modes measured, and not at all on the specific type of AO operation. The difference comes in at
the point of applying the estimated correction. In terms of correction strategy, both MCAO and MOAO employ
a combination of at least 2 DMs to implement the null-mode correction for a given position in the field of view,
while LTAO uses only one DM. This means that LTAO can strictly only be “correct” for a single point in the field
(e.g. on-axis), while MCAO and MOAO can be optimized for multiple field positions simultaneously. Both MCAO
and LTAO however have the option to have their null-mode correction optimized for an extended and contiguous
field of view rather than preferentially for discrete field points. Thus, the second difference comes in at the point
of computing the null-mode wavefront estimator, where for MOAO you must always compute a separate estimator
for each science object; for LTAO you must choose either a single direction to optimize for or else a field of view to
average over; and for MCAO you can either do nothing at all and it will optimize performance for the NGS positions,
or you can supply it with other field points to optimize for and average over. All the cases that imply averaging
and/or optimizing for field points other than the NGS will require the use of a Bayesian type estimator like e.g. the
minimum variance estimator (MVE). By using a purely geometrical least-squares estimator (referred to as SVD, for
singular value decomposition), the analysis of the next section is equivalent to the MCAO “do-nothing” case that
simply optimizes for the NGS positions.

2.2 Null-mode estimation

Denote by ϕε the residual phase error at the pupil plane integrated along one given direction (we omit the angle
variable for brevity, and keep in mind that each matrix or vector will have a separate block for each guide star or
evaluation position):

ϕε = ϕ − ϕ̂, (13)

where ϕ is the atmospheric turbulence and ϕ̂ the correction applied by the AO system, both quantities integrated
down to the pupil plane along the same cylindrical beam. We describe the two-dimensional phase by a Zernike
expansion

ϕε(ρ, θ) =

N∑

i=2

εiZi(ρ/R, θ) = Zε,
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where ε is the vector of residual Zernike coefficients at the telescope pupil of radius R. The latter matrix algebra
formulation is the one that we will adopt from now on, with upper-case letters denoting matrices and lower-case
denoting vectors. We then have that ϕ = Za and ϕ̂ = Zâ, where a and â are the Zernike coefficient vectors of the
input atmospheric turbulence and the reconstructed modes. The residual error can be written as

ε = Paa − Pmâ,

where Pa and Pm are projection matrices that integrate the modal content through all turbulent layers (Pa) and DMs
(Pm) on-axis. a has the length NzNl where Nz is the number of Zernike modes and Nl is the number of turbulence
layers; â has the length NzNm, where Nm is the number of DMs. The AO system mode sensing and reconstruction
in open loop is done as follows:

â = Em, (14)

m = Ga, (15)

where G and E are, respectively, the (combined LGS and NGS) measurement and reconstruction operators acting
on the input turbulence mode a and the resulting measurement vector m. E is in this analysis obtained from a SVD
inversion of the modal interaction matrix G, where a varying number of null-modes may be filtered in the inversion,
depending on the geometry. Putting it together we obtain

ε = (Pa − PmEG)a = Qa

where Q = Pa − PmEG is an operator that depends only on the geometry of the system (LGS and NGS positions
and altitudes, DM and turbulence layer altitudes) and the evaluation direction. The variance of the residual phase
error is then

σ2

ε = 〈ϕT

ε ϕε〉 = Tr
[
〈ϕεϕ

T

ε 〉
]

= Tr
[
Z〈εεT 〉ZT

]
(16)

= Tr
[
ZQ〈aaT 〉QT ZT

]
= Tr

(
QCaQT

)
, (17)

where Tr() denotes the trace operation, and we exploited the invariance of the trace under a similarity transform
Tr(BAB−1) = Tr(A), since ZT = Z−1 by orthogonality of the Zernike modes. Ca = 〈aaT 〉 is the covariance matrix of
Zernike coefficients, which can be computed for Kolmogorv (Noll, 1976; Wang & Markey 1978)[6, 7] or von Karman
(Winker, 1991)[8] statistics. For low-order modes and a large aperture, von Karman statistics should be used. The Q
matrix can be computed from straightforward geometric considerations and the trace (17) evaluated, which is done
in the next section. If WFS noise is included we modify equation (15) according to

m = Ga + Tn, (18)

where n is the noise on the WFS measurement and T a transformation that propagates WFS noise onto Zernike
modes. T can be modeled for a given WFS type and architecture – the Shack-Hartmann type was used in this case.
It is straightforward to evaluate the new expression which simply acquires an additional term

σ2

ε
= Tr

(
QCaQT

)
+ Tr

(
SCnST

)
, (19)

where S = PmET and Cn = 〈nnT 〉 is the noise covariance matrix. These two terms can be computed separately to
study the residual null-mode error due to purely geometric constraints and due to noise propagation. The presence of
noise can also be included in E by choosing a noise-weighted (Gauss-Markov) or minimum variance type estimator.

3 Sample numerical results

A numerical simulation was set up with an atmospheric model consisting of 7 layers (the Neyman CN-M3 Mauna
Kea model), and a baseline MCAO system with 5 LGSs in a quincunx asterism of 11′′ radius. The parameters that
varied between the configurations were:

• maximum radial order of atmospheric modes (2 or 3)

• number of NGS (1 or 3)
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Figure 2: The usual suspects. From left to right, top to bottom: Gm, Ga, Em, Q(0), S(0), Ca and Cn.

