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1 Introduction

This document collects and summarizes the work done to date within the framework of the CfAO funded project
“PSF reconstruction at WMKO: Development, implementation and validation of PSF reconstruction techniques,”
initially funded for FY09. PSF reconstruction is planned to be an additional resource for astronomers observing with
adaptive optics (AO). The point spread function (PSF) of AO observations can have a complex structure, making its
estimation and modeling hard for the non-expert (and, it is fair to say, also for the expert). The recent availability
of recorded real-time AO telemetry data such as wavefront sensor (WFS) centroids and sub-aperture intensities, by
the capacity introduced by a new wavefront controller (WFC), makes realistic PSF estimation more feasible.

1.1 Project summary

This section is a summary of the goals, current status and future schedule of the multi-year collaborative proposal
[1] to the CfAO “Development, implementation and validation of PSF reconstruction techniques.” (This section
was originally presented as the Y9 CfAO project annual report, April 2008, LeMignant & Flicker.) The project
started in November 2007 at the W. M. Keck Observatory (WMKO) under the direction of D. Le Mignant (PI), with
postdoctoral researcher R. Flicker employed for the principal algorithm development and implementation.

Project milestones

The proposal outlined three major phases of the project, described in roughly chronological order as:

1. Initial development phase; on-axis NGS only (8 months)

a. Review previous research on PSF reconstruction and select candidate algorithms

b. Develop K2 AO simulation tools for the purpose of producing simulated AO telemetry data

c. Develop TRS (telemetry recorder/server) query and analysis tools

d. Develop prototype PSF reconstruction algorithm containing the fundamental components (fitting, aliasing,
noise and bandwidth errors); test on simulated data and apply to real on-axis NGS K2 AO data

2. On-sky validation and component development phase; off-axis NGS, LGS, optical aberrations (12 months)

a. Develop and validate angular and focal anisoplanatism components for NGS and LGS

b. Develop static and dynamic telescope aberration components (segment figures, vibrations, instrument
optical distortions); strategy for measuring them

c. Integrated product development, preliminary deployment to routine observing

3. Final product and future development phase (4 months)

a. Integrated product and user interface development

b. Initial studies into PSF reconstruction techniques for future multi-beacon tomographic AO systems (i.e.
MCAO, MOAO, LTAO) and extremely-high-order AO systems (applicable to, e.g., NGAO)

Each phase entails a number of sub-tasks most of which are omitted here for brevity. Much of the PSF algorithm
development is modular, consisting of several estimation algorithms that are researched and developed largely inde-
pendently (e.g., noise estimation, seeing estimation, aliasing and anisoplanatism modeling etc – all described in more
detail in the documentation available on the PSF reconstruction project TWiki [2]).

Current status and schedule

This section summarizes in words the progress on various tasks, leaving more detailed technical discussions to be
found in the documentation on the PSF reconstruction TWiki page [2].
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Phase 1 (75% complete)

The milestones of Phase 1, covering the period 2007–11–01 to 2008–07–01, are either accomplished or well under way
(100% to 50% complete), with the project on schedule.

1a. (100% complete) Reviewing the literature, we resolved to base our algorithm development on the previously
most commonly applied method, introduced by J.-P. Véran in [41] (henceforth the “Véran method”). One recent
improvement [20] to the Véran method was adopted early on as the baseline algorithm for PSF reconstruction
at WMKO, as it reduces the computational complexity without sacrificing realism, potentially allowing the
algorithm to be scaled up to high-order AO systems with future development.

1b. (100% complete) In order to prototype the PSF reconstruction algorithm, and for future debugging and sanity-
checking, it was deemed important to have a capable simulation tool that emulates the current AO system on
the Keck 2 telescope as closely as possible. Such a numerical simulation tool was developed within the first
half of Phase 1, and has been employed to generate streams of fake AO telemetry data on the same format as
the actual TRS, greatly facilitating development of the PSF reconstruction algorithms.

1c. (50% complete) The new wavefront controller (former NGWFC) recently implemented on the K2 AO system
[3] is crucial to the success of PSF reconstruction, as it allows several nights of full-frame-rate AO telemetry
to be recorded for later post-processing. This complete recording and generous storage capacity offered by the
TRS obviates the need for real-time data reduction, and allows the PSF reconstruction to be carried out at any
later time with complete access to the raw data. A set of general TRS database query tools were available at
the start of this PSF reconstruction project, but for the PSF reconstruction task a number of extensions and
modifications were identified as necessary. There is currently an ongoing effort, lead by proposal participant
Erik Johanson (WMKO), to develop additional software tools and add such functionality to the TRS in order
to facilitate PSF reconstruction, as well as other applications.

1d. (50% complete) The first departure from the Véran method that we decided upon was to omit the pupil-
averaging step, which approximates a non-stationary structure function by a stationary one in order to simplify
computation. This approximation may lead to an underestimation of the optical transfer function (OTF), but
we found that, in conjunction with the methodology in [20], the advance in affordable computing power has
rendered the pupil-averaging approximation unnecessary. A second reason for avoiding pupil-averaging is that
the structure function for focal anisoplanatism (cone-effect) with LGS is in itself non-stationary (Sect. 4.2),
and could not be used within the Véran method without some form of additional approximation. By evaluating
the OTF directly from the non-stationary structure function, we avoid applying any additional approximation
to the focal anisoplanatism term.

The fitting and aliasing components have been modeled and implemented into the algorithm, as described in the
documentation on the TWiki [2]. In brief, both are based on Fourier-domain modeling. The fitting component
consists of a numerically generated Fourier domain mask that is applied to a model turbulence power spectral
density function (PSD). The PSD mask takes into account the shape of the DM influence functions, producing
a smoother and more realistic roll-off at the AO cut-off frequency than simple analytical models (e.g. [25]).
The aliasing component is modeled by an analytical PSD model based on the formalism in [29], generalized
here to closed-loop conditions (see Appendix 1 in [2]).

The noise/servo-lag component is the central object that is computed from real-time AO telemetry. The Véran
method applies two approximations to this component that we too have used initially. In order to achieve a
PSF reconstruction algorithm that is reliable also in high-noise conditions (faint guide star regime), however,
we also consider more realistic representations of this component that include the temporal filtering (omitted
in [41]). Considerable effort is devoted during the second half of Phase 1 to model this component and verify
it against AO lab data. The details are outlined in [2]. One set of AO lab data was collected for initial model
testing. Unfortunately the test needs to be repeated and new lab data collected, due to a failure to record all
the necessary telemetry the first time.

On-sky data was also collected on bright NGS for testing the fitting and aliasing components, as well as
providing data for validation of the seeing estimator (see Sect. 1.2). A reliable and accurate r0 estimation is
essential to PSF reconstruction, so testing and potentially making improvements to the algorithm currently in
operation is a high-priority task that is being carried out presently.
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Phase 2 (10% complete)

2a. (33% complete) As implied above, anisoplanatism modeling became pursued and largely accomplished within
the time frame for Phase 1. The research was recently submitted to a peer-reviewed journal, and an upcoming
engineering run with K2AO aims to collect NGS anisoplanatism data for on-sky validation, well ahead of
schedule. The results produced include analytical formulas for angular and focal anisoplanatism structure
functions, which take into account the finite outer scale of atmospheric turbulence. Although the outer scale is
a poorly known quantity, it was found that, for a 10-meter telescope, outer scales on the order of ∼30 meters
or less would have a significant impact on Strehl ratio and PSF shape.

Participants and collaborations

Ralf Flicker has been dedicated full-time to this project. Erik Johansson and David Le Mignant have provided support
for the project at about 5-10% level. Other participants have been consulted for technical issues for modeling, analysis
or data management. This includes Marcos van Dam (AO scientist at WMKO-left 12/07), Matthew Britton (AO
scientist at COO), Jeff Mader (software engineer at WMKO) and Michael Fitzgerald (post-doctoral researcher at
LLNL). All these individuals are already participants of the CfAO.

1.2 Technical summary

Algorithm methodology

In words rather than equations, the OTF is estimated in the following steps:

1. The residual error covariance matrix, consisting of noise, aliasing, turbulence and their cross-terms, is estimated
by approximating the temporal dynamics and the cross-terms (section 3.4).

2. The estimated residual error covariance matrix is diagonalized, enabling the structure function to be computed
as a sum over a reduced set (Nc terms instead of O(N2

c )) of orthogonal DM modes (section 2.2).

3. The OTF integral over controlled modes is evaluated from its autocorrelation definition, including the pupil
function and the exponential of the the non-stationary structure function (section 2.3). This means that:

• The “pupil-averaging” approximation is avoided (but the OTF calculation becomes more demanding)
• There is no additional penalty for other non-stationary kernels, e.g., focal anisoplanatism (section 4.2)

4. Multiplicative OTF kernels of stationary structure functions can be calculated separately:

• Fitting error (section 3.2)
• Tip/tilt error (section 3.6)
• Anisoplanatism in stationary approximations (section 4.1)

Assumptions and approximations

The OTF estimation of the controlled modes relies on the following fundamental assumptions:

A1 Uniform field amplitude (no scintillation)

A2 The point-wise residual phase error is statistically Gaussian (central-limit theorem)

A3 Controlled and uncontrolled modes are statistically uncorrelated

The covariance matrix estimation relies on the further assumptions, which are invoked as approximations:

A4 The deformable mirror (DM) shape is approximated by a linear superposition of independent influence functions

A5 Cross-terms between WFS aliasing and residual error are approximated by the aliasing term

A6 AO loop temporal dynamics are modeled in the “high-bandwidth” approximation

The terms that need to be modeled theoretically invoke the following standard assumptions:

A7 Fitting, aliasing and anisoplanatism error terms employ a von Karman turbulence model, with the outer scale
as a free parameter
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Technical challenges

The more challenging technical aspects of the project which are currently being worked on as part of Phase 1 include
seeing estimation, noise modeling, and residual error covariance matrix modeling.

• Seeing estimation. The atmospheric seeing (or r0) is one of the most important parameters to have a good
estimate of. Even though we are employing the approximation that the long-exposure PSF can be represented
by an average r0 value (while we know that r0 can vary strongly even on short time scales), the PSF is still
very sensitive to this value. As part of the PSF reconstruction project we therefore deemed it necessary to
validate the seeing estimation algorithms currently used with K2 AO (based on Schoeck et al. [32]). Data that
was collected during two half-nights of observing (in January and April 2008) are being analyzed currently.

• Noise model. This is one of the critical components of the PSF reconstruction algorithm, and the realism of
this component decides whether the algorithm can be applied in the high-noise regime of faint AO guide stars.
Depending on how the calculation is pursued, we either estimate a noise covariance matrix in the WFS domain
and a temporal noise transfer function, or we can try to estimate the temporally filtered noise covariance matrix
in the DM domain in one step. Most previous PSF reconstruction projects have followed the first approach,
which requires good knowledge of the noise in the WFS and other hard-to-measure quantities such as the
centroid gain. No successful implementation of the latter approach has yet been demonstrated, but it is the
goal of the current project to investigate this method and attempt to implement it. For the purpose of testing
the noise modeling in an idealized setting, noisy AO telemetry data was collected from the AO bench operating
on the internal (fiber) light source, with no atmospheric turbulence (hence no fitting or aliasing error) present.
This data and the noise models are currently being tested.

• Covariance matrix model. This aspect of modeling covers how the components of noise, aliasing and resid-
ual turbulence error are combined into a single covariance matrix that is used in the final OTF calculation.
Approximations can creep in at different stages here, as the quantities are either poorly known or their exact
representations become too complicated to deal with numerically. Firstly, there are cross-terms between the
AO telemetry and the noise and aliasing terms, and secondly there is the temporal filtering mentioned in re-
lation to the noise model above. In following the approach suggested by Véran [41] both of these effects are
approximated to a degree, but the goal of the project is to investigate the feasibility and performance of more
realistic representations.

1.3 Future work

At the end of Phase 1, this project has succeeded in demonstrating the feasibility of PSF reconstruction for the
WMKO K2 Shack-Hartmann AO system, but has not progressed to the point where it can be routinely applied.
Some of the algorithm components require further development and calibration (e.g. the noise term and r0 estimation,
as mentioned above). It was also the ambition to improve on the temporal covariance matrix modeling (Sect. 3.4,
method 2) in order to improve algorithm reliability on faint guide stars, but this aspect was not investigated yet. In
addition to these details of Phase 1 that remain to be resolved, Phase 2 also presents a number of challenges and
issues to be addressed:

• Noise model for LGS mode: the effects of spot elongation needs to be taken into account.

• Focal anisoplanatism in LGS mode. While a realistic structure function was developed (Sect. 4.2), its compu-
tation with spatial filtering (Sect. 4.5) becomes prohibitively expensive, and without the spatial filtering it will
overestimate the anisoplanatism error by applying it also to the uncontrolled modes.

• Tilt anisoplanatism in LGS mode: while a simple component to calculate, the TRS data from the tip/tilt sensor
needs to be calibrated to the FSM model used in the PSF reconstruction algorithm.

• For NGAO, there will also be some big issues to address:

– Efficiency: simply scaling up the current algorithm will make numerical computations intractable, so
probably a new kind of algorithm altogether will be required.

– Tomographic wavefront reconstruction or model-based tomography error kernel.
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– Tomographic null-mode kernel: some modeling work has already been done on this (Sect. 6), but the
complexity of the problem depends on the modal basis employed for the null-mode system. In the case
of only global and differential tilt modes, the solutions are straightforward (Gaussian kernels with field-
varying parameters) and have already been worked out (e.g. Ref. [13, 14]), but the more general case of
an arbitrary null-mode basis has not been addressed.
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2 OTF calculation

We first outline the principles of the commonly employed Uij method, establish the splitting of wavefronts into
controlled and uncontrolled modes (1), and then introduce more recent developments (the Vii method) that lead to
the final expression (42) for the OTF.

2.1 The Uij algorithm

This methodology was first developed and implemented by Véran [41, 42] for curvature-based AO systems (PUEO),
and has also become the most commonly applied method for Shack-Hartmann-based PSF reconstruction schemes
to date. The method divides the phase φ into two complementary and orthogonal components, the vector space φ‖
spanned by the deformable mirror modes (the “parallel” phase of controlled modes) and its orthogonal complement
φ⊥ (the “orthogonal” phase of uncontrolled modes). Due to deviations from the ideal, the actually controlled modes
will in reality not be exactly orthogonal to the theoretically modeled orthogonal phase, but as a mathematical model
it is a sufficiently realistic approximation. By this separation into φ‖ and φ⊥ it becomes possible to apply different
estimation techniques to the two domains: the residual error on the controlled modes are estimated from AO loop
data, and the error on the uncontrolled modes are estimated by statistical models of atmospheric turbulence.

Residual phase

With the division of spatial frequency regions into high-order (φ⊥) and low-order (φ‖) components, we describe the
two-dimensional phase retardation of a time-dependent turbulence-aberrated wavefront by

φ(x, t) = φ‖(x, t) + φ⊥(x, t). (1)

The phase correction ϕ introduced by the DM of the AO system can be modeled to a good approximation (see Sect.
3.3) as a linear sum of Nc actuator influence functions hi(x) according to

ϕ(x, t) =
Nc∑
i=1

ci(t)hi(x), (2)

where ci(t) are modal coefficients proportional to the actuator voltages. The parallel phase φ‖ is by definition
described in the same modal basis as the DM, so we can write

φ‖(x, t) =
Nc∑
i=1

ai(t)hi(x). (3)

The PSF after AO compensation is governed by the residual phase ε(x, t) according to

ε(x, t) = φ(x, t) − ϕ(x, t) (4)

= φ⊥(x, t) +
Nc∑
i=1

[ai(t) − ci(t)]hi(x) (5)

= φ⊥(x, t) + ε‖(x, t), (6)

where we defined εi(t) = ai(t) − ci(t) as the modal coefficient of the residual parallel phase ε‖(x, t), and

ε‖(x, t) =
Nc∑
i=1

εi(t)hi(x). (7)

Structure function

The spatial phase structure function Dφ is defined as

Dφ(x,ρ) =
〈|φ(x, t) − φ(x + ρ, t)|2〉 , (8)
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where angular brackets denote ensemble average. Expanding the square and rearranging terms allows us to relate
the structure function to the correlation function Cφ(ρ) = 〈φ(x, t)φ(x + ρ, t)〉 assuming homogeneity

Dφ(ρ) = 2 [Cφ(0) − Cφ(ρ)] , (9)

which will be eminently useful. If we assume (A3) that ε‖ and φ⊥ are statistically uncorrelated, then the structure
function Dε of the residual phase error is

Dε(x,ρ) = Dφ⊥(x,ρ) +Dε‖(x,ρ), (10)

where Dφ⊥ is the structure function of everything that the AO system does not attenuate (i.e. the fitting error), and
is estimated separately (see Sect. 3.2). With the definition (7) we have that

Dε‖(x,ρ) =

〈∣∣∣∣∣
Nc∑
i=1

εi(t)[hi(x) − hi(x + ρ)]

∣∣∣∣∣
2〉

(11)

=
Nc∑
i=1

Nc∑
j=1

〈εi(t)εj(t)〉 [hi(x) − hi(x + ρ)][hj(x) − hj(x + ρ)]. (12)

One may define an aperture-averaged structure function D̄(ρ) according to

D̄φ(ρ) =
∫
dxDφ(x,ρ)P (x)P (x + ρ)∫

dxP (x)P (x + ρ)
, (13)

where P (x) defines the aperture transmission function. Since the autocorrelation in the denominator is band-limited,
the fraction must only be computed within the support of

∫
dxP (x)P (x + ρ). The homogenized structure function

D̄ε‖ can be written more simply as

D̄ε‖(ρ) =
Nc∑
i=1

Nc∑
j=1

〈εi(t)εj(t)〉Uij(ρ), (14)

where the Uij functions are given by

Uij(ρ) =
∫
dx [hi(x) − hi(x + ρ)] [hj(x) − hj(x + ρ)]P (x)P (x + ρ)∫

dxP (x)P (x + ρ)
. (15)

The static Uij functions can be computed for a given set of mirror modes hi(x), while the covariance matrix 〈εi(t)εj(t)〉
is computed from the AO telemetry stream of DM actuator commands and WFS measurements during the particular
observation (see Sect. 3.4).

