NGAO Proposed Software Standards

[image: image1.png]

 Keck Adaptive Optics Note 647
Keck Next Generation Adaptive Optics

Software Standards Proposal

Project Name:
NGAO
Date:
11/18/08
Prepared By

	Author
	Contributors

	Jimmy Johnson
	Erik Johansson

Version Control

	Version
	Date
	Author
	Change Description

	0.1
	11/18/08
	Johnson
	Created document.

	0.2
	11/19/08
	Johnson
	Updated with input from Erik

	0.3
	12/09/08
	Johnson
	Minor updates

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents
41
Introduction

42
General Polices

52.1
CVS policy on tagging and branching

52.2
Everything should be in CVS

52.3
Frequency of CVS check-ins and code quality of check-ins

52.4
Handling broken builds

52.5
Having sufficient feedback

52.6
Make the builds smart

52.7
Deploying early

63
Document Templates and Reviews

64
Estimation

65
The Development Environment

65.1
Languages

75.2
Integrated Development Environments

85.2.1
Language Support in Eclipse

85.3
User Interface

96
Documenting Code

97
Code Analysis

97.1
Code inspection process

107.1.1
Adopting a standard

117.1.2
Selecting a tool

127.1.3
Configuring the tool

127.1.4
Integrating the tool

127.1.5
Manual inspection support

137.2
Code duplication

137.3
Code coverage

147.4
Dependency analysis

147.5
Complexity Monitoring

148
Refactoring

159
Testing

159.1
Load Testing

169.2
Profiling

169.3
Unit Testing

179.4
Acceptance Testing

1710
An Integrated Picture

1711
References

1 Introduction
The scope of this document is limited to the NGAO project. This document is not going to propose an overall methodology for the software development process. This is something that would need to be done at an observatory level. The document will not deal with areas where there is an already existing solution in place such as for configuration management (CVS) or change management (MANTIS). There are a few key areas though where having some standardization could help and these will be listed below.

Continuous Integration (CI) is a practice that enables teams to receive feedback and make improvements on a continual basis rather than waiting until late in the development cycle to find and fix defects. Many of the tools below came from modern CI efforts and are designed to integrate well into a CI server. However this document is not proposing the use of CI for NGAO rather the adoption of automation and tooling where possible for code inspection and other common software development tasks

The document is based on the belief that in general it is counter productive to simply state rules on paper and ask people to follow them. It is essential to provide tools and support so that the adoption of the practices and their verification is transparent or becomes second nature or can be automatically enforced by these tools. A potential negative to this approach is that there might be a potential learning curve for individuals.

Personal ownership of the code should be avoided, because if the person disappears the knowledge will be lost and intervening on the code will require expensive reverse engineering. Founding the architecture on standardized patterns and pushing for factorization and reuse (coupled with code review and team rotation) is a logical way to try addressing this. Typically the whole system structure becomes much more uniform and consistent, because everybody is pushed to use the same architectural and design pattern.

Items that will be addressed in this document include:

· General Policies

· Document Templates and Reviews

· Estimation

· The Development Environment

· Documenting Code
· Code Analysis
· Refactoring
· Testing

2 General Polices

The following are general polices that should be considered.

· CVS policy on tagging and branching

· Everything should be in CVS

· Frequency of CVS check-ins and code quality of check-ins

· Handling broken builds

· Having sufficient feedback

· Make the builds smart
2.1 CVS policy on tagging and branching

A policy should be put in place though as to how to tag, branch and merge source code. It may be that such a policy already exists at Keck. Regardless of whether or not one does it needs to be clearly communicated to the NGAO development team.
2.2 Everything should be in CVS
CVS is in use at Keck. Although Subversion (an open source modern replacement of CVS) is more commonly used today in industry, CVS is sufficient to support the needs for software development at Keck.