• maximum radial order of NGS (1 or 2)

• number of wavefront estimator layers (2 or 3)

• number of filtered null-modes

Noise was included in the simulations not with an aim to make absolute statements about the limiting magnitudes,
but merely for indicating the general effect of having noise in the system. The rudimentary noise modeling used a
15 magnitude (J band) NGS. Some sample numerical results are presented in Sect. 4.

4 Anatomy of a null-mode

4.1 Quadratic atmosphere/LGS, 2 estimator layers

4.1.1 Case #1: 1 TT NGS 0′′, 10 modes, 5 null

On-axis error (tomo/noise) per mode (nm RMS):

0.000 0.000 28.209 28.209 28.209

10.123 10.123 0.023 0.022 0.022

On-axis error (tomo/noise) per radial order (nm RMS):

0.000 48.860

14.316 0.038
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4.1.2 Case #2: 3 TT NGS 40′′, 10 modes, 2 null

On-axis error (tomo/noise) per mode (nm RMS):

0.000 0.000 0.631 0.631 0.631

5.844 5.844 0.914 1.308 1.275

On-axis error (tomo/noise) per radial order (nm RMS):

0.001 1.094

8.265 2.043

4.2 Cubic atmosphere/LGS, 2 estimator layers

4.2.1 Case #3: 3 TT NGS 40′′, 18 modes, 4 null

On-axis error (tomo/noise) per mode (nm RMS):

30.194 30.201 3.778 3.444 3.362 6.287 6.281 5.767 1.449

6.175 6.175 0.913 1.292 1.260 0.103 0.091 1.698 0.039

On-axis error (tomo/noise) per radial order (nm RMS):

42.706 6.118 10.693

8.733 2.022 1.704

4.2.2 Case #4: 3 TT NGS 40′′, 18 modes, 2 null

On-axis error (tomo/noise) per mode (nm RMS):

16.222 16.264 3.777 1.935 1.915 0.419 0.411 5.771 1.448

5.845 5.846 0.913 1.308 1.274 0.038 0.038 1.697 0.039

On-axis error (tomo/noise) per radial order (nm RMS):

22.971 4.656 5.979

8.266 2.042 1.699

4.2.3 Case #5: 3 TTFA NGS 40′′, 18 modes, 2 null

On-axis error (tomo/noise) per mode (nm RMS):

13.171 13.204 1.920 0.979 0.974 0.313 0.309 2.418 1.130

6.083 6.083 1.147 1.438 1.476 0.392 0.393 0.677 0.604

On-axis error (tomo/noise) per radial order (nm RMS):

18.650 2.365 2.705

8.603 2.359 1.064

4.3 Cubic atmosphere/LGS, 3 estimator layers

4.3.1 Case #6: 3 TTFA NGS 40′′, 27 modes, 11 null

On-axis error (tomo/noise) per mode (nm RMS):

9.254 9.284 1.905 0.735 0.732 0.233 0.223 1.847 1.097

5.973 5.974 1.144 1.435 1.473 0.398 0.399 0.605 0.599

On-axis error (tomo/noise) per radial order (nm RMS):

13.108 2.169 2.173

8.448 2.353 1.021

4.3.2 Case #7: 3 TTFA NGS 40′′, 27 modes, 7 null

On-axis error (tomo/noise) per mode (nm RMS):

1.842 1.816 0.271 0.260 0.263 0.060 0.060 0.702 0.704

12.917 12.600 1.605 1.913 1.982 0.342 0.346 0.688 0.541

On-axis error (tomo/noise) per radial order (nm RMS):

2.586 0.458 0.998

18.045 3.188 1.001
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Figure 3: Case #1: Quadratic atmosphere/LGS, 2 estimator layers, 1 TT NGS 0′′: 10 modes, 5 null.

Figure 4: Case #2: Quadratic atmosphere/LGS, 2 estimator layers, 1 TT NGS 40′′: 10 modes, 2 null.

4.3.3 Case #8: 3 TTFA NGS 40′′, 27 modes, 4 null

On-axis error (tomo/noise) per mode (nm RMS):

0.510 0.430 0.006 0.007 0.007 0.049 0.049 0.701 0.701

10.981 10.943 2.522 2.993 3.145 0.234 0.236 0.675 0.410

On-axis error (tomo/noise) per radial order (nm RMS):

0.668 0.012 0.994

15.502 5.020 0.857
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Figure 5: Case #3: Cubic atmosphere/LGS, 2 estimator layers, 3 TT NGS 40′′: 18 modes, 4 null.

Figure 6: Case #4: Cubic atmosphere/LGS, 2 estimator layers, 3 TT NGS 40′′: 18 modes, 2 null.
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Figure 7: Case #5: Cubic atmosphere/LGS, 2 estimator layers, 3 TTFA NGS 40′′: 18 modes, 2 null.

Figure 8: Case #6: Cubic atmosphere/LGS, 3 estimator layers, 3 TTFA NGS 40′′: 27 modes, 11 null.

Figure 9: Case #7: Cubic atmosphere/LGS, 3 estimator layers, 3 TTFA NGS 40′′: 27 modes, 7 null.
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Figure 10: Case #8: Cubic atmosphere/LGS, 3 estimator layers, 3 TTFA NGS 40′′: 27 modes,4 null.
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Figure 11: Strehl maps (over the field of view) per mode and radial order for each simulated configuration.
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