Optical transfer function

Let K = K(α,β) be the anisoplanatic PSF as a function of image and object space angular coordinates (α,β),
resulting from the anisotropic complex field ψ = ψ(x,y) in the image and object space spatial coordinates (x,y). For
incoherent quasi-monochromatic sources it can be shown [5] that the instantaneous PSF in the far-field approximation
is given by K(α,β) = |F [ψ(x,y)]|2, where F denotes the Fourier transform. Since the OTF is B = F(K), it can be
shown by the Wiener-Khinchin theorem that the long-exposure OTF is

〈B(u,v)〉 =
∫
dw 〈ψ(w,v)ψ∗(w + u,v)〉, (16)

where (u,v,w) are angular frequency coordinates of the OTF domain, and the superscript asterisk (∗) indicates
complex conjugate. Assuming the field amplitude to be uniform (A1) (and hence also isoplanatic), the complex field
may be described as

ψ(x,y) = P (x) exp[iφ(x,y)], (17)
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where P is a real-valued binary aperture transmission function and φ is the optical phase retardation. Combining
equations (16) and (17) gives

〈B(u,v)〉 =
∫
dwP (w)P (w + u)

〈
eiφ(w,v)e−iφ(w+u,v)

〉
. (18)

Assuming the phase φ to be a zero-mean Gaussian random variable (A2) leads to 〈exp(iφ)〉 = exp(− 1
2 〈φ2〉), and the

OTF simplifies to

〈B(u,v)〉 =
∫
dw P (w)P (w + u) exp

[
−1

2
〈|φ(w,v) − φ(w + u,v)|2〉

]
(19)

=
∫
dw P (w)P (w + u) exp

[
−1

2
Dφ(w,u,v)

]
(20)

by the definition of the structure function. If the structure function was homogeneous across the aperture plane, this
would mean that Dφ(w,u,v) = Dφ(u,v), and the OTF expression simplifies further

〈B(u,v)〉 = exp
[
−1

2
Dφ(u,v)

]
︸ ︷︷ ︸

Bφ

∫
dwP (w)P (w + u)︸ ︷︷ ︸

BP

(21)

= Bφ(u,v) ×BP (u), (22)

where Bφ is recognized as the long-exposure optical transfer function of the turbulent phase φ, and BP is the
static OTF of the telescope. To arrive at this result for the purpose of PSF reconstruction, Véran [41] invokes
the approximation that Dε‖ ≈ D̄ε‖ , which allows the residual AO OTF to be approximated by equation (21) since
Dφ⊥ = Dφ⊥(ρ) is explicitly homogeneous. In the case of an isoplanatic PSF or when evaluated along a single field
angle, the result thus can be written

〈B(ρ/λ)〉 ≈ Bφ⊥(ρ/λ) ×Bε‖(ρ/λ) ×BP (ρ/λ) (23)

= exp
{
−1

2
Dφ⊥(ρ/λ)

}
× exp

{
−1

2
D̄ε‖(ρ/λ)

}
× (P � P )(ρ/λ), (24)

where � denotes convolution or autocorrelation.

2.2 The Vii algorithm

A modification to the Uij algorithm was recently developed by Gendron et al. [20]. A practical problem with the
Uij algorithm is that the computation of O(N2

c ) Uij functions becomes very expensive for high-order AO systems.
The Vii method reduces the computational load to O(Nc) functions by diagonalizing the 〈εεT 〉 covariance matrix.
The eigenvalue decomposition of the square symmetric matrix 〈εεT 〉 can be written

〈εεT 〉 = SΛST , (25)

where S is a square orthogonal matrix and Λ = diag({λi}Nc

i=1) is the diagonal matrix of eigenvalues. Rewriting this
as

Λ = ST 〈εεT 〉S = 〈(ST ε)(ST ε)T 〉 = 〈ηηT 〉 (26)

results in a diagonal covariance matrix of the transformed vector η = ST ε. Conversely, substituting ε = Sη into (14)
and rearranging allows the structure function to be written

D̄ε‖(ρ) =
Nc∑
i=1

Nc∑
j=1

〈(Sη)i(Sη)j〉Uij(ρ) (27)

=
Nc∑
i=1

Nc∑
j=1

Uij(ρ)

(
Nc∑
k=1

Nc∑
l=1

SikSjl〈ηkηl〉
)

(28)
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=
Nc∑
k=1

〈ηkηk〉
Nc∑
i=1

Nc∑
j=1

SikSjkUij(ρ) (29)

=
Nc∑
k=1

〈ηkηk〉Vk(ρ), (30)

where

Vk(ρ) =

∫
dx
(∑Nc

i=1 Sik [hi(x) − hi(x + ρ)]
)(∑Nc

j=1 Sjk [hj(x) − hj(x + ρ)]
)
P (x)P (x + ρ)∫

dxP (x)P (x + ρ)
(31)

=
∫
dx |h′k(x) − h′k(x + ρ)|2 P (x)P (x + ρ)∫

dxP (x)P (x + ρ)
, and : h′k(x) =

Nc∑
i=1

Sikhi(x), (32)

or in vector notation h′ = STh is the transformed modal basis within which the covariance matrix 〈ηηT 〉 is diagonal.
This requires the computation of only Nc functions Vk(ρ) (or Vii in the notation of Gendron et al.). To practically
compute the Vk functions we rewrite the numerator in terms of convolutions and use the Fourier transform to evaluate
them:

Vk(ρ) × (P � P ) =
∫
dx |h′k(x) − h′k(x + ρ)|2 P (x)P (x + ρ) (33)

=
∫
dxh′2k (x)P (x)P (x + ρ) +

∫
dxh′2k (x + ρ)P (x + ρ)P (x) (34)

− 2
∫
dxh′k(x)P (x)h′k(x + ρ)P (x + ρ) (35)

= 2
[
(h′2k P ) � P − (h′kP ) � (h′kP )

]
(36)

= 2
{
F−1

[
F(h′2k P )P̃ ∗ − |F(h′kP )|2

]}
(37)

where widetilde P̃ is shorthand for the Fourier transform, and the denominator is simply P � P = F−1(|P̃ |2).

2.3 Non-stationary calculation

Although it might have seemed computationally implausible at one time, the diagonalization introduced in 2.2
together with Moore’s Law may render the stationarity approximation unnecessary. As we shall see later on, the
focal anisoplanatism structure function will in any case force us to calculate a non-stationary terms, so we might
as well get some practice starting right here. Recalling the original structure function expression and applying the
diagonalization of the covariance matrix, we obtain

Dε‖(x,ρ) =
Nc∑
i=1

Nc∑
j=1

〈εi(t)εj(t)〉 [hi(x) − hi(x + ρ)][hj(x) − hj(x + ρ)] (38)

=
Nc∑
k=1

〈ηkηk〉H ′
k(x,ρ), (39)

where

H ′
k(x,ρ) =

∣∣∣∣∣
Nc∑
i=1

Sik [hi(x) − hi(x + ρ)]

∣∣∣∣∣
2

(40)

= |h′k(x) − h′k(x + ρ)|2 , and : h′k(x) =
Nc∑
i=1

Sikhi(x). (41)

And the OTF is computed explicitly as

〈B(ρ/λ)〉 =
∫
dxP (x)P (x + ρ) exp

{
−0.5

Nc∑
k=1

λk |h′k(x) − h′k(x + ρ)|2
}

(42)
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2.4 From PSD to OTF

Very useful in the Uij methodology is the Wiener-Khinchin theorem, which states that the autocorrelation Cφ of a
stochastic variable φ is equal to the Fourier transform of its power spectrum Φφ, i.e.

F [Φ(f)](ρ) =
∫
dx 〈φ(x)φ(x + ρ)〉 = Cφ(ρ), (43)

provided that the Fourier transform exists. The last equality also holds when the statistics of φ is spatially stationary
and has zero mean. While perfect in theory, there are some practical problems with applying the Wiener-Khinchin
theorem to a turbulence PSD, in that the correlation function one is trying to obtain is not guaranteed to be band-
limited within the computational range, i.e., the numerically computed FFT might not be able to reproduce the exact
Fourier transform. We can see that this is the case for a pure Kolmogorov PSD, where simply applying the FFT to
a f−11/3 power law will roll off the transform at the edges of the computational grid, while in theory the structure
function should be exactly proportional to a 5/3-power law. The consequence of using the FFT is a correlation
function that underestimates the total variance, and also has a somewhat wrong shape at large separations. For
a von Kármán PSD the situation improves somewhat, and gets better the smaller L0 is, since this predicts a Cφ

that is limited and approaches an asymptotic value at large separations, so the function naturally approximates a
band-limited function eventually.

It is possible to apply an ad hoc correction term to the PSD in order to improve the accuracy of turbulence
correlation functions calculated by FFT (see section 3.1 of the older draft of this document, 15 April 2008). With
an outer scale L0 < 30 meters however the error is small, and we may safely use the FFT method directly without
committing a significant error. For larger outer scales, a L0-dependent normalization factor of order unity can be
applied:

α(L0) = a0 − a1 exp(−a2L0), (44)

such that Φ(f) �→ α(L0) × Φ(f), and the parameters are a = [1.28925, 0.218983, 0.00326031]. Anyway. From the
definition of the structure function and correlation function we can obtain the former from the latter as

Dφ(ρ) = 2[Cφ(0) − Cφ(ρ)]. (45)

This provides a path for PSD domain modeling of AO terms to the structure function. If the terms are stationary,
their OTFs can be computed independently from the AO OTF (42) as indicated already in (24), simply as

〈Bφ(ρ/λ)〉 = exp
{
−1

2
Dφ(ρ/λ)

}
. (46)

For instance the fitting error and the tip/tilt error OTFs (and in the isoplanatic approximation also the anisoplanatism
error) will be computed this way, and multiplied onto the controlled modes residual wavefront error OTF (42).
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3 Component modeling

The different algorithm components that need to be modeled or estimated include:

• Residual wavefront error covariance matrix

• DM fitting error PSD

• WFS noise covariance

• WFS aliasing covariance

• Tilt error structure function

• NGS anisoplanatism (stationary approximation)

• LGS anisoplanatism (non-stationary)

• Tilt anisoplanatism (in LGS mode)

• Static aberrations

3.1 Turbulence model

Until better data comes in or until we are otherwise prompted to consider more sophisticated models, we will adopt
the von Kármán turbulence model with a spatial power spectrum according to

Φ(f) =
0.023

r
5/3
0

(f2 + f2
0 )−11/6, (47)

where f = |f | and f0 = 1/L0 defines the outer scale L0 in this model. The corresponding structure function can be
written [9, 34]

Dφ(ρ) = a1

[
a2 − (ρf1)5/6K5/6(ρf1)

](L0

r0

)5/3

(48)

where a1 ≈ 0.185, a2 = 1.00563 and K5/6 is a modified Bessel function of the second kind (by some authors referred
to as a modified Bessel function of the third kind, or the McDonald function). Note that here, f1 = 2π/L0 defines the
outer scale differently than does f0 (different authors have traditionally used such conflicting conventions, we’ll just
have to live with the confusion). Since the structure function can be expressed in terms of the correlation function,
Dφ(ρ) = 2[Cφ(0) − Cφ(ρ)], we can find a useful expression for the correlation function as well:

Cφ(ρ) =
a1

2
(ρf1)5/6K5/6(ρf1)

(
L0

r0

)5/3

. (49)

In the instances when theoretical modeling of the turbulence vertical profile needs to be invoked, we will assume the
Taylor hypothesis of frozen flow, and employ discrete turbulence profiles restricted to a small number of thin layers.
This means that we model the structure constant as

C2
n(z) =

Nl∑
l=1

clδ(z − zl), (50)

where zl are the layer altitudes and cl = flμ0 are turbulence strengths, defined in terms of the turbulence moment
μ0 = 0.06λ2r

−5/3
0 and the fractional weights

∑
l fl = 1. Together with a wind profile vl, the three parameters

{fl, zl, vl}Nl

l=1 define a turbulence profile. Unless otherwise stated, the RD-MKR profile (see KAON 503) will be used
for testing and generating example plots.
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Figure 1: PSDs averaged in the Monte Carlo simulation. Left: open loop input turbulence PSD Φ. Center: fitting error PSD

Φ⊥. Right: cut along the x-axis comparing the pure turbulence (black curve) with the fitting error PSD (orange curve).

3.2 Fitting error

The AO fitting error comes from the part of the turbulence that is not attenuated by the AO system, i.e. it
represents the uncontrolled modes (the orthogonal phase φ⊥). Since it is the complement of the space spanned by
the mirror modes, we can compute the fitting error by assuming perfect correction by the AO system. Although
several theoretical approaches were investigated, we ultimately decided upon one of the simplest of all methods: to
apply a spatial filter function H(f) to the turbulence PSD and using the Wiener-Khinchin method (section 2.4) for
obtaining the OTF. Under assumption A3 we can split the spatial PSD Φ of phase φ into Φ = Φ‖ + Φ⊥, or

Φ⊥(f) = Φ(f) − Φ‖(f) = H(f)Φ(f), (51)

where the last step is just the definition of H. This gives

H(f) = 1 − Φ‖(f)
Φ(f)

=
Φ⊥(f)
Φ(f)

. (52)

Now we can either try to calculate H analytically (hard), measure it from a simulation (easy but time consuming),
or posit its shape a priori (even easier, but a less realistic approximation). The last method has been used by e.g.
Véran and Jolissaint, by assuming the filter function to be a {0, 1}-valued binary mask A. This ignores the actual
shape of the influence functions and approximates the effect of the geometrical layout of actuators on the DM, but
makes analytical calculations easy. The fitting error structure function is then uniquely defined by the spatial cut-off
frequency fc = 1/2d given by the actuator separation d. Véran derived the formula

Dφ⊥(ρ) =
∫
A
df [1 − cos(2πf ·ρ)]Φ(f) (53)

for a square integration region where A = 1 for |fx|, |fy| > fc and zero otherwise, while Jolissaint used the formula

Dφ⊥(ρ) = 4π
∫
A
df [1 − J0(fρ)]fΦ(f) (54)

for a circular region, A = 1 for f > fc and 0 otherwise. Using the numerical evaluation of the PSD with a circular
PSD mask and the Wiener-Khinchin theorem, I obtain a fitting error phase variance coefficient aF = 0.29, while
Jolissaint obtains a numerical value of 0.274, and Hardy [23] cites a coefficient of aF = 0.28.

These analytical calculations give reasonable numbers, but they overemphasize the sharpness of the high-pass filter
which in reality is a smooth function, as seen in figures 1 and 2. Moreover, it violates the separation of the wavefront
into orthogonal sets of controlled an uncontrolled modes, which we defined by the DM influence functions (section
2.1). For these reasons we opted to estimate a slightly more realistic filter function from numerical simulations.
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Figure 2: Fitting error OTFs, PSFs and structure functions, comparing the Monte Carlo simulation and the analytical

calculation (53). Right: structure functions for the Monte Carlo (black curve) and analytical (red curve) method. Top left:

OTFs by the Monte Carlo simulation (left) and the analytical approximation (right). Bottom left: PSFs (including the

telescope kernel) from the Monte Carlo simulation (left) and in the analytical approximation (right).

Monte Carlo simulation

The filter function H(f) was obtained numerically by computing both Φ and Φ⊥ explicitly in a numerical Monte
Carlo simulation of the K2 AO system, and taking the ratio of the two as in (52). H(f) will in practice not depend
on any of the turbulence parameters r0, L0 or C2

n of the von Karman turbulence model, but only on the shape and
arrangement of the influence functions h, and so we only need to pre-compute one filter function H for each plate
scale and PSF reconstruction grid scale that we want to use. For K2 AO this means 4-5 separate filter functions
which only need to be computed once.

To avoid edge-effects in the simulation I used periodic random phase screens generated by the FFT method and
performed the fitting of the influence functions using an extended actuator grid, covering the entire phase screen.
Using a relatively small computational grid this still required 1600 actuators, the central 325 of which belonged to
a D = 10 m telescope pupil, and the rest only provide boundary conditions (i.e. covering the entire screen with
actuators eliminates boundaries altogether). The influence functions used were of the YAO type (section 3.3) with
20% cross-coupling.

The simulation ran for 50000 iterations over 5000 independently generated screens, where each screen was looped
over for 10 frames while shifting the screen a few pixels. The PSDs are shown in Fig. 1, where the total input
turbulence phase variance was σ2

φ = 10.3 rad2, and the residual fitting error phase variance was σ2
φ⊥ = 0.224 rad2.

Since d/r0 = 1 this implies a coefficient aF = 0.224 which appears to be underestimating the fitting error if the
correct coefficient should be aF = 0.28 (though we might as well question this number instead). We may expect that
this simulation would underestimates the fitting error slightly, since we used a relatively coarse sampling of only 4
pixels per actuator pitch (which cuts off some input power from the PSD). Fig. 2 shows fitting error OTFs, PSFs
and structure functions, comparing the Monte Carlo simulation with method 3 of computing the fitting error, i.e. a
binary mask on the turbulence PSD. It is seen that using a sharp mask on Φ is going to overemphasize the ringing
in the structure function and the OTF, and produce a too sharp inner working region of the PSF. The effect on the
Strehl of the FWHM is negligible, but the detailed structure of the PSF halo is clearly affected by the exact shape
of the PSD mask.

3.3 DM model

The model of DM influence functions hi(x) is relevant in several places in the PSF reconstruction algorithm. They
define the basis of controlled modes (3) for the residual error structure function (12), and thus determine how WFS
signals (including noise, aliasing and turbulence) are propagated into wavefront errors; they define the filter function
for the fitting error, and in some anisoplanatism models define the anisoplanatism error propagated onto controlled
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Figure 3: Influence function models, double-Gaussian Keck model (left), the parameterized YAO model (middle), and a

bilinear spline model (right), showing contour plots of a single influence function (top row) and the corresponding piston mode

produced by a square array of actuators (bottom row). The bilinear spline has no actuator cross-coupling, and produces a

perfect piston mode; the double-Gaussian has a lot of cross-coupling and makes a pretty bad piston; the YAO model lies

somewhere in between, with a modest amount of cross-coupling and a reasonably flat piston mode.

modes. M. van Dam in [40] finds that a combination of two Gaussian functions can be used to approximate the
Xinetics PZT DM in use at the Keck Observatory AO system. This model does not reproduce a piston mode very
well, and it does not model the effect of neighboring actuators in square grid layout, which causes the individual
influence function do deviate from circular symmetry and attain an x/y symmetric shape instead. Recently a modified
Gaussian influence function was presented (Huang et al., “Modified Gaussian influence function of deformable mirror
actuators”, Optics Express 16, 2008), which offers a lot of improvement over the double-Gaussian model. This model
has not yet been implemented or tested within the K2 AO simulation tool, and it is not clear that it would bring
any significant improvement over the YAO model.