With the exception of process documents and manuals which typically get posted to KeckShare or Twiki, it is recommended that everything related to the project, with the exception of automatically generated assets, is placed into CVS: test scripts, properties files, database schema, install scripts, and third party libraries etc. and not just source files.
2.3 Frequency of CVS check-ins and code quality of check-ins

It is difficult to work collaboratively on a project if source files stay checked out of a repository for long periods of time. Often this is because of the amount of changes required to complete a task. The solution should be to commit smaller chunks of code frequently. It is recommended that any code that is checked in will not cause a build to fail. Actual implementation can be missing but all contractual interfaces etc. should be kept as stable as possible. It is generally not a good practice for people to commit all their changes at the end of the day.
Delayed check-in means delayed integration and testing and should be avoided. Ideally test cases should be updated and checked in with any significant code changes or new code.
2.4 Handling broken builds

There should be some grace period defined where a build can be broken after that the culprit should be indentified and the build fixed. The longer a build is broken typically means it becomes more difficult to fix and prevents all developers from running the same stable base.

It is suggested that developers perform an update and private build before committing code to CVS.
2.5 Having sufficient feedback

There should be an easy way to see the status of a build for each subsystem, where it was last built, if it passed or failed etc. One suggestion is to investigate if the output of the build can be parsed and the results updated automatically onto a Twiki page.
2.6 Make the builds smart

It is not necessary to do a complete rebuild every time. Components and subsystems must be separately buildable and procedures should be put in place such that only modules dependent on recently modified files get rebuilt.

2.7 Deploying early
The build scripts to automate deployment such as copying of release files, setting up databases etc. should be developed as early as possible and deployment to target machines should be made a standard part of the internal build and release cycles.
3 Document Templates and Reviews

The project should strive for consistency during the development cycle so that all major software components utilize the same document templates for system, preliminary and detailed design.

This could cover the use of “use cases” and how they are documented, how the architecture and components should be documented, how test cases are described etc.

4 Estimation

It is recommended that the Wideband Delphi estimation process be used for software estimation. This is a consensus-based estimation technique for estimating effort. It is a simple approach, widely used in industry. The Delphi process consists of two meetings run by a moderator. The first meeting is the kickoff meeting, during which the estimation team creates a work breakdown structure (WBS) and discusses assumptions. After the meeting, each team member creates an effort estimate for each task. The second meeting is the estimation session, in which the team revises the estimates as a group and achieves consensus. After the estimation session, the project manager summarizes the results and reviews them with the team, at which point they are ready to be used as the basis for planning the project.

· Choose the team. The project manager selects the estimation team and a moderator. The team should consist of 3 to 7 project team members. The team should include representatives from every engineering group that will be involved in the development of the work product being estimated.

· Kickoff meeting. The moderator prepares the team and leads a discussion to brainstorm assumptions, generate a WBS and decide on the units of estimation.

· Individual preparation. After the kickoff meeting, each team member individually generates the initial estimates for each task in the WBS, documenting any changes to the WBS and missing assumptions.

· Estimation session. The moderator leads the team through a series of iterative steps to gain consensus on the estimates. At the start of the iteration, the moderator charts the estimates on the whiteboard so the estimators can see the range of estimates. The team resolves issues and revises estimates without revealing specific numbers. The cycle repeats until either no estimator wants to change his or her estimate, the estimators agree that the range is acceptable or two hours have elapsed.

· Assemble tasks. The project manager works with the team to collect the estimates from the team members at the end of the meeting and compiles the final task list, estimates and assumptions.

· Review results. The project manager reviews the final task list with the estimation team.

5 The Development Environment
This section focuses on what languages should be supported for NGAO and what the recommended development environment should be.
5.1 Languages
It is recommended that the project standardize on a manageable number of computer languages.

The TIOBE index (http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html) shows the following ratings.

	Position
Nov 2008
	Position
Nov 2007
	Delta in Position
	Programming Language
	Ratings
Nov 2008
	Delta
Nov 2007
	Status

	1
	1
	[image: image2.png]

	Java
	20.299%
	-0.24%
	 A

	2
	2
	[image: image3.png]

	C
	15.276%
	+1.31%
	 A

	3
	4
	[image: image4.png]

	C++
	10.357%
	+1.61%
	 A

	4
	3
	[image: image5.png]

	(Visual) Basic
	9.270%
	-0.96%
	 A

	5
	5
	[image: image6.png]

	PHP
	8.940%
	+0.25%
	 A

	6
	7
	[image: image7.png]

	Python
	5.140%
	+0.91%
	 A

	7
	8
	[image: image8.png]

	C#
	4.026%
	+0.11%
	 A

	8
	11
	[image: image9.png]

 INCLUDEPICTURE "http://www.tiobe.com/tiobe_index/images/Up.gif" * MERGEFORMATINET [image: image10.png]

 INCLUDEPICTURE "http://www.tiobe.com/tiobe_index/images/Up.gif" * MERGEFORMATINET [image: image11.png]

	Delphi
	4.006%
	+1.55%
	 A

	9
	6
	[image: image12.png]

 INCLUDEPICTURE "http://www.tiobe.com/tiobe_index/images/Down.gif" * MERGEFORMATINET [image: image13.png]

 INCLUDEPICTURE "http://www.tiobe.com/tiobe_index/images/Down.gif" * MERGEFORMATINET [image: image14.png]

	Perl
	3.876%
	-0.86%
	 A

	10
	10
	[image: image15.png]

	JavaScript
	2.925%
	0.00%
	 A

Based on the ratings, in house experience and current trends in the astronomy community Java, C, C++ and Python are obvious language choices. All of these languages can interoperate well with each other but it may be prudent to limit the number of languages to be supported by the NGAO team. A good example might be to only use C++ and not C. Another alternative might be to not consider Java but Java would be suitable for many areas of NGAO and tends to improve overall development time. In addition Java has many more open source tools that address items such as coding standards, inspection, testing etc.

Note: although IDL comes in at number 73 in the TIOBE list it is a prevalent tool in the astronomy community and an easy to use interactive visualization tool will be needed to support NGAO scientists. Other candidates in this area include Labview and possibly MATLAB. It is recommended that only one of these development tools be supported and that for the supported language the following be applied:
· A robust interface to allow interfacing from the tool to the NGAO system

· Either an API or recommendations on how to achieve consistency on coding style, logging and error handling

· Promotion of separation of concerns primarily for the UI so that domain logic is not interleaved with the UI.

· Promotion of IDL best practices.

· Since IDL has a single namespace some recommendation should be made on naming conventions so that different libraries do not conflict with each other

· It is recommended that a guideline be put in place as to where IDL applications be used.

Regardless of what language(s) are selected there should be agreement on which version to use and on what additional frameworks or libraries might be needed. Ideally there should be just a single version of any one language used throughout the project.

5.2 Integrated Development Environments

An integrated development environment (IDE) is a set of software that functionally integrates various, typically command line, development tools to assist developers in developing software.

The term "IDE" is used in contrast to unrelated command-line tools, such as vi, emacs, gcc or make. This program provides typically large numbers of features for authoring, modifying, compiling, deploying and debugging software. The idea being that the IDE abstracts the configuration necessary to piece together command line utilities in a cohesive unit, which theoretically reduces the time to learn a language, and increases developer productivity. It is also thought that the tight integration of various development tasks can lead to further productivity increases (for example, code can be compiled while being written, providing instant feedback on syntax errors).

IDEs normally consist of a

· Source code editor

· A compiler and/or interpreter

· Build-automation tools

· A debugger.

· Version control system

· Various tools to simplify the construction of a GUI are integrated as well.

· A class browser

· An object inspector

· A class hierarchy diagram

· More ..
The two most popular Open Source IDEs are Eclipse and NetBeans. Microsoft has also made all Visual Studio (express editions) free but these only work on the windows platform. The use of IDEs should be such that there is not a hard dependency on them. The base requirement is that all source code shall be editable with any text editor and code can be built from command line.
Both NetBeans and Eclipse are cross platform IDEs supporting: Windows, Solaris and Linux. In addition both support C/C++, Java and Python. Both IDEs have a lot in common and they each have individual strengths. While it is difficult to recommend one over the other Eclipse probably has the edge in that it has been an open source entity for longer and has a larger number of contributors than NetBeans making it easier to find plugins for it.

5.2.1 Language Support in Eclipse

· Java is supported by default

· C/C++ is part of the IDE for C/C++ developers (standard)

· PyDev is the recommended Python plugin for eclipse.

5.3 User Interface

There are a number of important considerations for the UI, primarily:
· Understanding the end user needs and considering the overall workflow and how the user interfaces will tie together.