We have opted for a different influence function model (taken from the YAO simulation package) that may
improve somewhat upon the drawbacks of the double-Gaussian. The influence function is given by the following
parameterized model:

h(x, y) =
{
g(x)g(y), |x|, |y| ≤ p4

0, elsewhere (55)

where
g(x) = 1 − |x|p1 + p3|x|p2 ln |x|, (56)

where the parameters p1, p2, p3 and p4 are in turn parameterized functions of the coupling constant β. The coupling
constant is the only free parameter of this influence function model, and is typically given a value around ∼ 0.2. This
model has the salient features that it produces a fairly flat and realistic piston mode, and it also progresses from a
mostly radial symmetry in the center to an x/y symmetry at the edges, which is a realistic feature that results from
having a rectangular layout of actuators on the DM. The parameters of the model are given by:

a = [0, 4.49469, 7.25509,−32.1948, 17.9493] (57)
b = [0, 2.49456,−0.65952, 8.78886,−6.23701] (58)
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Figure 4: Schematic of AO temporal control loop (top) and a blowup of the WFS model (bottom). E and G are spatial

matrix mappings, independent of time, while S, R, C and D are temporal filters, generally matrix-valued but assumed in this

analysis to be scalar filters

c = [0, 1.16136, 2.97422,−13.2381, 20.4395] (59)
p1 = a0 + a1β + a2β

2 + a3β
3 (60)

p2 = b0 + b1β + b2β
2 + b3β

3 (61)
p4 = c0 + c1β + c2β

2 + c3β
3 (62)

p3 =
(pp2

4 β − 1 + p−p1
4 )

− log p4
(63)

where the a, b and c parameters were obtained (not by me) from a fitting procedure. This influence function is shown
in the middle panels of Fig. 3, where I also include a simple bilinear influence function (rightmost panels of Fig. 3).

3.4 Covariance matrix 〈εεT 〉
Exact temporal modeling of the residual mode covariance matrix 〈εεT 〉 turns out to be problematic, and most PSF
reconstruction implementations so far have applied varying levels of approximation to this aspect of the system
modeling. Referring to the generic AO block diagram in Fig. 4, we can examine the loop dynamics in terms of
the phase modal coefficients a (input turbulence), c (DM mode) and ε (residual error). The other variables are: s0

is an ideal noise-free and aliasing-free WFS measurement; n is the noise and r is the aliasing, and s is the actual
WFS measurement, assuming the components add linearly; the u and y are internal variables used in defining the
compensator. The s and c vectors are the only ones which we have access to from AO telemetry data, and which we
must employ in order to estimate 〈εεT 〉.

A subtlety to be aware of is that the low- and high-spatial-frequency modal sets φ‖ and φ⊥ were defined by the
DM modal basis hi(x), and strictly speaking this need not be equivalent to the subsets of φ that are aliasing-free
and produce aliasing in the WFS, respectively. Hence, the aliasing r can not be said to have come solely from φ⊥,
since the DM influence functions themselves may produce a (very small) amount of aliasing. In practice, however,
in a Fried-geometry Shack-Hartmann AO system, the modal basis of the DM influence functions and the basis that
is aliasing-free are very close to each other, and to a first-order approximation we can say that aliasing only arises
from φ⊥ (and hence ε⊥).

To remind ourselves of the context, we are trying to calculate 〈εεT 〉 because it arises in the residual wavefront
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error structure function (38) that we defined in Sect. 2.3:

Dε‖(x,ρ) =
Nc∑
i=1

Nc∑
j=1

〈εi(t)εj(t)〉 [hi(x) − hi(x + ρ)][hj(x) − hj(x + ρ)] (64)

Since we can not access directly the vector ε, we need to express the covariance matrix 〈εεT 〉 in other variables
which can be obtained from AO telemetry data, such as u (via s). Examining the block diagrams in Fig. 4 of the
closed-loop AO system and the WFS model, we can write down the following relationships in the temporal frequency
domain (where tilde denotes the temporal Fourier transform):

ε̃ = ã − c̃ (65)
c̃ = D(ω)C(ω)ũ (66)
ũ = R(ω)Es̃ (67)
s̃ = S(ω)(s̃0 + r̃) + ñ (68)

s̃0 = Gε̃‖ (69)

where all the vectors are represented in Fourier domain as functions of the temporal frequency ω, and we omitted
the frequency argument for simplicity. Examples of the temporal filters are given in e.g. [21].

Classical analysis

A classical result useful for AO analysis and simulation, but not so much for PSF reconstruction, is obtained by
combining and rearranging terms into the following closed-loop relation:

[I +DCRESG]ε̃ = ã −DCREñ−DCRESr̃, (70)

where G is the DM-to-WFS interaction matrix and E is the WFS-to-DM wavefront reconstruction matrix. In the
general case, the expression I +DCRESG is matrix valued, and a matrix inverse must be computed for every value
of ω in order to solve for ε. This appears to be impractical, and a common approach to approximate the solution is
to make the following additional assumptions: 1) the transfer functions D, C, R and S are all scalar-valued, and 2)
EG ≈ I. Condition #1 can be met if there is no mix-and-match of different WFS types and DM controllers that
have different sets of parameters (no modal control). Condition #2 must generally be treated as an approximation,
in particular for the standard MAP or SVD estimator this requirement is known to be violated. But accepting it as
an approximation, we can separate the temporal from the spatial operators in (70) and solve for ε simply by scalar
division. The result is:

ε̃(ω) = Hε(ω)ã(ω) −Hn(ω)m̃(ω) −Hε(ω)ṽ(ω), (71)

where Hε = 1/(1+H) is the error transfer function, Hn = DCR/(1+H) is the noise transfer function and H = DCRS
is the open loop transfer function. We also introduced the actuator command vectors m = En and v = Er for the
noise and aliasing error signals propagated onto DM commands. When integrated over the real line, Parseval’s
theorem allows us to equate 〈εiεj〉 = 〈ε̃iε̃∗j 〉, where superscript asterisk ∗ denotes the complex conjugate. We may
invoke this equality here since we know the PSDs must be band-limited, and there is no power in the zero-frequency
component (we remove the DC term). The covariance matrix elements are then

〈εiεj〉 =
∫
dω 〈ε̃i(ω)ε̃∗j (ω)〉 (72)

=
∫
dω |Hε|2 〈ãi(ω)ã∗j (ω)〉 +

∫
dω |Hn|2 〈m̃i(ω)m̃∗

j (ω)〉 +
∫
dω |Hε|2 〈ṽi(ω)ṽ∗j (ω)〉, (73)

where it was assumed that a, m and v are all statistically uncorrelated (which they are). This is a nice expression
for theoretical modeling, but not very useful for PSF reconstruction since it contains the open loop turbulence vector
a which is unknown. The covariance matrix needs to be reformulated in terms of u.



3 COMPONENT MODELING 19

Method 1

For PSF reconstruction, we can explore the direct relation between ε and u that is given by equations (67)-(69),
which reads

ũ = RE [S(Gε̃ + r̃) + ñ] (74)

Without (much) loss of generality we may again assume that the temporal filters are scalar-valued, which gives

EGε̃ =
1
RS

ũ− 1
S

m̃ − ṽ. (75)

This expression can be used to evaluate the covariance matrix 〈εεT 〉 at varying levels of approximation. At the most
drastic level of approximation we ignore the temporal filtering altogether (e.g. assume that the transfer functions
are equal to one), and also invoke as before the approximation EG ≈ I, which gives the simplest possible form:

ε = u − m − v. (76)

In evaluating the covariance matrix one will obtain cross-terms, and it may be a matter of taste or prudence how to
arrange the expression before computing the covariance, which determines whether you will have cross-terms with ε
or with u. The traditional choice has been to compute the cross-terms in terms of ε, and following this pattern we
obtain

〈εεT 〉 = 〈uuT 〉 − 〈mmT 〉 − 〈vvT 〉 − 2〈εmT 〉 − 2〈εvT 〉. (77)

Véran [41] argues that the aliasing terms can be approximated as −〈vvT 〉−2〈εvT 〉 ≈ 〈vvT 〉, and assuming the noise
to be uncorrelated with ε gives the solution:

〈εεT 〉 = 〈uuT 〉 − 〈mmT 〉 + 〈vvT 〉. (78)

Method 2

Keeping the modeling of the aliasing cross-terms as in Method 1, but going back to include the previously omitted
temporal filters, gives the somewhat more complicated expression

〈εiεj〉 = 〈vivj〉 − 〈mimj〉
∫
dω sinc−2(ωT ) +

∫
dω 〈ũi(ω)ũ∗j (ω)〉 sinc−2(ωT ), (79)

where it was assumed that R is a pure delay τ , i.e. R(ω) = exp(−2πiτ) and S(ω) = sinc(ωT ) exp(−iπωT ), so that
taking the modulus squared eliminates the complex exponentials. (see Sect. 3.5 for an evaluation of the cross-term).
It was also assumed that the temporal noise PSD is constant (i.e. white noise – see Sect. 3.7), and the covariance
term could be was extracted from the integral. While this expression invokes different (fewer) approximations, it is
instead rather more demanding to compute since we now need cross-PSDs for all the time series of u. This might
not be so onerous as it sounds though. With 349 actuators we then “only” have a total of 61075 PSDs 〈ũi(ω)ũ∗j(ω)〉
to compute. This is probably quite manageable, since they are computed by 1-dimensional Fourier transforms, they
can be computed off-line, and we probably don’t need very high resolution either (to be verified), since we don’t
expect a lot of power at the lowest temporal frequencies. A real-time calculation it is not, however.

Method 3

This is variation that can be applied equivalently to either Method #1 or Method #2, since it involves only a different
treatment of the spatial operators. The analysis will derived here for Method #1. Up until now we have not cared
about the actual form of the reconstructor E, but we made the statement that EG ≈ I as invoked in both Method
#1 and #2 might be a pretty bad approximation. Assuming a specific form for E we can develop expression (75)
further. Currently in use at the Keck AO system is a MAP estimator of the form

EMAP = (GTC−1
n G+ C−1

c )−1GTC−1
n , (80)

where Cn = 〈nnT 〉 is the noise covariance matrix and Cc = H+〈φ‖φ
T
‖ 〉(H+)T is the open loop phase covariance

matrix mapped onto actuators. Instead of invoking EG ≈ I in (75) we expand the expression, defining for brevity
the matrix A = GTC−1

n G
Aε = (A+ C−1

c )u−GTC−1
n (n + r). (81)
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Assuming that the inverse A−1 exists (A is usually singular, and the inverse can be approximated by SVD), we have
the new expression for the residual mode covariance matrix:

ε = (I +A−1C−1
c )u − EGM(n + r), (82)

where EGM = A−1GTC−1
n = (GTC−1

n G)−1GTC−1
n is the Gauss-Markov estimator. This is only subtly different from

(75) in Method #2, as the approximation now takes place in a different location: instead of invoking EG ≈ I we
have to approximate A−1 by filtering its singular modes in the inversion. I have no idea if this is a better or a poorer
representation, but it would be a simple thing to compare it to Method #1, and all those cross-PSDs are going to
be computed anyway we can also do the comparison with Method #2.

3.5 Spatial aliasing

WFS aliasing covariance matrices are rather difficult to calculate analytically, to say nothing of its cross terms
with other effects. The approach adopted here is to model the aliasing PSD in spatial Fourier domain, obtain the
correlation function by Fourier transform and then propagate the error onto the controlled modes by the inverse of
the influence function matrix. The expression for the WFS aliasing covariance matrix (as was shown in Sect. 3.4)
propagated onto DM actuators is:

〈vivj〉 =
∫
dω T (ω)E〈ri(ω)r∗j (ω)〉ET , (83)

where T (ω) is a temporal filter function. Modeling the cross-PSDs 〈ri(ω)r∗j (ω)〉 appear to be not very straightforward
(I have no idea how to do it), and a different strategy for approximating 〈vvT 〉 will be explored in this section.

There are well-developed spatial Fourier domain models that predict the phase-error PSD resulting from WFS
aliasing. The method I propose here is to use such a PSD-based aliasing model, then by the Wiener-Khinchin theorem
one can obtain the corresponding phase correlation function. This correlation function can then be transformed into
〈vvT 〉 via the inverse of the actuator cross-coupling matrix, which can be generated numerically for a given DM
actuator pattern and DM influence function. The derivation of the PSD is given in Sect. 5 of the appendix
(“Analytical evaluations of closed-loop adaptive optics spatial power spectral densities”). The formula (assuming a
leaky integrator) is given by

Φalias(f) =
0.00575
sinc2(fd)

×
∑

m�=(0,0)

(f−1 · fm)2 sinc2(dfm)
(|fm|2 + f2

0 )11/6

Nl∑
l=1

r
−5/3
0l sinc2(fm · vlti)Bl(fm) (84)

where fm = (fx −m/d, fy = n/d) and d is the sub-aperture size. The function Bl(fm) is the closed-loop attenuation
factor, which in open loop is 1, and which for a leaky integrator has the form

Bl(fm) =
g2

1 − 2a cos bl + a2
, (85)

where a = ξ−g, with ξ being the leak factor and g the loop gain, and bl = 2πfm ·vlti, where ti is the WFS integration
time and vl is the wind profile. This assumes the Taylor hypothesis and a layered turbulence model {r0l, vl}, as
defined in Sect. 3.1. It may be possible to also derive a Bl for a double-pole controller, but I have not attempted
this yet.

The phase variance due to aliasing has been quoted by various authors as σ2
alias ≈ 0.3σ2

fitting for a Shack-
Hartmann WFS. What the closed loop analysis here shows is that this is at best roughly true, and there can be
significant deviations from this rule-of-thumb in certain regions of parameter space (see Fig. 5). It is understood that
the aliasing error is, broadly speaking, anti-correlated with the servo-lag error. At lower frame rates or higher wind
speeds, the orthogonal phase φ⊥ that results in aliasing will be partially averaged out while the WFS is integrating
photons, and hence the aliasing error will decrease (at the expense of an increased bandwidth error). This behavior
is captured realistically by the PSD model (84), as illustrated in Fig. 5. So the first virtue of using this PSD model
is to obtain a more realistic estimate of the total aliasing variance to insert into the PSF reconstruction algorithm,
which accounts for the closed-loop temporal filtering.

Next we can obtain the aliasing correlation function Calias(ρ) by Fourier transform of Φalias(f). Upon reformat-
ting a little, Calias becomes the phase covariance matrix defined at the actuator positions Calias = 〈ϕvϕT

v 〉, where
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Figure 5: Aliasing wavefront error computed from analytical PSDs, as a function of WFS integration time ti and loop gain

g (solid curves are the closed-loop calculation; dashed curves are open loop).

ϕv = Hv (now v is the aliasing command vector, not the wind velocity), and H is the DM influence function matrix.
Conversely, v = H+ϕv, and we finally obtain the aliasing covariance matrix as

〈vvT 〉 = H+〈ϕvϕT
v 〉(H+)T . (86)

The virtue of doing it this way, rather than just taking the aliasing PSD Φalias and computing the OTF directly by
the sequence established in Sect. 2.1, is that error now gets propagated onto the mirror modes properly. In a direct
calculation of the OTF from the PSD we would not be observing the definition of the parallel phase ϕ‖, as the modal
basis of the DM modes. All the same, this 〈vvT 〉 is a model-based approximation to the real aliasing contribution,
since we basically tossed out the originally derived expression in (83) and put in place a whole new estimation of the
term.

3.6 Tilt structure function

The tip/tilt (TT) structure function is stationary and can be taken outside of the OTF integral, even in the non-
stationary computation of the rest of the OTF. The structure function is given by the quadratic form

Dtt(ρ) =
4
R2

[
Γ2

11ρ
2
x + Γ2

22ρ
2
y + 2Γ12ρyρx

]
, (87)

where the gamma coefficients are elements of the covariance matrix

Γ =
[ 〈

c22
〉 〈c2c3〉

〈c3c2〉
〈
c23
〉 ]

, (88)

and c1,2 are the estimated residual tip/tilt coefficients in the phase error expansion ϕtt(x, t) = c2(t)Z2(x)+c3(t)Z3(x),
where the Zernike modes are defined as Z2(x) = 2x and Z3(x) = 2y. Since Dtt is independent of x it can be taken
outside of the OTF integral, under the assumption that ε and c2,3 are orthogonal, i.e. TT has been perfectly filtered
from the DM commands. This may not be completely true, and an alternative approach could include TT in the
non-stationary calculation by appending TT to the DM set h(x) and ε. In the separable case, the quadratic form of
Dtt makes the TT OTF into a Gaussian function, with the width and orientation specified by the covariance matrix
Γ:

〈Btt(ρ/λ)〉 = exp
{
−1

2
Dtt(ρ)

}
(89)

3.7 Noise covariance matrix

The principal noise estimation techniques employed are:

1. Modeling from first principles, detector physics and photon statistics (e.g. Véran et al. 1997 [41], Jolissaint et
al. 2004 [25])

2. Curl calculations (e.g. Tyler 2000 [37] and tOSC reports no. TR-816 and TR-881; also Hardy 1998 [23])
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3. Temporal autocorrelation of control loop variables (e.g. Gendron & Léna 1995 [22], Egner 2004 [??])

The first two methods both suffer from the problematic of accounting for deviations from the ideal, for instance
partially illuminated sub-apertures (at Keck this is a function of time, since the WFS rotates with respect to the
telescope pupil) or spot aberrations. With the physical modeling it is probably impossible to know and model these
imperfections accurately. The curl methods can only estimate an average noise level, and again one must be careful
to exclude sub-apertures that may be corrupted by external effects that produce a non-zero curl not related to either
the noise or the aliasing. The curl method is probably not useful for us in this application.

The average sub-aperture intensity levels are reported by TRS, so could be used as input in method 1. But
there is the additional problem of estimating the spot size with undersampled sub-apertures, since a given pixel-noise
level will translate into varying centroid noise levels depending on the spot size and the centroid gain setting. This
complicates calculations from first principles considerably by introducing another poorly known quantity. There are
proposed methods for estimating the spot size (e.g. TT dithering or slope discrepancy [38]), but their accuracy and
viability are somewhat disputed, and may work even worse with LGS.

The autocorrelation method has the virtue that it (if it worked) would characterize each sub-aperture from the
telemetry data itself without any a priori assumptions, so that particular effects causing the noise level to deviate
from the norm are taken into consideration. It becomes less straightforward in closed loop where the turbulence
correlation is much smaller, and to make the method work a somewhat ad hoc term is applied (Hamilton 1994).
It may be considered whether the method could instead be applied directly to the actuator commands rather than
sub-aperture slopes. While this requires a lot more computation (the matrix is no longer diagonal), we would get the
propagated noise on actuators directly and also avoid the problem of needing to estimate spot sizes, and also avoid
the closed-loop complication. This would be ideal, but unfortunately it has so far proven to be difficult to get good
results from this method.

Physical modeling

Using standard formulas for Shack-Hartmann centroid noise variances from e.g. Hardy 1998 [23], or the more specific
derivations by e.g. Jolissaint et al. 2004 [25]), we use a formula for the centroid standard deviation like

σ2 =
8
π

θ

SNR
, (90)

SNR =
nphot√

nphot +Npix(nbg + e2)
, (91)

where nphot is the sub-aperture photoelectrons count given by TRS, θ is the estimated spot size, nbg is the estimated
number of background photoelectrons per detector pixel, Npix is the number of detector pixels per sub-aperture and
e is the RMS of a Gaussian electronic read-out noise. The noise RMS σ2 multiplied by the centroid gain forms the
RMS noise vector 〈n〉, and we can construct the noise covariance matrix 〈nnT 〉 by populating the diagonal with σ2

2 ,
that is 〈ninj〉 = δijσ

2
2(i), for sub-aperture i. The propagated noise covariance is obtained by multiplying with the

reconstruction matrix E: 〈mmT 〉 = E〈nnT 〉ET .

Curl calculation

(we will not do it this way, but I wrote this down anyway while I was thinking about it)
Vector algebra shows that ∇×∇φ = 0 (curl grad φ = 0) in a simply connected domain φ, which we can exploit as
a constraint on the slope measurement s = ∇φ. In matrix notation, the curl q can be computed on a slope vector s
by a linear operator Q

q = Qs, (92)

where the curl matrix Q has the dimensions Nr ×Nm, the number of curls Nr times the number of measurements
Nm. When implemented in practice, one should also exclude sub-apertures with partial illumination or otherwise
affected to produce a non-zero curl that does not originate from the aliased wavefront measurement or detector noise.
(Question: does the segmented primary mirror or the segment aberrations prevent a curl-based noise estimation from
being carried out?) The WFS slope vector can be written s = s0 + r + n, where s0 is the aliasing-free turbulence
measurement, r is the aliasing vector, and n is the noise. Since Qs0 = 0 and 〈rinj〉 = 0 ∀ {i, j} we have that

q = Qr +Qn (93)
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and

σ2
q = 〈qT q〉 = 〈rTQTQr〉 + 〈nTQTQn〉 (94)

= 〈rTQTQr〉 + Tr(QTQ)σ2
n, (95)

where σ2
n is the noise variance in a single sub-aperture, and we assumed that the noise is uncorrelated between

sub-apertures, i.e. the covariance matrix 〈nnT 〉 = σ2
nI is proportional to the identity matrix. The aliasing may be

correlated across the WFS however. There may be different ways of using this information. If we had a model for the
aliasing curl variance σ2

qr
= 〈rTQTQr〉, we could measure the total curl variance σ2

q and solve for the noise variance:

σ2
n =

σ2
q − σ2

qr

Tr(QTQ)
. (96)

Autocorrelation

We investigate whether this can be done on the actuators, to get the propagated noise directly. The actuator
cross-correlation as a function of time l is

Vxy(l) = N−1
N∑
i=l

(xi − 〈x〉)(yi−l − 〈y〉) (97)

= 〈(xi − 〈x〉)(yi−l − 〈y〉)〉 . (98)

If the loop frame rate is much faster than the turbulence decorrelation time, then the noise level can be approximated
by

Vxy(0) − Vxy(1) = 〈(x0 − 〈x〉)(y0 − 〈y〉)〉 − 〈(x1 − 〈x〉)(y0 − 〈y〉)〉 (99)
= 〈(x0 − x1)(y0 − 〈y〉)〉 (100)
= 〈(x0 − x1)y0〉 , (101)

where it was assumed that 〈x0〉 = 〈x1〉 by ergodicity. The result 101 is straightforward to compute from TRS data
by shifting the telemetry stream one time step, taking the difference and matrix multiplying with itself to give the
actuator noise covariance matrix. This is similar to a high-bandwidth approximation, but we avoid the problem of
estimating centroid gains. At lower bandwidths or shorter turbulence coherence times, one needs to calculate the
cross-correlation at a few more time steps, i.e. Vxy(2), Vxy(3) etc in order to extrapolate by curve fitting the noise-free
correlation at the origin V ′

xy(0). The noise level is then estimated from Vxy(0) − V ′
xy(0), but the remaining problem

not solved here is how to account for temporally filtered noise whose correlation function is not a delta function.

3.8 Other components

r0 and L0 estimation

Method implemented [32, 39], undergoing validation and testing. Algorithm for r0 needs tuning – loop dynamics
not taken out of the estimation (this problem almost exactly the same as the PSF reconstruction problem itself, and
suffers from the same approximations and limitations). Will try to data mine interferometer fringe tracker data for
L0 and correlate with MASS/DIMM measurements and model fitting to get more insights. (code for this)

Static aberrations

Known static aberrations may be included in the OTF calculation by adding a fixed component γ to the phase φ.
This increases the computational load somewhat by making the OTF integrand complex valued, but should not be
an issue. Since γ is not a stochastic variable, it can be taken outside of the ensemble average, and the OTF computed
with the modified pupil function P (x) → P (x) exp[iγ(x)]. These aberrations could include all types of common-path
errors, provided they can be measured or estimated somehow, such as for instance uncorrected segment aberrations.
It is less clear to me how one would try to include non-common path aberrations, such as distortions in the NIRC2
camera. After image sharpening, there will still be higher-order non-common path aberrations, and moreover these
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will vary across the field of view. If the aberrations do not vary over time, it might be possible to map them out
across the focal plane as a set of Zernike coefficients, by doing the image sharpening at multiple locations in the focal
plane. This might allow one to calculate the distortion that should be included in the PSF reconstruction when doing
it for a field position other than the currently calibrated one, as for instance would be the case for anisoplanatic PSF
reconstruction. But even in this case, we can only hope to catch the low-frequency modes that can represented by
the DM, and we have no way of measuring aberrations on higher spatial frequencies that go into the PSF.

Spot size estimation

Maybe like van Dam 2005 [38] (needs to be developed, validated). Doesn’t work with LGS. More on slope discrepancy:
[37]. Alternatively tip/tilt dithering.
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4 Anisoplanatism

This section was originally “Outer scale effects on anisoplanatism in adaptive optics,” R. Flicker, August 21, 2008.

Abstract

The structure functions for angular and focal anisoplanatism in an astronomical adaptive optics system are derived
for the case of a finite outer scale in a von Karman type turbulence model. The results derived are applicable to
the problem of point spread function (PSF) reconstruction and anisoplanatism PSF modeling. The analytical von
Karman model is compared with numerical simulations and with an analytical Kolmogorov anisoplanatism model.
It is found that for 10-meter class telescopes, an outer scale smaller than 30 meters can have a non-negligible impact
on the anisoplanatism PSF estimation, and under these conditions the von Karman structure function model should
be preferred.

Introduction

Astronomical adaptive optics (AO) compensates for turbulence-induced wave-front aberrations in the direction of
a reference light source, most commonly a natural guide star (NGS). Angular anisoplanatism in a conventional
NGS AO system manifests at angular positions on the sky θ = (θx, θy) that are different from the position of the
NGS, which we may take to define the zero position θ = 0 in the following. Wave-fronts propagating at an angle
θ �= 0 through the atmosphere will acquire aberrations from turbulence that are different from those measured
and corrected by the AO system, which gives rise to the field-dependent wave-front error in the telescope pupil
plane that is called anisoplanatism. This paper is cumulative with previous investigations into the properties of
anisoplanatism by deriving two new results, relating to the effects of a finite turbulence outer scale. Most adaptive
optics analysis in astronomy relies on variants of the Kolmogorov turbulence model, which has been experimentally
verified by numerous observations, including [27, 7], but there is still much uncertainty regarding the nature of the
power spectrum at lower spatial frequencies, and the validity of the von Karman outer scale model. To date there
has been no routine outer scale monitoring implemented at astronomical observatories, which makes the outer scale
a poorly known quantity. For the purpose of this paper, however, a simplistic model will adopted wherein the outer
scale is independent of altitude and zenith angle. Both of these constraints can be relaxed and a more detailed model
included in the analysis, should more information on the outer scale become available.

The current investigation is primarily motivated by a problem in point spread function (PSF) reconstruction,
where explicit knowledge of the structure function and a viable way to compute the optical transfer function (OTF)
is required. Pertinent reasons for astronomers for wanting to know the PSF include the potential for more accurate
photometry and astrometry, and improved deconvolution reliability when the PSF is better known, see e.g. [11,
10, 26, 16, 33, 4]. Anisoplanatism in adaptive optics has been analyzed assuming Kolmogorov turbulence statistics
in many previous instances, including comprehensive studies by, e.g., Fried [18], Fried & Belsher [19], Sasiela [31]
and Tyler [36]. These studies are chiefly concerned with calculating phase variances and Strehl ratios directly, in
general not yielding intermediate results that are suitable for the problem of PSF reconstruction. In the Kolmogorov
turbulence model with an infinite outer scale, the angular anisoplanatism structure function was derived by Britton
[6] (see also Sect. 4.1). Of interest to the topic of PSF reconstruction is to know within which parameter space
of outer scale and telescope size the Kolmogorov model remains a good approximation, and beyond which a von
Karman model that incorporates a finite outer scale ought to be applied instead.

4.1 Angular anisoplanatism

Denote the optical phase of the wave-fronts integrated along the line of sight of the AO reference beam “a” and the
observing direction “b” by φa(r, t) and φb(r, t), where r = (x, y) is a spatial coordinate in the telescope pupil plane
and φb is inclined by an angle θ to φa. The instantaneous anisoplanatism phase error φΔ is

φΔ(r, t) = φa(r, t) − φb(r, t), (102)

and the anisoplanatism structure function is given by

DΔ(r1, r2,θ) = 〈|φΔ(r1, t) − φΔ(r2, t)|2〉 (103)
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Figure 6: Left: Angular anisoplanatism (NGS) structure functions for different L0 (cut along the positive x-axis) at θ = 42.4′′.
Angular anisoplanatism (NGS) OTFs for different L0 (cut along the positive x-axis) at θ = 42.4′′.

= 〈|φa(r1)|2〉 + 〈|φb(r1)|2〉 + 〈|φa(r2)|2〉 + 〈|φb(r2)|2〉 (104)
− 2〈φa(r1)φb(r1)〉 − 2〈φa(r2)φb(r2)〉 − 2〈φa(r1)φa(r2)〉 − 2〈φb(r1)φb(r2)〉 (105)
+ 2〈φa(r1)φb(r2)〉 + 2〈φb(r1)φa(r2).〉 (106)

Britton [6], based on the work of Tyler [35, 36], derives the following form for the anisoplanatism structure function
under Kolmogorov turbulence statistics

DΔ(ρ,θ) = 2.91k2

∫ ∞

0

dz C2
n(z)

{
2|zθ|5/3 + 2|ρ|5/3 − |ρ + zθ|5/3 − |ρ − zθ|5/3

}
, (107)

where C2
n(z) is the refractive index structure constant, k = 2π/λ and λ is the imaging wavelength. This structure

function is stationary, since DΔ depends spatially only on the separation ρ = r1 − r2 and not on r1 and r2 inde-
pendently. To include a finite outer scale L0, we must calculate the covariance terms in Eq. (103) using the von
Karman power spectrum. Ellerbroek [12] derives a general expression for a covariance element of the type 〈cicj〉 in
von Karman statistics, where

ci(t) =
∫
drwi(r)φi(r, t), (108)

φi(r, t) = k

∫ ∞

0

dz n[pi(r, z), z, t], (109)

where n is the refractive index along the ray path pi of ray i, and wi is a weighting function. In the form that applies
to the current analysis, the covariance element is calculated by Ellerbroek as

〈cicj〉 = 0.060912k2L
5/3
0

∫∫
dr dr′wi(r)wj(r′)

∫ ∞

0

dz C2
n(z) I[αij(r, r′, z)]. (110)

The function I(α) is given by

I(α) =
α5/6K5/6(α)
25/6Γ(11/6)

, (111)

whereK is a modified Bessel function of the second kind, and the argument αij is given by αij = f0|pi(r, z)−pj(r′, z)|
with f0 = 2πL−1

0 . Note that L0 here denotes the propagated outer scale as observed in optical wave-fronts at the
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Figure 7: Left: Normalized encircled energy of PSF in the analytical von Karman and Kolmogorov models of NGS anisopla-

natism, comparing to the numerical von Karman simulation. Right: Relative PSF error of the analytical von Karman (solid

black line) and Kolmogorov (dashed gray line) models measured against the numerical simulation, for NGS anisoplanatism

(cut of PSFs along the positive x-axis).

ground, and not a physical scale in the atmosphere itself. By specifying the weighting function wi, different types
of covariances can be computed. Setting wi(r) = δ(r − ri), where δ is Dirac’s delta function, turns the covariance
element into the point-wise phase covariance function 〈cacb〉 = 〈φa(r1, t)φb(r2, t)〉, which allows us to evaluate the
anisoplanatism phase structure function as a sum of variants of the general covariance function

〈φa(r1, t)φb(r2, t)〉 = 0.060912k2L
5/3
0

∫ ∞

0

dz C2
n(z) I[αab(r1, r2, z)]. (112)

In ordinary NGS angular anisoplanatism, the geometry of the rays φa and φb is such that pa(r, z) = r and pb(r, z) =
r − zθ. Evaluating the argument α for the ten different covariance terms in Eq. (106) gives:

αaa(r1, r1) = αbb(r1, r1) = 0, (113)
αaa(r2, r2) = αbb(r2, r2) = 0, (114)
αab(r1, r1) = αab(r2, r2) = f0|zθ|, (115)
αaa(r1, r2) = αbb(r1, r2) = f0|r1 − r2|, (116)

αab(r1, r2) = f0|r1 − r2 + zθ|, (117)
αba(r1, r2) = f0|r1 − r2 − zθ|. (118)

We thus retain the property of the Kolmogorov model that the structure function is spatially stationary and only a
function of ρ = r1 − r2. The von Karman anisoplanatism structure function can then be expressed as

DΔ(ρ,θ) = 0.12184k2L
5/3
0

∫ ∞

0

dz C2
n(z) {2I(0) − 2I(f0zθ) − 2I(f0ρ) + I(f0|ρ + zθ|) + I(f0|ρ − zθ|)} , (119)

where ρ = |ρ|, θ = |θ| and I(0) = 3/5. Since the structure function is stationary, the OTF computation required for
PSF reconstruction is straightforward. In practice we calculate the expression by employing the discrete turbulence
model C2

n(z) = μ0

∑
l flδ(z − zl), where zl are the layer altitudes and fl their relative power (

∑
l fl = 1), and

μ0 = 0.06λ2r
−5/3
0 . With this, the integral turns into a summation over a small number of layers, which makes the

structure function readily computable.
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4.2 Focal anisoplanatism

The structure function of focal anisoplanatism in laser guide star (LGS) AO systems can also be modeled using the
methodology developed in Sect. 4.1. In LGS AO, the relative close proximity of the reference source requires us to
treat the wave-front as a propagating spherical wave rather than a plane wave. In the geometric approximation, the
result at the telescope pupil is a transversal scale change (magnification) of the wave-front, equal to 1 − z/H , if H
is the range of the LGS. The wave-front error resulting from wave-front sensing on a conical beam is called focal (or
focus) anisoplanatism, or the cone-effect.

For a LGS AO system, we can derive the focal anisoplanatism structure function in the von Karman model using
again the covariance element in Eq. (110). For generality we may include an additional angular offset θ, thereby
combining angular and focal anisoplanatism, whereby pa(r, z) = r(1 − zH−1) and pb(r, z) = r − zθ. This describes
the intersection of a conical beam on the optical axis with a cylindrical beam offset by θ. The shorthand notation
γ = zH−1 will be used. The argument αij for the different covariance terms now evaluates to

αab(r1, r1) = f0|γr1 − zθ|, (120)
αab(r2, r2) = f0|γr2 − zθ|, (121)
αaa(r1, r2) = f0|r1 − r2|(1 − γ), (122)
αbb(r1, r2) = f0|r1 − r2|, (123)
αab(r1, r2) = f0|r1 − r2 − γr1 + zθ|, (124)
αba(r1, r2) = f0|r1 − r2 + γr2 − zθ|. (125)

We can see that the structure function will be non-stationary in this case. Changing variables according to x = r1

and ρ = r1 − r2 gives the final result

DΔ(x,ρ,θ) = 0.12184k2L
5/3
0

∫ H

0

dz C2
n(z) {2I(0) − I(f0ρ) − I[f0ρ(1 − γ)] + I(f0|ρ − γx + zθ|) (126)

− I(f0|γx − zθ|) − I(f0|γ(ρ − x) − zθ|) + I(f0|(1 − γ)ρ + γx− zθ|)} . (127)

This expression reduces to Eq. (119) when γ = 0. For PSF reconstruction, the non-stationary structure function
does not need to be computed explicitly, only point-wise in order to evaluate the OTF integral

〈B(ρ/λ,θ)〉 =
∫
dxP (x)P (x + ρ) exp

[
−1

2
DΔ(x,ρ,θ)

]
, (128)

where P is the aperture transmission function and 〈B〉 is the long-exposure OTF. The validity of Eq. (128) rests
on the assumptions that there is no scintillation and that the residual phase φΔ follows Gaussian statistics. A
common technique for computing the OTF from a non-stationary structure function is to invoke the pupil-averaging
approximation, as introduced by Véran [41]. Advances in computing power have partly rendered this approximation
unnecessary, and the focal anisoplanatism OTF can be readily computed point-wise using the exact expressions in
Eq. (127) and Eq. (128).

4.3 Sample numerical results

Figures 6-10 present some sample numerical results, comparing the analytical von Karman model in Eq. (119) and
Eq. (127) to numerical Monte Carlo simulations, and in the case of NGS angular anisoplanatism also comparing to
the analytical Kolmogorov model in Eq. (107). For all numerical results, the W.M. Keck Observatory (WMKO)
telescope and AO system was used as the model, which gives the characteristic PSF shape shown in Fig. 8. The
turbulence model was the 7-layer Mauna Kea Ridge (MKR) model1 with an overall r0 = 0.16 m, θ0 = 2.57′′ and
d0 = 4.65 m (for a definition of these quantities see e.g. [23]). All calculations were done at 2 μm imaging wavelength
and at zenith, and the LGS beacon altitude was 90 km. The PSFs were computed at three evaluation points
(θx, θy) = {(0, 0), (15, 15), (30, 30)}, equaling radial off-axis offsets of, respectively, 0, 21.2 and 42.4 arc seconds. The

1The MKR model was produced within the framework of the WMKO Next-Generation Adaptive Optics (NGAO) project in collabo-
ration with the Thirty-Meter Telescope (TMT) site monitoring campaign, by use of their MASS/DIMM instrument on Mauna Kea. The
statistical data are currently proprietary of TMT and are therefore not reproduced in this paper.
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Figure 8: Focal and angular anisoplanatism PSFs (0.73 × 0.73 arc second field of view) in the analytical von Karman model

with L0 = 36 m, at (0, 0), (15, 15) and (30, 30) arc seconds.

outer scale in the analytical von Karman calculations varied between L0 = {1000, 100, 36, 18} meters, while the
numerical simulation only produced results at L0 = {36, 18} meters (since the phase screens were FFT-based with a
length of 72 meters).