· Having consistency across user interfaces

It is recommended that sufficient time is taken with the end users: observers, observing assistants etc. to develop story boards on how the UI needs to be realized. This is independent of any actual implementation and can be based on drawings, PowerPoint, paint or other tools, though eventually have a simple prototype will be useful.

To achieve consistency the following is recommended

· Adopting a style guide – it is suggested that this be kept as brief as possible.

· Evaluating and adopting a UI toolkit, preferably one with UI builder capability. Two good free open source candidates which include cross platform support and C/C++, Java and Python bindings are:

· QT
· GTK+

6 Documenting Code

It is recommended that all comments and in-code documentation conform to the Doxygen standard. This should be true even for Java when JavaDoc is available.

Doxygen is a documentation system for C, C++, Java, Python, and more. It is available for most unix and Windows systems. It can help in two ways:

· It can generate an on-line documentation browser and/or an off-line reference manual from a set of documented source files. The documentation is extracted directly from the sources, which makes it much easier to keep the documentation consistent with the source code.

· You can configure doxygen to extract the code structure from undocumented source files. This is very useful to quickly navigate in large source distributions. It is possible to visualize the relations between the various elements by means of include dependency graphs, inheritance diagrams, and collaboration diagrams, which are all generated automatically.

7 Code Analysis

There are five major areas of code analysis:

· Coding standards compliance

· Code duplication

· Code coverage

· Dependency analysis

· Complexity Monitoring

For Java there are is an abundance of very mature free open source tools that integrate well into Eclipse, to cover all five areas.
	Tool
	Purpose
	URL for Eclipse plugin

	CheckStyle
	Coding standard analysis
	http://eclipse-cs.sourceforge.net/update/

	Coverlipse
	Test code coverage
	http://coverlipse.sf.net/update

	CPD
	Copy/Paste detection
	http://pmd.sourceforge.net/eclipse/

	JDepend
	Package dependency analysis
	http://andrei.gmxhome.de/eclipse/

	Metrics
	Complexity monitoring
	http://metrics.sourceforge.net/update

Equivalent free open source tools exist for C/C++ and Python but to a lesser extent, though commercial solutions do exist. These tools will be discussed below.
7.1 Code inspection process

There are many different types of code inspections formal, informal, peer etc. with their own rules on how they should be conducted. All of these are implicitly manual processes which are error prone, take considerable time and tend to be forgotten when the going gets rough. This document is not going to recommend which type of review process NGAO should use. Instead it is recommending the use of code inspectors to automate the task, resorting to actual in-person reviews only for the design phase and critical code reviews where the focus can be on more high-level aspects of development, such as design and long term maintenance issues. By having issue like coding standards handled by the software inspectors the in-person inspections are enhanced.
Although code checkers can reduce formal code review time considerably, it certainly does not mean that code reviews are not needed anymore. Some coding rules cannot be checked at all or only partly at compile-time. On average about 65% of a coding standard can be covered with code checking tools.

There is an entire family of software inspectors both open source and commercial that are available to facilitate statically analyzing code. These tools now offer considerable functionality and code inspections can become automated through build tools like Ant or Maven. The tools can automate the low-level source code details like coding standards, complexity, and duplication.

Many of these code inspectors have an Eclipse plugin that allows them to be run interactively from the IDE as well as externally from the build process.
The proposed approach is a 4 step process:

· Define/Adopt a coding standard

· Select Code Checking Tool

· Customize the tool

· Integrate the tool into the SW Environment

Typically many companies take this concept further by having a quality database where the number of reviews and number of issues found are captured and logged to a database. The intent for NGAO is to ensure consistency across the code and that as many possible potential errors as caught up front as possible. Since the intent is not to create an overall observatory quality database the use of one is not being recommended for this project.

In addition there are some general recommendations such as

· Having a best practices Twiki.
· Depending on language having some reference books such as “Effective and More Effective C++” Scott Meyers
· Have a Twiki page to track items that are commonly forgotten, if this cannot be caught through automation
7.1.1 Adopting a standard

Whether or not a tool is used for enforcement a coding standard needs to be defined or adopted. Usually a coding standard consists of a set of programming rules, naming conventions and layout specifications. It is prudent to adopt an existing standard rather than trying to roll our own. Typically checking tools are designed to work against many of the existing standards out of the box. In fact the most prudent way to proceed would be to choose a code checking tool and declare (a selection of) the rules in it as the coding standard.
The following is a list of most frequently used coding standards for the mainstream industrial programming languages.