An overview of Strehl ratios obtained in the various cases are given in Table 1, showing exancellent agreement
between the analytical von Karman model and numerical simulations. The von Karman model also reproduces the
Kolmogorov result at very large outer scales. The effect of the finite outer scale on the structure function and the OTF
can be plotted in the case of NGS anisoplanatism (since it is stationary), as shown in Figs. 6 and 6. Figures 7 and
9 plot the relative PSF error, i.e. the normalized PSF subtraction computed as (numerical− analytical)/numerical,
for a line segment of the PSFs (the positive x-axis). While in some parts the reported numbers may seem large (0.5
implies a 50% error), the relative error in the PSF halo should be weighted by the fact that the energy levels are
two or three orders of magnitude lower than in the central region of the PSF. The encircled energy curves in Fig. 7
and 10 also show that even when the relative error in the wings of the PSF is large, this still amounts to a negligible
error in an absolute sense. As long as the overall energy distribution is correct, a small error in the PSF halo has
no impact on the encircled energy. Even in the worst case considered (dashed gray curves in Fig. 9 and 9), the
analytical von Karman model is still very accurate and the error practically negligible.

NGS anisoplanatism 0′′ 21.2′′ 42.4′′

analytical Kolmogorov
L0 = ∞ 1.000 0.343 0.101
analytical von Karman
L0 = 1000 1.000 0.343 0.101
L0 = 100 1.000 0.350 0.106
L0 = 36 1.000 0.380 0.127
L0 = 18 1.000 0.438 0.183
numerical von Karman
L0 = 36 1.000 0.383 0.127
L0 = 18 1.000 0.442 0.183
LGS anisoplanatism 0′′ 21.2′′ 42.4′′

analytical von Karman
L0 = 36 0.782 0.387 0.143
L0 = 18 0.803 0.440 0.192
numerical von Karman
L0 = 36 0.791 0.385 0.137
L0 = 18 0.812 0.445 0.192

Table 1: NGS and LGS anisoplanatism Strehl ratios, comparing analytical predictions to numerical simulations, for different

outer scales and different off-axis angles θ.
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Figure 9: Left: Sample LGS anisoplanatism PSF profile (cut along the positive x-axis), comparing the numerical simulation

(solid black line) and the analytical von Karman model. Right: Relative PSF error of the analytical von Karman model for

LGS anisoplanatism, measured against the numerical simulation for the θ = 0′′ and θ = 21.2′′ cases (cut of PSFs along the

positive x-axis).

4.4 Conclusions

Structure functions for angular and focal anisoplanatism were derived analytically including a finite outer scale in
a von Karman type turbulence model. The analytical result is in excellent agreement with numerical Monte Carlo
simulations, and offers an analytical method to produce anisoplanatism kernels for PSF reconstruction problems
and PSF modeling in general. The model may replace Kolmogorov-based models where the impact of a finite outer
scale becomes non-negligible. In the current investigation it is found that for 10-meter-class telescopes, an outer
scale smaller than ∼30 meters may have a non-negligible impact on the anisoplanatism estimation, and under these
conditions the von Karman model should be preferred.

Not taken into account in the current analysis is the spatial filtering of the wave-front performed by the AO
system. This effect can be accounted for by setting the weighting functions wi equal to the deformable mirror
(DM) influence functions in Eq. (110). This renders the structure function non-stationary, but in the case of NGS
anisoplanatism the expression can still be put on a form that allows for a relatively efficient computation of the
OTF. For completeness, this result is given in Appendix A, but the method is unlikely to be employed for PSF
reconstruction since: 1) in the case of focal anisoplanatism, the expression becomes computationally expensive and
impractical for PSF reconstruction, so the approximation in Eq. (127) must be invoked in any case, and 2) the
effect is small in high-order AO systems that have d/r0 < 1, where d is the DM actuator spacing. As shown in Fig.
10, the effect of spatial filtering is to reduce the amount of scattered light from anisoplanatism in the PSF halo,
which should be modeled by the fitting error instead. If the fitting error is small, however, omitting spatial filtering
in the anisoplanatism model has a small effect on the the PSF structure, on the Strehl ratio, and on the resulting
photometry estimates produced with this model. For the current WMKO AO system (d = 0.56 m), in this model
the LGS Strehl ratio at L0 = 36 m at the three evaluations points without spatial filtering is [0.792, 0.384, 0.134],
and with spatial filtering they are [0.829, 0.416, 0.0.147]. Given that the added complexity of trying to model this
effect realistically makes it impractical for LGS PSF reconstruction, one possible compromise might be to use the
unfiltered models derived in Sect. 4.1 and Sect. 4.2, and implement a heuristic adjustment to the fitting error in
order to account for the fact that some high-spatial-frequency wavefront error is added by the anisoplanatism term.
This route is being further investigated within the PSF reconstruction project that motivated the current research.
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Figure 10: Left: Normalized encircled energy of PSF in the analytical von Karman model of LGS anisoplanatism, comparing

to the numerical von Karman simulation. Right: Simulation showing the effect of spatial filtering on LGS anisoplanatism.

4.5 Spatial filtering

In a real AO system, anisoplanatism manifests only on the subspace of controlled modes. Applying the full power
spectrum of turbulence will overestimate the anisoplanatism error by counting the fitting error to the anisopla-
natism error budget. If the fitting error is small, this approximation might be acceptable. In order to project the
anisoplanatism wave-front error onto controlled modes we rewrite Eq. (102) as

φΔ(r, t) = φ‖a(r, t) − φ‖b(r, t), (129)

where the notation symbolizes that we have retained only the low-frequency (controlled) part φ‖ of the decomposition
φ = φ‖ + φ⊥. This splitting of the phase into two orthogonal components in spatial frequency domain is common
in AO PSF modeling and PSF reconstruction methodology, see e.g. [29, 41, 25, 20]. In practice the domain of φ‖ is
defined as the vector space spanned by the set of Na influence functions {hi(r)}Na

i=1 of the DM. Defining wi as the
piston-removed influence function, we have the relations

φ‖a(r, t) =
Na∑
i=i

ai(t)wi(r), (130)

ai(t) =
∫
drwi(r)φa(r, t), (131)

wi(r) = P (r)[hi(r) − pi], (132)

pi =
∫
drP (r)hi(r)∫
drP (r)

, (133)

where pi is the piston of each mode and {ai}Na

i=1 is a set of expansion coefficients (i.e. actuator commands). Analo-
gously, the off-axis beam φb is projected onto the set {bi}Na

i=1. The covariance function now has the general form

〈φ‖a(r1)φ‖b(r2)〉 =
Na∑
i=1

Na∑
j=1

〈aibj〉wi(r1)wj(r2). (134)

The covariance matrix 〈aibj〉 is calculated from Eq. (110). When Eq. (130) is substituted into the expression for
the structure function, ten terms of the form above result, containing the two covariance matrices Aij = 〈aiaj〉 and
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Bij = 〈aibj〉. Defining the function Vij(θzl) as

Vij(θzl) = 0.144
(
L0

r0

)5/3

[wi ∗ I ∗ wj ](θzl), (135)

where asterisk (∗) denotes a two-dimensional convolution and I is the function defined in Eq. (111), we have that

Aij = Vij(0), Bij =
Nl∑
l=1

flVij(θzl). (136)

Collecting and factoring terms, the structure function can then be expressed as

DΔ(r1, r2,θ) =
Na∑
i=1

Na∑
j=1

(2Aij −Bij −Bji) [wi(r1) − wi(r2)] [wj(r1) − wj(r2)] . (137)

Introducing the notation Q for the field-dependent symmetric matrix Q = 2A−B−BT and performing the variable
substitution {x = r2,ρ = r1 − r2} gives

DΔ(x,ρ,θ) =
Na∑
i=1

Na∑
j=1

Qij [wi(x) − wi(x + ρ)] [wj(x) − wj(x + ρ)] . (138)

Readers familiar with PSF reconstruction techniques may recognize this form, as it appears in e.g. [41] before the
pupil-averaging approximation is applied. Using the results of Gendron et al. [20] we can compute the OTF without
invoking the pupil-averaging approximation. By diagonalizing the covariance matrix Q = SΛST , with {σk}Na

k=1 being
the singular values of the diagonal matrix Λik = δikσk, we obtain the transformed modal basis

h′k(x) =
Na∑
i=1

Sikwi(x). (139)

In this basis, the structure function can be expressed in the computationally tractable form

DΔ(x,ρ,θ) =
Na∑
k=1

σk |h′k(x) − h′k(x + ρ)|2 , (140)

which enables the OTF to be calculated efficiently. This method is computationally viable to be employed for
PSF reconstruction from non-stationary structure functions in general, and not just anisoplanatism, so long as the
structure functions can be expressed on the general form in Eq. (138).

4.6 Addendum: alternative anisoplanatism models

In addition to the above demonstrated structure function based anisoplanatism models, there is a simpler PSD based
model that can be used with a high degree of realism for the case of NGS. The advantage of the PSD model is that
it is vastly easier and faster to compute, but unfortunately no simple LGS model exists. In a geometric model of
wavefronts propagating at an angle θ through the atmosphere, the integrated phase in the telescope pupil plane
(h = 0) on the controlled subspace is

φ‖(x,θ, t) =
Nl∑
l=1

φ‖(x − hlθ, t, hl). (141)

The anisoplanatism error is given by

φΔ(x,θ, t) = φ‖(x, 0, t) − φ‖(x,θ, t), (142)



4 ANISOPLANATISM 33

whose spatial Fourier transform is

φ̃Δ(f ,θ, t) =
Nl∑
l=1

φ̃‖(f , t, hl) [1 − exp(−2πihlθ · f)] , (143)

and the anisoplanatism error PSD is

ΦΔ(x,θ) = 2
Nl∑
l=1

〈
φ̃‖(f , t, hl)φ̃∗‖(f , t, hl)

〉
[1 − cos(2πhlθ · f)] , (144)

assuming the Taylor hypothesis of uncorrelated turbulence layers 〈φ(hl)φ(hk)〉 = δhk〈|φ(hl)|2〉. Invoking the discrete
turbulence model (50) gives the simple expression

ΦΔ(f ,θ) = 2[1 −H(f)]Φ(f)
Nl∑
l=1

fl [1 − cos(2πhlθ · f)] , (145)

where fl is the fractional layer turbulence strength (
∑

l fl = 1), Φ(f) is the von Karman PSD as defined in (47)
and H(f) is the DM spatial filtering function as defined in Sect. 3.2. When a realistic filtering function is used, this
simple expression can give a result very close to the much more complicated structure function based analysis with
spatial filtering given in Sect. 4.5. Unfortunately this result is not easily extended to focal anisoplanatism. For LGS,
the phase is

φ‖(x,θ, t) =
Nl∑
l=1

φ‖[γl(x − hlθ), t, hl], (146)

where γl = 1 − hl/H , and H is the beacon altitude. The Fourier transform is

φ̃‖(f ,θ, t) =
Nl∑
l=1

αlφ̃‖(αlf , t, hl) exp(−2πihlαlθ · f), (147)

where the notation αl = γ−1
l was introduced. The anisoplanatism error in Fourier domain is then

φ̃Δ(f ,θ, t) =
Nl∑
l=1

[
φ̃‖(f , t, hl) − αlφ̃‖(αlf , t, hl) exp(−2πihlαlθ · f)

]
, (148)

and the PSD is

ΦΔ(x,θ) = Φ‖(f) +
Nl∑
l=1

α2
l Φ‖(αlf , hl) − 2

Nl∑
l=1

αl Re
(〈
φ̃‖(f , t, hl)φ̃∗‖(αlf , t, hl)

〉
exp(−2πihlαlθ · f)

)
. (149)

The first two terms can be computed semi-analytically by applying the DM filter function H (cf. Sect. 3.2) to Φ(f)
and Φ(αf) based on the analytical form of the von Karman PSD, but I do not know how to evaluate the cross-PSD
in the third term, so we are stuck there.
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5 Fourier domain PSD modeling

This section was originally “Analytical evaluations of closed-loop adaptive optics spatial power spectral densities,”
R. Flicker, 8 February, 2008.

This note rederives and corrects some errors in the analytical expressions for the spatial frequency power spectral
densities (PSDs) of servo-lag, noise and spatial aliasing, as previously given in [17, 15]. In addition, the same
methodology is also applied to the problem of incoherent segment vibrations, and closed-loop PSDs are dervied for
this effect. The work in [17] was based on and a development of the initial studies presented in [29]. The current
results may be compared and contrasted to those in [24].

5.1 Fourier domain modeling

The basics

The residual phase ϕc after AO correction is ϕc = ϕ− ϕ̂, where ϕ is the incoming turbulent phase and ϕ̂ is the AO
estimated phase. The AO phase estimation involves the temporal and spatial operators I, M and R as described
below, so that ϕ̂ = R{M[I(ϕ)] + ν}, where ν is an additional WFS noise. The phase is split into a low-frequency
and a high-frequency part according to ϕ = ϕ‖ + ϕ⊥, separated by the spatial cut-off frequency fc = 1/2d of the
AO system, where d is the WFS sub-aperture size as well as the DM actuator spacing. The wavefront measurement
and reconstruction operators M and R are defined so that the low-frequencies within the range of AO attenuation
are perfectly measured and reconstructed, i.e. R[M(ϕ‖)] = ϕ‖. With these definitions, the residual phase can be
written:

ϕc = ϕ⊥ + ϕ‖ − I(ϕ‖)︸ ︷︷ ︸
servo−lag

−R{M[I(ϕ⊥)]}︸ ︷︷ ︸
aliasing

−R(ν). (150)

The first term is the fitting error, and the last term is the noise error. Anisoplanatism may also be added as an extra
term, but we will not be concerned with anisoplanatism in this text (and its formula is trivial in any case). The
spatial PSD of the residual error is calculated as

Φ = 〈|ϕ̃c|2〉 =
〈∣∣F [ϕ⊥ + ϕ‖ − I(ϕ‖) −R{M[I(ϕ⊥)]} −R(ν)

]∣∣2〉 (151)

≈
〈
|ϕ̃⊥|2

〉
+
〈∣∣ϕ̃‖ − I(ϕ̃‖)

∣∣2〉+
〈∣∣∣R̃M̃[I(ϕ̃⊥)]

∣∣∣2〉+
〈∣∣∣R̃ν̃∣∣∣2〉 (152)

where Fourier transform is denoted interchangably by tilde ∼ or by F , and the approximation sign signifies that we
have discarded all the cross-terms. This is mostly an acceptable approximation, even though we know that there are
subtle correlations between some of the terms (e.g. between aliasing and servo-lag).

Taylor hypothesis

For the atmospheric turbulence part of the analysis, the method assumes the Taylor hypothesis of Nl discrete
turbulence layers with frozen flow. Ignoring anisoplanatism (i.e. doing all calculations for a fixed θ) and introducing
the wind velocity profile vl, we obtain the phase summed over layers after an arbitrary time delay τ as

ϕ(x, t) =
Nl∑
l=1

ϕl(x − vlτ, t), (153)

which has the Fourier transform

ϕ̃(f , t) =
Nl∑
l=1

ϕ̃l(f , t) exp(2πif · vlτ). (154)

It is assumed that each layer ϕl follows von Karman turbulence statistics independently and with separate power,
i.e.

〈ϕ̃l
†ϕ̃l〉 =

0.023

r
5/3
0l

(f2 + f2
0 )−11/6 (155)

where f0 = 1/L0 and L0 is the turbulence model outer scale, and r0l is the Fried parameter per layer l. The dagger
(†) indicates Hermitian conjugate for the case of vectorial variables, and the ordinary complex conjugate for scalar
functions.
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5.2 Operators

The operator formalism used in the derivations are reviewed here.

Operators: spatial

For a mean-gradient type wavefront sensor, with rectangular sub-apertures in a regular rectangular grid, the mea-
surement operator M is (see [17]):

M = comb × [Π ∗ ∇], (156)

which has the Fourier transform
F [M] = comb ∗ [Π̃ × ∇̃], (157)

since the comb function is its own Fourier transform (see below). The corresponding functions (and their abbreviated
notations) are:

Π
(x
d

)
=

{
1, |x|, |y| ≤ d/2
0, otherwise , (158)

∇ =
∂

∂x
=
[
∂

∂x
,
∂

∂y

]
, (159)

comb
(x
d

)
=

∑
m

δ
(x
d
− m

)
=

+∞∑
m=−∞

+∞∑
n=−∞

δ
(x
d
−m

)
δ
(y
d
− n
)
, (160)

where boldface denotes a (2-element) vector. The spatial plane coordinate is x = (x, y), with the Fourier conjugate
spatial frequency variable f = (fx, fy). The Fourier transforms of (158)-(160) are:

Π̃(fd) = sinc(fd) =
sin(πfxd)
πfxd

× sin(πfyd)
πfyd

, (161)

∇̃ = 2πif = 2πi[fx, fy], (162)

F [comb](fd) =
∑
m

δ(fd− m). (163)

A wavefront reconstructor may be defined as the operator R that fulfills R[M(ϕ‖)] = ϕ‖). The Fourier domain
recostructor that does this is

R̃ =
f−1

4πi sinc(fd)
. (164)

Operators: temporal

The measurement operator M in (156) only represents the spatial wavefront sampling. To account for the finite
integration time ti of the WFS we must evaluate various integrals of the type given below, represented by the WFS
temporal integration operator I:

In(ϕ̃) =
1
ti

∫ +ti/2

−ti/2

dτ ϕ̃(f , t− td − nti − τ), (165)

where td is an additional temporal delay due to e.g. CCD read-out, centroiding and reconstruction computations.
We expressed this directly in the spatial Fourier domain, because that is the most useful form for evaluating the
PSDs. The integer index n was included for generality and to show the relation to the closed loop function Gn (see
section 5.2), but for the remainder of this section we set n = 0 for brevity. Using the result (154) gives

Io(ϕ̃) =
1
ti

Nl∑
l=1

ϕ̃l(f , t) exp(2πif · vltd)
∫ +ti/2

−ti/2

dτ exp(2πif · vlτ)︸ ︷︷ ︸
I′

. (166)
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The remaining integral I ′ can be evaluated to

I ′ =
1

2πif · vl
[exp(πif · vlti) − exp(−πif · vlti)] (167)

=
sin(πf · vlti)

πf · vl
= ti sinc(f · vlti), (168)

and the whole expression becomes

I0(ϕ̃) =
Nl∑
l=1

ϕ̃l(f , t) sinc(f · vlti) exp(2πif · vltd). (169)

Closed loop

A simple model of closed loop operation is derived here. For a leaky integrator with a gain g and a leak factor ξ,
the mirror shape s(x, t) at any time step nti is computed as (omitting an additional time delay td and the spatial
variable x for brevity)

s(t− nti) = ξs[t− (n+ 1)ti] + gϕ̂[t− (n+ 1)ti], (170)

where ti is the WFS integration time, and ϕ̂ is the AO estimated residual wavefront error. To simplify even more
we will use the abbreviated notation

sn = ξsn+1 + gϕ̂n+1, (171)

which allows us to write compactly ϕ̂n = Gn − sn. The function Gn can be thought of as a composite operator, for
instance it may be the open-loop reconstruction of the wavefront:

Gn = R{M[In(ϕ)]}. (172)

But in order to represent the closed-loop effect on different AO errors, Gn will later take on different forms. From
the recursive relation (171) it is easy to show that (cf. [17]) the present mirror shape s0 after N time steps is given
by

s0 = (ξ − g)NsN + g

N∑
n=1

Gn(ξ − g)n−1. (173)

Obviously ξ < g must be observed for this to converge. If the AO system is operating in a steady state far enough
away from the startup phase, so that initial conditions no longer matter, we can for any 0 < g < l approximate
N ≈ ∞, which gives

s0 = g

∞∑
n=1

Gn(ξ − g)n−1. (174)

5.3 PSD evaluations

5.3.1 Servo-lag

In this section ϕ = ϕ‖ (and we omit the subscript ‖). The closed-loop expression for the servo-lag error PSD Φsl is

Φsl(f) =
〈
|F {ϕ(x, t) − s0(x, t)}|2

〉
. (175)

In this case we have that the closed loop operator is Gn = R[M(In)], cf. equations (174) and (169), which simplifies
to Gn = In upon invoking the reconstruction condition R[M(ϕ‖)] = ϕ‖. This is saying that we just have to give the
temporal WFS measurements the closed-loop treatment. Applying the Fourier transform and writing it out gives

Φsl(f) =

〈∣∣∣∣∣
Nl∑
l=1

ϕ̃l(f , t) −
Nl∑
l=1

ϕ̃l(f , t) sinc(f · vlti) g
∞∑

n=1

(1 − g)n−1 exp[2πif · vl(td + nti)]

∣∣∣∣∣
2〉

(176)

=

〈∣∣∣∣∣
Nl∑
l=1

ϕ̃l(f , t)

[
1 − sinc(f · vlti) g

∞∑
n=1

(1 − g)n−1 exp[2πif · vl(td + nti)]

]∣∣∣∣∣
2〉

(177)
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=
Nl∑
l=1

Nl∑
k=1

〈
ϕ̃†

l (f , t)ϕ̃k(f , t)
〉

Γ†
l (f)Γk(f), (178)

where we defined

Γl(f) = 1 − sinc(f · vlti) exp(2πif · vltd) g
∞∑

n=1

(ξ − g)n−1 exp(2πif · vlnti). (179)

Separate turbulence layers are assumed to be uncorrelated, i.e. 〈ϕlϕk〉 = 〈|ϕl|2〉δkl, so this simplifies to the tubulence
PSD (155) and removes one summation. Defining a = ξ − g and bl = 2πf · vlti, the summation over n in expression
(179) can be written

Sl = a−1
∞∑

n=1

aneinbl (180)

= a−1
∞∑

n=1

an(cosnbl + i sinnbl), (181)

This can be evaluated as two Fourier series that have closed analytical forms:
n∑

k=0

rk cos kx =
(1 − r cosx)(1 − rn cosnx) + rn+1 sinx sinnx

1 − 2r cosx+ r2
, (182)

n∑
k=1

rk sinkx =
r sinx(1 − rn cosnx) − (1 − r cosx)rn sinnx

1 − 2r cosx+ r2
(183)

These sums will convege as n → ∞ for any |r| < 1. Evaluating the asymptotic forms, substituting back into (181)
and combining terms gives eventually

Sl =
eibl − a

1 − 2a cos bl + a2
. (184)

We can now jump to the final form of the PSD directly:

Φsl(f) =
0.023

(f2 + f2
0 )

×
Nl∑
l=1

r
−5/3
0l |Γl(f)|2 , (185)

where

Γl(f) = 1 − sinc(f · vlti) exp(2πif · vltd) × g(eibl − a)
1 − 2a cos bl + a2

(186)

with a and bl defined as above.

5.3.2 Noise

For WFS noise the function Gn = R(νn), and the closed-loop PSD is given by

Φnoise(f) =
〈
|F {s0(x, t)}|2

〉
(187)

=

〈∣∣∣∣∣F
{
g

∞∑
n=1

(1 − g)n−1R[νn(x, t)]

}∣∣∣∣∣
2〉

(188)

= g2R̃†R̃
∞∑

m=1

∞∑
n=1

(1 − g)m+n−2
〈
ν̃†m(f , t) ν̃n(f , t)

〉
. (189)

Assuming spatially and temporally uncorrelated noise we have that
〈
ν̃†mν̃n

〉
= δmnΦν , the power spectrum of the

input noise ν. Defining a = (1 − g)2 we have that

Φnoise(f) = g2R̃†R̃Φν(f)
∞∑

n=1

a(n−1). (190)
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The sum is a geometric series with the closed form 1/(1 − a), and substituting the form for the reconstructor from
(164) gives the final expression

Φnoise(f) =
g

2 − g
× Φν(f)

sinc2(fd)

(
1
f2

x

+
1
f2

y

)
. (191)

5.3.3 Aliasing (open loop)

In this section ϕ = ϕ⊥ (and we drop the subscript ⊥), and Gn = R[M(In)], because perfect reconstruction can no
longer be invoked. This, generally speaking, leads to a mess. Doing the calculation first for the open-loop case (the
closed loop adjustment will be easier to implement afterward this way), the form of the PSD is

Φalias(f) =
〈
|F {s0(x, t)}|2

〉
=
〈∣∣∣R̃M̃[In(ϕ̃)]

∣∣∣2〉 . (192)

Taking this one step at a time, we have that

M̃[I0(ϕ̃)] = comb(fd) ∗ [sinc(fd) × 2πifI0(ϕ̃)] . (193)

Introducing the shorthand notation fm = f − md−1, we can evaluate this as

M̃[I0(ϕ̃)] = 2πi
∑
m

fm sinc(dfm)
Nl∑
l=1

ϕ̃l(fm, t) sinc(fm · vlti) exp(2πifm · vltd). (194)

Including the reconstructor we can write

R̃M̃[I0(ϕ̃)] =
1

2 sinc(fd)
×
∑
m

A(fm, t)
Nl∑
l=1

ϕ̃l(fm, t)El(fm, t), (195)

where we defined the two quantities

A(fm, t) = (f−1 · fm) sinc(dfm), (196)
El(fm, t) = exp(2πifm · vltd) sinc(fm · vlti). (197)

Evaluating the modulus squared and applying ensemble averaging gives

Φalias(f) =
1

4 sinc2(fd)
×
∑
m

∑
m′

∑
l

∑
l′
A†(fm, t)A(fm′ , t)E†

l (fm, t)El′ (fm′ , t)
〈
ϕ̃†

l (fm, t)ϕ̃l′(fm′ , t)
〉
. (198)

We are saved from total catastrophe by assuming that separate turbulence layers are uncorrelated, and that turbulence
at different spatial frequencies are uncorrelated also. The last term then becomes 〈ϕ̃†

lmϕ̃l′m′〉 = δll′δmm′〈|ϕ̃lm|2〉, and
the El term loses its complex exponential to the modulus, which leaves the almost manageable final expression:

Φalias(f) =
0.00575
sinc2(fd)

×
∑

m�=(0,0)

(|fm|2 + f2
0 )−11/6(f−1 · fm)2 sinc2(dfm)

Nl∑
l=1

r
−5/3
0l sinc2(fm · vlti). (199)

Note that the origin {m = 0, n = 0} is exluded from the double sum, but otherwise it runs over infinity. The terms
of the sum quickly tend toward zero thanks to the steep power law of Kolmogorov turbulence, so in practise no more
than a handful of terms need to be summed in each direction; this makes the expression possible to compute.

5.3.4 Aliasing (closed loop)

Looking to the closed loop modifications, we are now rewarded for having done most of the cumbersome calculations
already. The adjustment is simplest to account for by entering it into equation (197) of the El term by simply
substituting

exp(2πifm · vltd) → g

∞∑
n=1

(ξ − g)n−1 exp[2πifm · vl(td + nti)] (200)

= g exp(2πifm · vltd) × eibl − a

1 − 2a cos bl + a2
. (201)
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Figure 11: Servo-lag (black line), noise (red) and aliasing (orange) wavefront errors as functions of the integrator gain g (left)

and the WFS integration time ti (right).

We had evaluated the sum already in the expression (186) for Γl, and the form (169) is retained with f replaced by
fm in the definition of bl. We now re-evaluate E†

l El. Defining c = 2πfm · vltd and z = eic(eibl − a) as the complex
numerator of (201) we have that

z†z = e−ic(e−ibl − a) × eic(eibl − a) (202)
= 1 + a2 − a(eibl + e−ibl) (203)
= 1 + a2 − 2a cos bl, (204)

which is exactly the denominator of (201). Hence the modified expression for E†
l El in closed loop is simply

E†
l (fm, t)El(fm, t) =

g2 sinc2(fm · vlti)
1 − 2a cos bl + a2

, (205)

And the closed loop aliasing PSD is finally

Φalias(f) =
0.00575
sinc2(fd)

×
∑

m�=(0,0)

(f−1 · fm)2 sinc2(dfm)
(|fm|2 + f2

0 )11/6

Nl∑
l=1

r
−5/3
0l

g2 sinc2(fm · vlti)
1 − 2a cos bl + a2

, (206)

where a = ξ − g and bl = 2πfm · vlti.
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6 Null-mode tilt anisoplanatism

This section was originally “Analysis of low-order tomography errors in LTAO systems,” R. Flicker, 14 September,
2007.

6.1 Introduction

This working note is an addendum to KAON 492, wherein the NGAO wavefront error resulting from tomographic
null-modes was discussed and analyzed briefly. This update comments on a number additions to the simulation
code, with the aim to improve its realism and make it useful for system design, science simulations and observation
planning. The major changes that have taken place are:

• Zernike interaction matrices are now generated by the monomial transformation method used in Clare 2006[8],
which makes this part of the code much faster.

• The code now includes correction terms from control loop dynamics as in Flicker & Rigaut 2001[13], which
require temporal Zernike PSDs to be generated, which makes the code much slower. The PSDs only need to
be computed once for each wind profile, however.

• In addition to the purely geometrical least-squares estimator, it now also offers a Gauss-Markov (noise-weighted
LSQ) and a Bayesian (maximum a posteriori, MAP) estimator.

• Appended to the end of the code is now also a tip/tilt PSF reconstruction algorithm that can produce a grid
of Gaussian PSF kernels that describe the tilt anisoplanatism over the field of view, also from [13].

• The high-order LGS system is now also included in the noise/servo-lag calculation, since noise on the high-order
modes will propagate into the null-modes.

6.2 Modal description

We may describe a two-dimensional phase map in polar coordinates by the Zernike expansion

ϕ(ρ, θ, t) =
N∑

i=1

ai(t)Zi(ρ/R, θ) = Za(t), (207)

where ai(t) are time-dependent Zernike coefficients, Z is the matrix of Zernike polynomials, N is the number of
Zernike polynomials included in the expansion, and R is the pupil radius. We are concerned with calculating the
residual pupil plane phase error ϕε upon attenuating the turbulence-induced aberrations ϕ = Za with an AO system
introducing the phase shift ϕ̂ = Zα

ϕε = ϕ− ϕ̂ = Z(a− α) = Zε, (208)
where ε is the vector of residual Zernike coefficients. This generic formulation needs to be furnished somewhat by
noting that we compute the phase error εi in a given direction i, and that both a and α are represented by sets
of Zernike coefficients defined on the meta pupils of a finite number of discrete layers (turbulence model layers,
number of DMs) at different conjugate altitudes. Hence we need projection operators Pai and Pmi that integrate the
atmospheric and DM Zernike coefficients in a given direction according to

εi = Paia− Pmiα. (209)

The AO system performs two basic operations, measuring the turbulence indirectly and reconstructing the wavefronts,
which we describe the matrix operations

s = Gaa+ Tn, (210)
α = Es, (211)

where Ga and E are, respectively, the (combined LGS and NGS) measurement and reconstruction operators acting
on the input turbulence mode a and the resulting measurement vector s. There is also an additive noise component
n, originating in the WFS and propagated onto Zernike modes by the noise propagator T . With these basic equations
the residual mean-square error σ2

i = 〈εT
i εi〉 can be computed at varying levels of sophistication and realism, depending

on which properties of a and α are included in the analysis. The simplest analysis is purely geometrical, while more
realistic computations include the control loop dynamics of the AO system.
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6.2.1 Geometric error

The specific geometry of the LGS, NGS, turbulence and DM layers set a fundamental limit on the performance in
each case, based solely on the existence of tomographic null-modes that remain undetected and uncorrected, and the
specific estimator E used. Combining equations (209)-(211) we obtain

εi = (Pai − PmiEGa)a− PmiETn = Qia−Rin, (212)

where I defined the operator Qi = Pai −PmiEGa and Ri = PmiET . The variance of the residual phase error is then

σ2
i = 〈ϕT

ε ϕε〉 = Tr
[〈ϕεϕ

T
ε 〉
]

= Tr
[
Z〈εiε

T
i 〉ZT

]
(213)

= Tr
[
ZQi〈aaT 〉QT

i Z
T
]
+ Tr

[
ZRi〈nnT 〉RT

i Z
T
]

(214)

= Tr
(
QiCaaQ

T
i

)
+ Tr

(
RiCnnR

T
i

)
, (215)

where Tr() denotes the matrix trace operation, and we exploited the invariance of the trace under a similarity
transform Tr(BAB−1) = Tr(A), since ZT = Z−1 by orthogonality of the Zernike modes. Caa = 〈aaT 〉 and Cnn =
〈nnT 〉 are the covariance matrices of Zernike coefficients and WFS noise respectively. Caa can be computed for
Kolmogorov (Noll, 1976; Wang & Markey 1978)[28, 43] or von Karman (Winker, 1991)[44] statistics. For low-order
modes and a large aperture, von Karman statistics should be used. The QCaaQ

T term is essentially the same as what
is computed by Clare 2006[8]. The noise covariance was modeled here from simple formulas of the standard deviation
of the (one-axis) angular position measurement in a Shack-Hartmann type sub-aperture, cf. Eqns. 5.13-5.17 in Hardy
1998[23]:

σ2 =
8
π

θ

SNR
, (216)

SNR =
nphot√

nphot +Npix(nbg + e2)
. (217)

In this geometric calculation it does not make much sense to actually include the noise term, since we can drive it
to zero without penalty by turning down the frame rate indefinitely in order to get a high SNR. In a real system,
this strategy would be penalized by an increasing servo-lag error, which is why we must include the control loop
dynamics next.

6.2.2 Open loop variance

Because the analysis becomes complicated in the general case, I will start with a few special cases where we can
easily find exact analytical solutions. First consider the case of an open loop AO system with a single WFS frame
rate and control bandwidth ωs = 1/ts, where ts is the integration time of the WFS. Referring to Fig. 12, we find the
modified spatial-temporal relationship after applying the temporal Fourier transform to the quantities:

α̃(ω) = C(ω)D(ω)E[S(ω)Gaa(ω) + T ñ(ω)], (218)

and

ε̃i(ω) = Paiã(ω) − Pmiα̃(ω) (219)
= [Pai − PmiC(ω)D(ω)ES(ω)Ga]︸ ︷︷ ︸

Qi(ω)

ã(ω) − PmiC(ω)D(ω)ET︸ ︷︷ ︸
Ri(ω)

ñ(ω) (220)

= Qi(ω)ã(ω) −Ri(ω)ñ(ω), (221)

where the quantities Q and R were redefined to include the current temporal filter definitions. The residual phase
variance may be computed as before, with the added operation of integrating over temporal frequencies, that is:

σ2
i =

∫
dωTr

[
〈εi(ω)ε†i (ω)〉

]
(222)

= Tr
[∫

dω Qi(ω)〈ã(ω)ã†(ω)〉Q†
i (ω)

]
+ Tr

[∫
dω Ri(ω)〈ñ(ω)ñ†(ω)〉R†

i (ω)
]
, (223)
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Figure 12: Schematic of the simplified open loop and closed loop cases.

where † denotes the Hermitian conjugate (i.e. transpose and complex conjugate) of a complex matrix. Assuming
that the temporal spectrum of ñ is white, we have that 〈ñ(ω)ñ†(ω)〉 = Cnn at all frequencies. The temporal PSDs
Φ(ω) = 〈ã(ω)ã†(ω)〉 of Zernike coefficients can be computed in Kolmogorov statistics by the formula derived in
Roddier et al. 1993[30]:

〈ã(ω)ã†(ω)〉 = Φ(ω) =
0.0072
vπ2

(
D

r0

)5/3

(−1)(n+n′−m−m′)/2
√
n+ 1

√
n′ + 1 (224)

×
∫
dκy ξ

−17/3Jn+1(2πξ)Jn′+1(2πξ)um(b)u∗m′(β), (225)

where

ξ(ω, κy) =
D

2

√
ω2/v2 + κy , and : um(β) =

⎧⎨⎩ (
√−1)m

√
2 cosmβ, m even

(
√−1)m

√
2 sinmβ, m odd

1, m = 0
. (226)

The details of all this can be found in the paper [30], but just to mention briefly that this model assumes the Taylor
hypothesis and a turbulence layer that is translating in the x-direction across a telescope aperture of diameter D,
at a wind speed v. The remaining difficulty of calculating the integrals in (223) now rests on the issue whether
the various filters components S(ω), D(ω) and C(ω) are matrix-valued or scalars. If they are scalar, the order of
multiplication can be switched around to simplify the computation greatly, whereby we obtain

σ2
i = Tr(PaiCaaP

T
ai) + Tr

[
PmiETCnn(PmiET )T

] ∫
dω |C(ω)D(ω)|2 (227)

+ Tr
[
PmiEGa

(∫
dωΦ(ω)|H(ω)|2

)
(PmiEGa)T

]
(228)

− 2 Tr
[
Pai Re

(∫
dωΦ(ω)H†(ω)