· for C:

· "Indian Hill Recommended C Style and Coding Standards" - Bell Labs
· "Guidelines for the Use of the C Language in Vehicle Based Software" - MISRA
· for C++:

· "Industrial Strength C++" - Mats Henricson, Erik Nyquist
· "Effective C++" - Scott Meyers
· "C++ Coding Standards" - Herbert Sutter and Andrei Alexandrescu
· for C#:

· "Design Guidelines for Class Library Developers" - Microsoft
· "Coding Standard: C#" - Philips Medical Systems
· for Java:

· "Coding Conventions for the Java Programming Language" - Sun Microsystems
· "Elements of Java Style" - Alan Vermeulen (eds.)
· www.ambysoft.com/downloads/javaCodingStandards.pdf
· for Python:

· "Style Guide for Python Code" - Guido van Rossum

7.1.2 Selecting a tool

There are a number of flavors of code inspectors. Typical functions are

· Checking and reporting deviations from a projects predefined coding standards

· Reporting on excessive duplication of code

· Analyzing and reporting on code complexity

Typically a number of tools are used in conjunction to provide the above features

	Language
	Function
	Tool
	Heritage

	Java
	Coding Standards
	CheckStyle
	Open Source

	Java
	Code duplication
	CPD (from PMD)
	Open Source

	Java
	Code Complexity
	JavaNCSS
	Open Source

	C/C++
	Coding Standards
	
	

	C/C++
	Code duplication
	CCFinder
	OpenSource

	C/C++
	Code Complexity
	
	

	Python
	Coding Standards
	PyChecker
	Open Source

	Python
	Code duplication
	
	Open Source

	Python
	Code Complexity
	PyGenie

Snakefood
	

There are several characteristics that should be assessed during the selection process of a code checker. There are 6 issues that are most important in our opinion. Obvious requirements such as whether it is available for the used platform are not taken into account.

· Availability to define own rules. Experience has shown that only about 20% of a proprietary coding standard is available as built-in rule in a code checker. As a consequence, there should be a possibility to define own rules. This can be via an API (complex in use but powerful) or a graphical user interface (easy to use but limited).

· Integration in programming IDE. Most end users of code checkers are software engineers. Therefore a code checker should fit smoothly in the used programming environment. Preferably via a toolbar with an easy way of running the tool (one button push).

· Presence of command-line version. In order to be able to integrate the code checker in the software development process and/or in the programming IDE (if no plug-in is available) it should be command-line oriented. Command-line versions also allow for nightly batch runs of the code checker to collect quality data.

· High performance. Code checkers are slower than compilers by nature because they perform a more in-depth semantic analysis of the source code. However, performance is a key issue for end user acceptance of the tooling. Response times of more than 1 minute per file are perceived as not workable.

· Low cost of ownership. Cost of ownership means purchase price and maintenance costs. Since code checkers are not used continuously by end users, floating licenses appear to be more cost effective in most cases. About 1 floating end user license is needed per 10 developers.

· Available support. Decent product support is an essential feature of a code checker. Good support does not only mean prompt and adequate response to user questions and problems, but also the frequency of new product release.

Apart from the requirements mentioned above, it is recommended to select a mainstream code checker of a market leader. Have a look at the current market leaders for the various programming languages below.