)
(PmiEGa)T

]
. (229)

where H(ω) = C(ω)D(ω)S(ω) is the open loop transfer function. The first term resulted from the integral because∫
dωΦ(ω) = Caa. The integrals are now straightforward and fast to compute, but this formulation does not allow

multiple for control bandwidths. The WFSs can still be read out at different frame rates, which will affect the SNR
and the noise computation (217), but the loop control rate has to be driven by the fastest camera.
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6.2.3 Closed loop variance

In closed loop we have a different input-output relationship: referring to Fig. 12 we find that

[I + C(ω)D(ω)ES(ω)Gm]α̃(ω) = C(ω)D(ω)ES(ω)Gaa(ω) + C(ω)D(ω)ET ñ(ω), (230)

where I is the identity matrix. Now the problem of solving for α̃ is compounded by the generally matrix-valued
nature of the expression within square brackets on the left. As it stands, this matrix would need to be inverted for
every value of ω, which becomes impractical. Note that the problem and the formula is exactly the same as in Sect.
3.4, so for PSF reconstruction of null-modes we have exactly the same formalism, only a different set of modes. To
proceed, we must again make some assumptions. First we will assume that the filter functions are all scalar, like in
the previous open loop scenario. Second, we will invoke the approximation EGm ≈ I. It may be possible to derive
an estimator that explicitly fulfills this requirement by invoking the constraint as a Lagrange multiplier, but for now
it will be treated as an approximation in conjunction with the SVD or MAP estimators. With these two assumptions
the expression becomes manageable, and we obtain

[1 + H(ω)]α̃(ω) = H(ω)EGaã(ω) + C(ω)D(ω)ET ñ(ω), (231)

or
α̃(ω) = Hcl(ω)EGaã(ω) + Hn(ω)ET ñ(ω), (232)

where
Hcl =

H
1 + H , and Hn =

CD

1 + H (233)

are the closed-loop and noise transfer functions respectively. This could be used to evaluate the phase variance
already, but it turns out to be instructive and numerically prudent to use the error transfer function Hε = 1 −Hcl

instead, so with this substitution we finally have

α̃(ω) = EGaã(ω) −Hε(ω)EGaã(ω) + Hn(ω)ET ñ(ω). (234)

The residual Zernike error is then

ε̃i = (Pai − PmiEGa)︸ ︷︷ ︸
Qi

ã(ω) + PmiEGaã(ω)Hε(ω) − PmiET ñ(ω)Hn(ω), (235)

where we can see that we will obtain again the purely geometric term computed in (215), plus correction terms from
control loop dynamics, as well as cross-terms. Skipping to the result, this is what we get:

σ2
i = Tr(QiCaaQ

T
i ) + Tr

[
PmiETCnn(PmiET )T

] ∫
dω |Hn(ω)|2 (236)

+ Tr
[
PmiEGa

(∫
dωΦ(ω)|Hε(ω)|2

)
(PmiEGa)T

]
(237)

+ 2 Tr
[
Qi Re

(∫
dωΦ(ω)H†

ε(ω)
)

(PmiEGa)T

]
. (238)
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7 Numerical computation

This section contains information that is specific to the “pakalana” computer system at WMKO, which is where the
PSF reconstruction package is currently set up (with the caveat that TRS queries can not be done from this machine,
and has to be done instead from e.g. k2aoserver, and the saved data then copied over to pakalana). Instructions on
how to use the codes and how to relocate the package are given in the following sections.

7.1 General computer information

• The home directory is /local/home/kpaobld/ and the top-level code directory is ∼/IDL/. Most (but not all)
of the top-level codes pertaining to the PSF reconstruction package resides under ∼/IDL/projects/psfrec/.

• The image and TRS data directory is currently an external USB drive /media/usbdisk/PSFrec/, with a
symbolic link under the home directory ∼/PSFdata/.

• To move the PSF reconstruction package to another computer, it would be easiest to copy the entire IDL
directory, since many required routines are located in various sub-directories.

• To move the IDL code package to a different computer, one external library needs to be recompiled, and some
shell environment variables specified. This is the sparse matrix package SOI (“Sparse Operations with IDL”)
and its multi-threaded version “ptsoi” (based on pthreads). The source codes reside under ∼/IDL/lib/soi/
and ∼/IDL/lib/ptsoi/ and compilation instructions are given in the preamble of the C codes. The location
of the shared object libraries soi.so and ptsoi.so must be specified as shell environment variables SOI LIB
and PTSOI LIB (for instance by putting ’export SOI LIB=$HOME/IDL/lib/soi/soi.so’ in the .bashrc.)

7.2 IDL codes

The main PSF reconstruction algorithm psfrec.pro depends on a number of pre-computed components generated
in separate pieces of code. The components (and their generating codes) are:

• kao.pro – DM influence functions hi(x), Sect. 3.3

• dmfit.pro – DM PSD filtering function H(f), Sect. 3.2

• alias.pro – WFS aliasing covariance matrix 〈vvT 〉, Sect. 3.5

• gettrs.pro – TRS data for the 〈uuT 〉 and 〈mmT 〉 covariance matrices, Sect. 3.4

Both alias.pro and dmfit.pro generate their own DM influence functions, but the DM/WFS geometry setup
generated in kao.pro creates a sparse DM influence function matrix that exactly follows the real K2AO numbering
conventions of actuators and sub-apertures, which is required for the main psfrec.pro code.

gettrs.pro

This code does the TRS query for a given input NIRC2 FITS image header, and saves the retrieved data as an IDL
save file. The idea is to minimize the amount of number-crunching and bandwidth stolen from k2aoserver so as not
to potentially affect simultaneous observing, and do the heavy lifting on another machine. The saved data file then
has to be copied over to the data directory of the computer where the rest of the PSF reconstruction is done.

SYNTAX

gettrs [, image=, silent=, buffer=, sdir=]

OPTIONAL ARGUMENTS

image string path to input FITS image (with header)

buffer string TRS buffer name [default ’ffb_save’]

sdir string save directory

silent [0/1] suppress verbose mode

EXAMPLE CALLING SEQUENCE

gettrs,image=’data/080718/nirc2/n0185.fits’,buffer=’ffb_save’,sdir=’data/080718/trs/’



7 NUMERICAL COMPUTATION 45

dmfit.pro

This code generates the Fourier domain DM filtering function H(f) that is used for the fitting error modeling in
Sect. 3.2. All the relevant parameters of the system is specified in the preamble of the code. The important ones for
generating a new filter function are: actuator spacing (“pitch”) and resolution (“da”), pupil size (“D”) and numerical
grid size (“dim”). The configuration used for the narrow-field NIRC2 camera was: pitch=4, da=0.5625, D=10,
dim=320. The reasons for this combination of grid size and actuator pitch is that it maps almost exactly onto the
narrow-field NIRC2 plate scale without any re-scaling (via the Fourier transform into spatial frequency domain), and
these are also the exact same numbers used in the main PSF reconstruction code psfrec.pro. The principles of this
code was described in Sect. 3.2

SYNTAX

dmfit [, /lcov, /load]

OPTIONAL ARGUMENTS

lcov load previously stored influence function covariance matrix

load load full results from previous run, just for plotting

EXAMPLE CALLING SEQUENCE

dmfit,/lcov

alias.pro

This code generates the propagated aliasing covariance matrix 〈vvT 〉, based on the Fourier domain method described
in sections 3.5 and 5.3.4. Only the integrator loop gain and the WFS integration time are input arguments. The
remaining key parameters are declared in the preamble of the main routine, including turbulence characteristics
such as L0, r0 and C2

n profile, and WFS parameters like sub-aperture size and sensing wavelength. The first part of
the code calculates the spatial aliasing PSD, and the second part calculates (via the Wiener-Khinchin theorem) the
inverse DM influence function matrices which propagates the phase correlation onto actuator commands, to give the
〈vvT 〉 matrix.

SYNTAX

alias [, g, ti, /nodisp]

OPTIONAL ARGUMENTS

g loop gain (integrator)

ti WFS integration time

nodisp [0/1] suppress graphical display

EXAMPLE CALLING SEQUENCE

g,0.5,1.e-3

psfrec.pro

This is the main PSF reconstruction routine. It presently relies on a particular data directory structure and some
standardized names for the NIRC2 FITS images and also for the data folders, as follows: the NIRC2 FITS image
name is assumed to be nxxxx.fits where the “x” are numbers; the data directory is given by the observation
date yymmdd/; under the data directory the NIRC2 and TRS data are located in sub-directories called nirc2/ and
trs/. An example calling sequence is given below. Input parameters that must be specified in the preamble of the
code are the seeing and turbulence outer scale. If an off-axis angle is specified and different from zero, the NGS
anisoplanatism kernel is computed, and if a non-zero LGS altitude is specified, the focal anisoplanatism kernel is
used. Tilt anisoplanatism with LGS is currently not implemented (the kernel is simple to compute, but the code has
not been calibrated to the STRAP sensor yet). For NGS and/or LGS and tilt anisoplanatism, a layered turbulence
profile must also be specified (altitudes hl and normalized C2

n, i.e. the fl from Sect. 3.1)

SYNTAX

psfrec, imn, dir [,dn]
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ARGUMENTS

imn string NIRC2 image name (minus ".fits")

dir string data directory name

OPTIONAL ARGUMENTS

dn string dark frame image name

EXAMPLE CALLING SEQUENCE

psfrec,’n0075’,’n0090’,’080812/’

kao.pro

This is a K2AO simulation based on the Monte Carlo principle (it works similar to YAO). It was constructed as a
special case of a more generalized AO simulation code (newao2.pro), and it has a number of things hardwired into
it specifically for K2AO emulation. For instance, the aperture shape and the DM and WFS geometries are fixed, in
order to get sub-apertures and actuators that correspond exactly to the numbering conventions of the real K2AO
system. This means that the simulated interaction matrices and reconstruction matrices exactly correspond to the
real K2AO system, and could potentially even be used with the real system. The simulation code also implements
real-time pupil rotation with triggering of new reconstruction matrices and DM/WFS subsets as a function of the
illuminated sub-apertures. It implements both NGS and LGS mode, but the tip/tilt sensing in LGS mode has not
(yet) been tweaked to represent exactly the characteristics of the STRAP sensor, so the tip/tilt sensor simulation in
LGS mode is of a generic kind.

This code also features some wavefront reconstruction options that the real K2AO system does not yet implement,
such as a sparse matrix maximum a posteriori (MAP) estimator and a preconditioned conjugate gradient (PCG)
iterative solver. This estimator gives exactly the same AO performance as the non-sparse implementation currently
in use (as can be demonstrated by simply comparing the two), but it employs a numerical technique that has been
proposed for future extremely-high-order AO systems, such as the NGAO. This was implemented in the K2AO
simulation just as a proof-of-concept, but in principle, the sparse MAP-PCG estimator could be used already with
the existing K2AO system.

The AO system to be simulated is specified in a parameter file, an example of which is given at the end of this
section, as prepared specifically for simulation of K2AO with the NIRC2 narrow-field camera. The main code consists
of two sections: an initialization step that parses the parameter file and generates architecture dependent objects,
and the actual simulation step that loops over random turbulence phase screens and measures the AO performance.
So the calling sequence is a little more cumbersome, as exemplified below:

• For every new configuration (parameter file), start by running the parameter file itself at the IDL prompt. This
initializes parameters and saves them to file.

• Then run kao.pro with the same parameter file as input (see example below)

• If running the same configuration in a new IDL session, set the “/lho” (load HOWFS) keyword to skip the
most time-consuming initialization steps by loading the objects saved in the first session.

SYNTAX

kao, name, dir [,/lho]

ARGUMENTS

name string simulation name (as given in parameter file)

dir string directory of parameter file

OPTIONAL ARGUMENTS

lho load high-order WFS/DM structures initialized in a previous session

EXAMPLE CALLING SEQUENCE

IDL> kao_ngs4

IDL> kao,’kao_ngs4’
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Below follows an example parameter file (kao ngs4.pro) designed to emulate the K2AO system with the NIRC2
narrow-field camera.

pro kao_ngs4

; Simulation

sim = {sim}

sim.dir = ’/local/home/kpaobld/IDL/projects/kao/parfiles/’

sim.name = ’kao_ngs4’

sim.info = ’1-NGS 1-DM AO system’

sim.D = 11.25 ; too large on purpose, to produce the right sub-ap size

sim.cobs = 0.2

sim.hex = 0

sim.ang = 30. ; may specify a fixed pupil rotation angle

sim.dim = 320

sim.niter = 20000L

sim.skip = 100

sim.ndisp = 10

sim.tq = 1.e-3

sim.wim = 2.1685e-6

sim.psfeval = 1

sim.aniso = 0

sim.eval = ptr_new([[0.],[0.]])

sim.seed = sim.dir+’rseed.sav’

sim.nz = 2 ; number of Zernikes to calculate modal performance

restore,sim.seed

; Atmosphere

atm = {atm}

atm.r0v = 0.16

atm.L0 = 30.

atm.zen = 0.

atm.air = 1./cos(!pi*atm.zen/180.)

atm.tmod = 1

atm.frac = ptr_new([0.482,0.133,0.065,0.072,0.109,0.077,0.062])

atm.alt = ptr_new([0.,0.5,1.,2.,4.,8.,16.]*1.e3)

atm.v0 = ptr_new([6.8,6.9,7.0,7.5,10.0,26.8,18.5])

atm.nl = n_elements(*atm.alt)

atm.aseed = ptr_new(rseed)

atm.vdir = ptr_new(randomu((*atm.aseed)[atm.nl*3],atm.nl)*360.)

atm.v = ptr_new([[(*atm.v0)*cos(!pi*(*atm.vdir)/180.)],$

[(*atm.v0)*sin(!pi*(*atm.vdir)/180.)]])

; WFS setup

nwfs = 2 ; number of WFS

wfs = replicate({wfs},nwfs)

; HOWFS

n=0

wfs(n).type = ’sh1’

wfs(n).geom = ’sqr’

wfs(n).sys = 1 ; sub-system - for control/reconstruction purposes

wfs(n).cat = 1 ; category - for geometry/architecture initilization purposes

wfs(n).th = 0.4

wfs(n).fsdiam = 0.

wfs(n).nx = 20

wfs(n).pixps = 4

wfs(n).lgs = 0

wfs(n).cl = ptr_new([0,1]) ; indices of DMs that are seen by WFS (-1 = open loop)
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wfs(n).ltype = ’altitude’; ’range’ or ’altitude’ is fixed

wfs(n).alt = 120.e3

wfs(n).ndx = 4

wfs(n).qcc = 0

wfs(n).dx = 0.235

wfs(n).noise = 0

wfs(n).qe = 0.98

wfs(n).ron = 10.

wfs(n).dc = 0.1

wfs(n).band = ptr_new([’R’])

wfs(n).ot = 0.97

wfs(n).mag = 12.

wfs(n).integ = 1

wfs(n).ker = 0.

wfs(n).initk = 0.

wfs(n).amp = 1.

wfs(n).tt = 1

wfs(n).ext = 0 ; can calibrate on extended source

wfs(n).pos = [0.,0.]

; LOWFS

n=1

wfs(n).type = ’sh1’

wfs(n).geom = ’sqr’

wfs(n).sys = 2

wfs(n).cat = 2

wfs(n).th = 0.5

wfs(n).fsdiam = 0.

wfs(n).nx = 1

wfs(n).pixps = wfs(0).pixps*wfs(0).nx/wfs(n).nx

wfs(n).lgs = 0

wfs(n).cl = ptr_new([0,1])

wfs(n).ndx = 2

wfs(n).dx = 0.45

wfs(n).qcc = wfs(n).ndx/2

wfs(n).noise = 0

wfs(n).qe = 0.98

wfs(n).ron = 10.

wfs(n).dc = 0.1

wfs(n).band = ptr_new([’R’])

wfs(n).ot = 0.97

wfs(n).mag = 12. ; if multi-spectral, this is the magnitude of the FIRST band

wfs(n).integ = 1

wfs(n).ker = 0.

wfs(n).initk = 1.

wfs(n).amp = 1.

wfs(n).tt = 0

wfs(n).pos = [0.,0.]

wfs(n).ext = 0

; DM setup

ndm = 2 ; number of DMS

dm = replicate({dm},ndm)

n=0

dm(n).type = ’pzt’

dm(n).class = ’ho’



7 NUMERICAL COMPUTATION 49

dm(n).sys = 1

dm(n).nc = wfs(0).nx+1

dm(n).pixpa = wfs(0).pixps

dm(n).alt = 0.

dm(n).coupling = 0.2

dm(n).th = 0.25

dm(n).thx = 0.0

dm(n).initc = 1.

dm(n).clev = 4.

dm(n).clim = 0.02

dm(n).xcg = 0.75

dm(n).xact = 1

n=1

dm(n).type = ’zer’

dm(n).class = ’null’

dm(n).sys = 2

dm(n).nc = 2

dm(n).alt = 0.

dm(n).initc = 1.

dm(n).xact = 0

; Wavefront reconstruction

nrec = 2

rec = replicate({rec},nrec)

n=0

rec(n).sys = 1

rec(n).cond = 10.

rec(n).map = 1

rec(n).pcg = 1

rec(n).etol = 1.e-5

rec(n).alpha = 0.01

rec(n).gain = 0.5

rec(n).cl = 1

n=1

rec(n).sys = 2

rec(n).cond = 10.

rec(n).map = 0

rec(n).pcg = 0

rec(n).etol = 1.e-5

rec(n).alpha = 0.1

rec(n).gain = 0.5

rec(n).cl = 1

save,sim,atm,wfs,dm,rec,filename=sim.dir+sim.name+’_pinit.sav’

end



A DATA SETS 50

A Data sets

Between 2007-12-10 and 2008-08-11 we collected data on the K2 AO system with the narrow-field NIRC2 camera,
as summarized in table 2.

Date Time Mode Purpose Comment
2007-12-10 2h bench Noise model validation Collected data for range of frame rate, SNR and gains
2008-01-16 3h sky Bright NGS, r0 est. Open/closed loop NIRC2+ACAM; good conditions
2008-04-22 2h sky Bright NGS, on-axis NIRC2+ACAM; bad conditions
2008-04-28 2h bench Noise model validation DLM script
2008-05-06 2h bench Noise model validation same as 4/28 + Jcont and Hcont
2008-07-17 3h sky Bright NGS, on-axis ∼2h bad seeing; 30 minutes of data
2008-08-11 3h sky NGS Bright+faint, off-axis; DLM script

Table 2: K2 AO+NIRC2 narrow field camera data collected for PSF reconstruction prototyping and testing.