· for C:

· Lint (Sun Microsystems)
· LCLint/Splint (University of Virginia)
· QA-C (Programming Research)
· for C++:

· PC-Lint (Gimpel Software)
· C++Test (Parasoft)
· QA-C++ (Programming Research)
· for Java:

· PMD (SourceForge project)
· CheckStyle (SourceForge project)
· JavaNCSS (SouceForge project)
·
for Python
· PyChecker (OpenSource)
· PyLint (OpenSource)

· PyGenie (OpenSource)

· Snakefood
7.1.3 Configuring the tool

The first obvious action of customizing a code checker concerns switching on all available rules that are part of the coding standard. Rules that can be checked automatically but are not provided as built-in rules can be implemented by means of a provided API or a graphical configuration tool. There should be common agreement between the developers on which rules will be implemented and how.
7.1.4 Integrating the tool
As soon as the code checker has been configured according to the available coding standard, it is almost ready for use in daily practice. The only thing that remains to be done is integration in the software environment. This comes primarily down to:

· Providing a plug-in for the used programming environment

· Alignment with the compilation process
· Arrange up-to-date access to all parts of the code archive
A code checker should be available as a set of simple buttons within the used programming environment in order to ease its introduction in the organization. That's why code checker providers usually offer plug-ins for mainstream environments. Examples of popular programming environments are JBuilder (Java), Eclipse (Java/C++), and Visual Studio (C++/C#).

7.1.5 Manual inspection support

Jupiter (from UH) is an open-source code review tool that has been developed Eclipse. Jupiter easily plugs into Eclipse and allows for its users to facilitate code reviews on existing code. The user guide is available here http://code.google.com/p/jupiter-eclipse-plugin/wiki/UserGuide .

It is light weight and simple to use and has the following features:

· Open Source: Jupiter carries an open source license.

· Free: Jupiter is distributed free of charge.

· IDE integration: Jupiter is based upon the Eclipse plug-in architecture.

· Cross-platform: Jupiter is available for all platforms supported by Eclipse.

· XML data storage: Jupiter stores data in XML format to simplify use and re-use.

· Sorting and searching: Jupiter provides filters and sorting to facilitate issue review.

· File integration: Jupiter supports jumping back and forth between reviews and source code

It is recommended that rather than developing code review work sheets etc. that Jupiter be explored as an easier to use more integrated solution.

That said there has been some work down in-house at Keck where standard review feedback templates have been developed.

For reference see http://www/TWiki/bin/view/Software/SoftwareCodeReviews
7.2 Code duplication

Code duplication refers to a sequence of source code that occurs more than once, either within a program or across different programs owned or maintained by the same entity. Duplicate code is generally considered undesirable for a number of reasons:

· Code bulk affects comprehension: Code duplication frequently creates long, repeated sections of code that differ in only a few lines or characters. The length of such routines can make it difficult to quickly understand them.

· Purpose masking: The repetition of largely identical code sections can conceal how they differ from one another, and therefore, what the specific purpose of each code section is.

· Bug fixes: Once a piece of code is duplicated, any bug discovered in it must be fixed in each location separately. At best, coding and testing time are multiplied by the number of duplications. At worst, some locations may be missed, and bugs thought to be fixed may persist in duplicated locations for months or years.
Sequences of duplicate code are sometimes known as clones. Typically duplicate code is the result of copy-paste functions where time is not taken by the developer to properly structure their code.
The following is a list of tools that can be used to automate the detection of code duplication, there are probably many more.

· CCFinderX for code duplication in C/C++ - free

· Simian similarity analyzer for C/C++, Java maybe Python – free

· CloneDigger Python + Java = free

· JDepend , Findbugs and PMD Free, open source for Java only.

7.3 Code coverage

Code coverage is a measure used in software testing and typically refers to white box testing, see section 9.3 below. To measure how well the program is exercised by a test suite, one or more coverage criteria are used. There are a number of coverage criteria, the main ones being:

· Function coverage - Has each function in the program been executed?

· Statement coverage - Has each line of the source code been executed?

· Decision coverage (also known as Branch coverage) - Has each control structure (such as an if statement) evaluated both to true and false?

· Condition coverage - Has each boolean sub-expression evaluated both to true and false (this does not necessarily imply decision coverage)?

· Path coverage - Has every possible route through a given part of the code been executed?

· Entry/exit coverage - Has every possible call and return of the function been executed?

A number of open source code coverage tools that are designed to work with xUnit and integrate with Eclipse are available.

The recommendation is that xUnit tools be used where possible for unit testing and that a suitable code coverage tool be leveraged. Free open source tools, such as Cobertura, JCover, JCoverage and Quilt, tend to be more readily available for the Java environment but it is possible that similar ones exist for C/C++ and Python. There are certainly commercial solutions available.
7.4 Dependency analysis

Perhaps something to consider as the project development gets underway is a way to reverse engineer the system to understand structure, control complexity and define architecture visually based on the ongoing implementation. Structure101 is a tool available from http://www.headwaysoftware.com/. It is particularly useful for dependency and impact analysis and is available as a plugin for Eclipse or a standalone application. It will work with C/C++ and Java. This is a commercial product but not too expensive and also has with educational rates.
There are a number of free Java only solutions such as JDepends and it is possible that are other open source solutions for C/C++ and Python.
7.5 Complexity Monitoring

Software complexity is often tied to testing and the McCabe metric which determines code complexity based on the number of control paths created by the code is often used in conjunction with automated unit tests to provide an estimation of code coverage as described above.
Cyclomatic complexity is the most widely used member of a class of static software metrics. Cyclomatic complexity may be considered a broad measure of soundness and confidence for a program. It measures the number of linearly-independent paths through a program module. This measure provides a single ordinal number that can be compared to the complexity of other programs.

Various tools exist to measure this. Typically these tools also provide statistics such as total lines of code, lines of source code, %comments to code, #lines per function. This information can be used to highlight code that has been poorly documented, identified functions that might need refactoring etc.
8 Refactoring
Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior. Its heart is a series of small behavior preserving transformations. Each transformation (called a 'refactoring') does little, but a sequence of transformations can produce a significant restructuring. Since each refactoring is small, it's less likely to go wrong. The system is also kept fully working after each small refactoring, reducing the chances that a system can get seriously broken during the restructuring.

There is some strange terminology associated with refactoring and agile development which are software rot and the smells that are associated with this rot. Not a terminology I like but one that is prevalent in the literature. The intent of this section is make the reader aware of a systematic approach to refactoring and that there are established patterns for recognizing and addressing common design problems known as smells (causing software rot). In fact there are tools available now that will analyze code and automatically identify such areas. One example is JDeodorant

By measuring cyclomatic complexity, duplicated code, dead code, counting lines of code and examining dependencies it is possible to identify key areas to consider for code refactoring as the project progresses.
It is recommended that Refactoring by Martin Fowler be used as a reference when refactoring. There is also a good online reference to a table that lists standard smells and there associated recommended refactoring technique which link to the online refactoring catalog. These are available at http://wiki.java.net/bin/view/People/SmellsToRefactorings. A small example is shown below.
	Smell
	Description
	Refactoring

	Long Method
	The longer the method the harder it is to see what it’s doing.
	Extract Method
Replace Temp with Query
Introduce Parameter Object
Preserve Whole Object
Replace Method with Method Object

	Duplicated Code
	
	Extract Method
Pull Up Field
Form Template Method
Substitue Algorithm

	Large Class
	A class that is trying to do too much can usually be identified by looking at how many instance variables it has. When a class has too many instance variables, duplicated code cannot be far behind.
	Extract Class
Extract Subclass

	Dead Code
	A variable, parameter, method, code fragment, class, etc is not used anywhere (perhaps other than in tests).
	Delete the code.

	Data Class
	Classes with fields and getters and setters and nothing else (aka, Data Transfer Objects - DTO)
	Move in behavior with Move Method

	Inappropriate Intimacy
	Two classes are overly intertwined.
	Move Method Move Field
Change Bidirectional Association to Unidirectional Association
Extract Class
Hide Delegate
Replace Inheritance with Delegation

9 Testing

9.1 Load Testing

It is recommended that a plan be put in place to specify how load testing will be done and how often. Items such as how many concurrent users can access the system, how much data can be moved without degrading performance, system throughput etc. should be included.