Observation logs

2008-01-16

008 07 19 10.235 -04 58 7.12 2000.0 vmag=12.12 b-v=0.65

009 07 15 14.085 +35 04 53.88 2000.0 vmag=12.05 b-v=0.50

010 07 19 11.884 +15 11 59.51 2000.0 vmag=12.04 b-v=0.36

011 09 18 57.766 +14 49 57.11 2000.0 vmag=12.18 b-v=0.32

012 10 16 20.905 -05 13 2.81 2000.0 vmag=12.29 b-v=0.53

013 10 16 48.640 +34 55 15.22 2000.0 vmag=12.26 b-v=0.47

014 11 22 4.913 +15 07 21.18 2000.0 vmag=12.10 b-v=0.56

015 13 19 39.396 +15 35 3.77 2000.0 vmag=12.18 b-v=0.63

016 13 19 59.257 -04 46 22.08 2000.0 vmag=12.12 b-v=0.32

017 13 19 44.853 +34 53 15.13 2000.0 vmag=12.06 b-v=0.40

018 15 18 27.001 +14 46 20.72 2000.0 vmag=12.01 b-v=0.72

019 16 18 29.111 -05 42 33.79 2000.0 vmag=12.03 b-v=0.39

020 16 16 30.365 +34 50 50.59 2000.0 vmag=12.29 b-v=0.64

021 17 18 39.502 +15 01 16.67 2000.0 vmag=12.10 b-v=0.54

/sdata903/nirc6/2008jan17b/

Star #011 (250 Hz)

ti 0.5 / 10 co / Kp

Acam NIRC2

#33,34 - 0.9"/0.9" #6 - 0.505/0.371 TT

#35,36 - #7 - TT

-------------------

Changed to 500 Hz (~275 counts avg.)

DM_gain = 0.5, TT_gain = 0.5

ACAM #40,41,42 (DMTT), 43,44,45 (TT)

N2 #10 (TT) (30 s: 10s x 2 coadds)

ACAM #46,47,48 (DMTT), 49,50,51 (TT)

N2 #11

ACAM #52,53,54 (DMTT), 55,56,57 (TT)

N2 #12

ACAM #58,59,60 (DMTT), 61,62,63 (TT)

N2 #13 (TT)



A DATA SETS 51

ACAM #64,65,66 (DMTT), 67,68,69 (TT)

N2 #14

-------------------

(faster): N2 coadds: 1 x 10s

ACAM: 5s

ACAM #73-83 (TT), N2 #15-24 (TT)

ACAM #84-88 (DMTT)

ACAM #89-93 (TT), N2 #25,26,27,28 (TT)

ACAM #94-98 (DMTT)

ACAM #99-103 (TT), N2 #29,30,31,32 (TT)

ACAM #104-108 (DMTT)

ACAM #109-113 (TT), N2 #33,34,35,36 (TT)

ACAM #114-118 (DMTT)

ACAM #119-123 (TT), N2 #37,38,39,40 (TT)

ACAM #124-128 (DMTT)

ACAM #129-133 (TT), N2 #41,42,43,44 (TT)

ACAM #134-138 (DMTT)

---------------------

(SAO 98333) HD 77623

(angle = 218.2)

N2 #46 test - 1054 kHz (DMTT)

DM_gain = 0.5, TT_gain = 0.5

N2 -> BrG

#47 test (tint = 0.5) DMTT

#48 test (tint = 2.0) DMTT

#49 test (tint = 1.0s x 20) DMTT

starting

N2: 10s x 2co

ACAM: 5 images

ACAM #141-145 (TT), N2 #51,52 (TT)

ACAM #146-150 (DMTT), N2 #53,54 (DMTT)

ACAM #151-155 (TT), N2 #55,56 (TT)

ACAM #156-160 (DMTT), N2 #57,58 (DMTT)

ACAM #161-165 (TT), N2 #59,60 (TT)

ACAM #166-170 (DMTT), N2 #61,62 (DMTT)

ACAM #171-175 (TT), N2 #63,64 (TT)

ACAM #176-180 (DMTT), N2 #65,66 (DMTT)

ACAM #181-185 (TT), N2 #67,68 (TT)

ACAM #186-190 (DMTT), N2 #69,70 (DMTT)

--------- taking a break ----

N2 #72 - Liz script (dither) DMTT

------------- back

AO -> 438 Hz (avg. intensity ~ 1000 counts)

DM_gain = 0.5, TT_gain = 0.5

1.05 air mass
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N2 -> 5s x 3co

DMTT closed

ACAM -> 1s

N2 #121,122 (DMTT), ACAM #194-198 (DMTT)

ACAM #204-208 (DMTT), N2 #124-126 (DMTT)

ACAM #209-213 (TT), N2 #127,128 (TT)

ACAM #214-219 (DMTT), N2 #129,130,131 (DMTT)

ACAM #220-225 (TT), N2 #132,133 (TT)

ACAM #226-231 (DMTT), N2 #134,135,136 (DMTT)

ACAM #232-237 (TT), N2 #137,138 (TT)

ACAM #238-243 (DMTT), N2 #139,140,141 (DMTT)

ACAM #244-249 (TT), N2 #142,143 (TT)

ACAM #250-255 (DMTT), N2 #144,145,146 (DMTT)

ACAM #256-261 (TT), N2 #147,148 (TT)

N2 #149,150,151 (DMTT)

-------------------------------------

N2 5s x 30co -> #152

taking sky -> #153

-------------------

A0 -> 438 Hz

DM_gain = 0.5, TT_gain = 0.5

air mass = 1.16

Testing coronograph

Kp = clear, largehex

coron600

tint 240

sampmode 3, 16 reads

N2 #154

tint = 300

smallhex

Kp

air mass 1.18-1.20

N2 #155

open

N2 #156

sky -> 157

BrG -> brighter star (?)

AO -> 1054 Hz, gains = 0.5

pupil -> open

coron800

tint 5s, 30 co adds

air mass = 1.32

N2 #158

sky -> N2 #159

pupil -> large hex

N2 #160
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tint 10, coadds 30

air mass = 1.38

N2 #161

sky -> #162

no corona

large hex

tint = 0.01s, 200co

N2 #163,164

sky -> #165

2008-04-22

Date: 2008-04-23

start time: 01:30 HST

starlist: /sol/apps1/kroot/starlists/dlm/psf080422.lst

/Users/rflicker/Documents/Work/PSF/psf080422.lst

obsplan: /Users/rflicker/Documents/Work/PSF/eng080423.doc

All tests w/ NIRC2 narrow camera

NIRC3 account

/sdata903/nirc3/2008apr23

Acam: /nightly/tonight/Acam/

1. SETUP AO & Telescope for NIRC2-NGS

a. Switch instrument to NIRC2

b. Bring up NIRC2 tools

c. Restart AO tools & nighttime script

d. Check calibration files

2. Bright star on-axis

a. Acquire star in NGS mode in vertical angle mode

(pupil is fixed on NIRC2) on NIRC2 P.O.

b. Optimize NGS using bandwidth widget and Strehl tool

c. Record acam image every 60sec, (record DM-open loop image on NIRC2?)

d. Setup NIRC2 for Kp & record images,

i. write down settings for recording background

ii. write down seeing, exact UT times for RTC ,

e. Re-do for H and J band

f. Record background (mostly for Kp)

UT 11:46 (01:46 HST) - could not connect to TRS, wrong reconstructor, WFC crash, restart TRS:

WFC freeze, failure mode 3.

-> 3 reboots : working 4th time

UT 11:55 - K2AO @ 149 Hz

UT 11:57 - TRS not responding again - BW optimization, seeing tool, not working

DLM calling Kelly

DLM calling ErikJ

HST 2:10 - AlC doing Daphne (~1 mag extinction, lots of cirrus)
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HST 2:26 - update from Erik, troubleshooting, partitioning the database created problem

(can not access the data fast enough when the disk is filling up)

HST 2:58 - update from DLM / EJ - TRS fixed - use ffb_3

idl script release

HST 3:07 - on target #0 (075), airmass 1.06, 100 Hz, 100-200 counts

seeing 0.35 (s-tool) 0.5 acam

acam #3

TTgain = 0.3

DMgain = 0.55

cgain = 1.0 (cent-to-arcs 0.49)

N2 - Kp

coadds 10

tint 10 - taking test

HST 3:16 - going to #98 (091) airmass 1.19

seeing (s-tool) 0.6

-> 1000 Hz

TTgain = 0.25

DMgain = 0.8

cent-arcs = 0.59

N2 - setup

n0120

coadds 10

sampmode 2

#reads 4

Kp + clear

open shutter

sdata903/nirc3/2008apr23

#120 (13:26:13.81 UT, 2008-04-23)

starting sequence

100 coadds

#121 seeing = 0.46" (N2 seeing tool)

saturated

subc 512

tint 0.1

200 coadds

N#122, acam#7 (N2-seeing=0.43", acam=0.65)

goi 5 (above settings) N#123-127, acam#8

-> H band

coadd 10 -> test

coadd 200

goi 5

N#128, acam#112-115

-> J band
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coadd 10

test

note : intensity variations

(saturated)

tint 0.07

DMgain = 0.75

TTgain = 0.2

coadd 200

goi 1, N#133

goi 5, 134-138

(seeing lots of distortions in J - also present at Kp)

HST 3:50 - Investigating distortion problem

goi 50 (test)

-> Kp

tint 0.1

coadd 100

test

clouds - 80 counts on WFS

frame rate -> 250

-> 100 Hz

loops faulted blah blah blah

HST 4:08 - WFC freeze failure mode 3

Finally back on star (lost it) @ 100 Hz

HST 4:15 -> Could not write to TRS

HST 4:25 - back up

strong variability in extinction

N2 test, 438 Hz

coadd 200, tint 0.1, Kp, large hex

goi 5, N#145-149 (Strehl = 0.395)

TTgain = 0.35

DMgain = 0.95

-> 1000 Hz

TTgain = 0.2

DMgain = 0.6

cent-arcs = 0.87

(acam#045)

goi 5

N#151-155 (Strehl = 0.22)

-> 500 Hz

TTgain = 0.2
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DMgain = 0.6

cent-arc = 0.67

N#156-159

-> H

tint 0.07

coadds 200

N#161-165

New Star -> #114, air mass = 1.01

subc 1024

250 Hz

Too large separation

-> new star #108 + companion

Kp

438 Hz

TTgain = 0.3

DMgain = 0.6

cent-arcs = 0.44

tint 0.5 coadd 50 goi 3

N#166-168 (Strehl = 0.35)

-> H

goi 5 (strehl ~0.2)

N#169-173

tint 0.2 goi 3

N#174-176

-> J goi 3

N#178-180

(15:28:21.64 UT)

Flats:

Frames 196 to 255 are flats.

The sequence is on/off, hkj, 1024/512, 5 each.

So, for example, 196-200 = dome-lamps-on, H, 1024

201-205 = dome-lamps-off, H, 1024

206-210 = dome-lamps-on, K, 1024

....

226-230 = dome-lamps-on, H, 512

etc

2008-04-28

NIRC2 AO 2008-04-28

newdir

/sdata903/nirc2eng/2008apr29/



A DATA SETS 57

parameter sets

1. vary DM gain (fixed FR, TTg, Cg)

2. vary TT gain (fixed FR, DMg, Cg)

3. vary Cent gain (fixed FR, DMg, TTg)

4. variable FR (did not do this)

Start: UTC 21:22:39.39, 2008-04-28

(end: 23:01:06.63)

reconstructor matrix: 304b.mr

centroid origins: 24nirc2-N2x2.cog

(calibrated 28 April night)

FR 1054 Hz

BrG

subc 512

tint 0.1

coadd 50

sampmode 2

# reads 4

track true <-- NOTE!

; Reference

DMg = 0.05

TTg 0.05

Cg = 0.35165 (WSCNGN)

object Bright 1 KHz

tint 0.1

coadd 100

n0003.fits

tint 0.07

n0004

coadd 200

tint 0.07

n0005

object: dark

Dark frame:

n0006,n0007 (200 coadd, tint 0.07)

n0008,n0009 (100 coadd, tint 0.1)

tint 0.07

coadd 200

"tt"

TTg = [0.05,0.2,0.6]

DMg = 0.05

Cg = 0.35

"dm"

DMg = [0.05,0.5,0.9]

TTg = 0.05

Cg = 0.35

"cent"
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Cgain = [0.2,0.4,0.6,0.8]

TTg = 0.2

DMg 0.2

tint 1, coadd 10

#012

tint 2, #13

coadd 30

"tt"

TT=0.05;DM=0.05; C=0.35; n#14

TT=0.2; DM=0.05; C=0.35; n#15

TT=0.6; DM=0.05; C=0.35; n#16

TT=0.05; DM=0.5; C=0.35; n#17 "tt" (forgot to rename)

TT=0.05; DM=0.9; C=0.35; n#18 "dm"

"cent"

TT=0.05; DM=0.05; C=0.2; n#19 "dm" (forgot to rename)

TT=0.05; DM=0.05; C=0.2; n#20 "cent gain"

TT=0.05; DM=0.05; C=0.4; n#21

TT=0.05; DM=0.05; C=0.6; n#22

TT=0.05; DM=0.05; C=0.8; n#23

TT=0.2; DM=0.2; C=0.8; n#24 "cent gain 2"

TT=0.4; DM=0.4; C=0.8; n#25 "cent gain 2"

TT=0.4; DM=0.4; C=0.6; n#26 "cent gain 2"

TT=0.4; DM=0.4; C=0.4; n#27 "cent gain 2"

-> track false

TT=0.4; DM=0.4; C=0.4; n#28 "cent gain 2"

Dark frames 29-31

2008-07-18

17 July 2008 (UT)

3 h engineering time on K2/AO/NIRC2

nirc2 data directory:sdata903/nirc2eng/2008jul18/

n0001-n0034 ; calibration & flats

n0035-n0046 ; twilight

Bright star

star #1 (list)

~~ new star

seeing 1-1.5"

Kp

running script @ n0169

running script @ n0179-n0181

closing for fog
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Opening up again - seeing 0.5"

starting script @ n0185

H band

starting script @ n0195

darks for H n0205-207

darks for Kp n0208

------- stop

H band

Faint star

Kp band

H band

2008-08-12

PSF reconstruction

engineering 2008-08-12 (22:00-01:00 HST)

/sdata903/nirc2eng/2008aug12/

Calibration n0001.fits-n0058.fits

/qfix/data/ControlParms/*.dm (DM cal)

22:20 HST (8:20 UT) - start TRS 8:15 UT

tests #59-66

starting DLM script @ n0067-76 BrG

script @ 77-86 H cont

background H cont 87-89

background BrG 90-92

Going to M15 center (R12.4) 250Hz

Kp background 93

exposure BrG 4-coadd #94-103

bxy5 start $ 104 (dither failure after 105)

107 - test on reacquired NGS R11.9

BrG goi 10 109-118

H cont goi 10 start @ #119-128

sky H cont goi 3

Brg sky

-> new NGS R12.9

DLM script on faint star, start #138-147 BrG

BrG sky 148-149



REFERENCES 60

References

[1] “Development, implementation and validation of PSF reconstruction techniques,” Y9 CfAO proposal (2007)
URL: http://lao.ucolick.org/twiki/pub/CfAO/PsfReconstruction/CfAOY9LeMignant v3nobudget.pdf

[2] PSF reconstruction project TWiki web page and document collection,
URL: http://lao.ucolick.org/twiki/bin/view/CfAO/PsfReconstruction

[3] WMKO Next generation wavefront controller, URL: http://www2.keck.hawaii.edu/optics/ao/ngwfc

[4] M. Aubailly, M. C. Roggemann, and T. J. Schulz. Approach for reconstructing anisoplanatic adaptive optics
images. Appl. Opt., 46:6055–6063, August 2007.

[5] M. Born and E. Wolf. Principles of optics. Pergamon Press, Oxford, 6th edition, 1980.

[6] M. C. Britton. The Anisoplanatic Point-Spread Function in Adaptive Optics. Publ. Astr. Soc. Pac., 118:885–900,
June 2006.

[7] D. F. Buscher, J. T. Armstrong, C. A. Hummel, A. Quirrenbach, D. Mozurkewich, K. J. Johnston, C. S. Denison,
M. M. Colavita, and M. Shao. Interferometric seeing measurements on Mt. Wilson: power spectra and outer
scales. Appl. Opt., 34:1081–1096, February 1995.

[8] R. M. Clare and B. L. Ellerbroek. Sky coverage estimates for adaptive optics systems from computations in
Zernike space. J. Opt. Soc. Am. A, 23:418–426, February 2006.

[9] A. Consortini and L. Ronchi. Choice of the model of atmospheric turbulence. Appl. Opt., 11:1205–+, May 1972.

[10] G. Cresci, R. I. Davies, A. J. Baker, and M. D. Lehnert. Accounting for the anisoplanatic point spread function
in deep wide-field adaptive optics images. Astron. Astrophys., 438:757–767, August 2005.

[11] E. Diolaiti, O. Bendinelli, D. Bonaccini, L. M. Close, D. G. Currie, and G. Parmeggiani. Starfinder: an idl
gui based code to analyze crowded fields with isoplanatic correcting psf fitting. In Peter L. Wizinowich, editor,
Adaptive Optical Systems Technology, volume 4007 of Proc. SPIE, pages 879–887, 2000.

[12] B. L. Ellerbroek. Including outer scale effects in zonal adaptive optics calculations. Appl. Opt., 36:9456–9567,
1997.

[13] R. Flicker and F. Rigaut. Tilt anisoplanatism and PSF retrieval for multi-conjugated adaptive optics systems
using laser guide stars. In Beyond Conventional Adaptive Optics, ESO Conference and Workshop Proceedings
No. 58, page 377, 2001.

[14] R. Flicker, F. Rigaut, and B. Ellerbroek. Tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive
optics: Reconstruction of the long exposure point spread function from control loop data. Astron. Astrophys.,
September 2002.

[15] R. C. Flicker. Efficient first-order performance estimation for high-order adaptive optics systems. Astron.
Astrophys., 405:1177–1189, July 2003.

[16] R. C. Flicker and F. J. Rigaut. Anisoplanatic deconvolution of adaptive optics images. J. Opt. Soc. Am. A,
22:504–513, March 2005.

[17] Ralf C. Flicker. Adaptive Optics: Analytical model for PSF estimation. Master’s thesis, Lule̊a University of
Technology, division of physics, Dec. 1998.

[18] D. L. Fried. Anisoplanatism in adaptive optics. J. Opt. Soc. Am., 72(1):52–61, 1982.

[19] D. L. Fried and J. F. Belsher. Analysis of fundamental limits to artificial-guide-star adaptive-optics-system
performance for astronomical imaging. J. Opt. Soc. Am. A, 11(1):277–287, January 1994.
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