Where possible load testing should be automated via scripts or tool such as JMeter (Open Source) or LoadRunner (Commerical HP).
9.2 Profiling

It is recommended that a profiler be identified and evaluated for the project. A good profiler can be a significant asset in indentifying performance bottlenecks, pinning down memory leaks and resolve threading issues.
9.3 Unit Testing

A unit test is a test for a specific unit. Typically each test case is independent from the others. Unit testing is typically done by the developers and not by end-users. In Test Driven Development test cases are developer as the code is produced. This is not a requirement for the use of any of the tools described below. In theory with unit tests, there is the possibility to build code to a much higher quality level and the advantages multiply components and test are grouped together into higher order tests, each of which has its own unit tests. Test code does not need to be exhaustive

Unit tests should use the regular, public interface of the class used by regular client code.
Automated unit testing tools have become much more abundant since the advent of Test Driven Development (TDD) and Extreme Programming (XP). Most modern testing frameworks have evolved from xUnit based on a design by Kent Beck. The main advantage of xUnit frameworks is their automated solution; with them there is no need to write the same tests many times, no need to remember what should be the result of each test etc. Having the ability to automate unit testing makes it possible to ensure that when changes are made to a code in a large complex system it doesn’t cause adverse effects on the rest of the system.
These frameworks require test cases to be written for each function that needs to be tested though IDEs like Eclipse can help to automate this task by creating stub code for each test case automatically from the source code.
By using a structured approach there is reduced duplication of effort, less maintenance, more consistency and the ability to automate the testing of a collection of components. Obviously ad-hoc solutions can be used and may even be needed to augment the use of xUnit. Finding the right level will be important. The recommended basic approach should be to produce a set of test cases that can give some high level confidence on regression testing.

The following table shows the xUnit test frameworks available for a number of languages:

	Language
	xUnit

	C
	Check

	C++
	CppUnit/ CXXTest

	Java
	JUnit

	Python
	PyUnit

The basic approach is that the unit tests are written in compliance to the unit test suite. Then when needed they are executed through the test runner of the test suite. This can be run interactively from the IDE by the developer or as part of the build or test process.

The recommended is that unit testing be a standard part of the software development and that a standardized approach, such as xUnit, be used. Ideally these should be coupled with a code coverage tool.

9.4 Acceptance Testing

Acceptance testing is often referred to as black box testing and is performed on the target system. It is recommended that there be a consistent standard approach taken to acceptance testing through the project. The intent of the acceptance testing is to find functional bugs where customer expectations have not been met. Its primary purpose is not to uncover major bugs such as software crashes as these should have been dealt with previously under unit testing or system test.
The standardized approach may be through the use of a common template on how to specify tests and record results or could be through the use of automated test suites. A common open source framework for integrated tests is FIT
10 An Integrated Picture

The following shows how the various tools can be integrated together into a single environment.

· CVS/Subversion plugin
· Coding Standards plugin
· Code Analyzer plugin, may include additional
· Code duplication analyzer

· Dependency analyzer
· Complexity Metrics plugin
· Code Analysis Plugin
· Unit Test Framework plugin
· Code Coverage plugin.
· Code review plugin
The following concrete example is based on the Java language which has the greatest set of free open source solutions and Eclipse integration.
· CVS plugin: Integrated source control. Allows graphical view of which files, folder are check in, modified etc. Visual side by side comparison of files between versions, single click options to check in/out, update etc. (Language agnostic)
· Checkstyle plugin for Eclipse: Perform style, metrics and consistency checks on Java code, reported as problem markers and quick fixes

· PMD Eclipse: Analyze Java code for potential issues reported as problem markers and quick fixes. Also includes code duplication analysis
· JDepend: Analyze dependencies
· State of Flow Eclipse Metrics plugin: Compute quality metrics on Java code, reported as problem markers. Create code metrics reports

· FindBugs plugin: Find hidden bugs in Java Code

· Metrics plugin: Compute code metrics on Java code and perform graphical dependency analysis

· JUNIT – Automated Unit Tests

· Cobertura calculates the percentage of code accessed by tests. It can be used to identify which parts of the Java program are lacking test coverage.
· Jupiter: a collaborative Eclipse code review tool. Uses a simple, lightweight code review process. Stores code reviews in an XML file format and maintains them in the project configuration management system alongside the source code. Supports individual and team reviews (Language agnostic)
11 References
· http://www.martinfowler.com/ - A series of articles by Martin Fowler on agile development, continuous improvement and refactoring
· http://www.xprogramming.com/ - An agile software development resource site

· Automation for the People - A series of articles by Paul Duvall on IBM Developer Works
· Pragmatic Bookshelf: Pragmatic Project Automation, Pragmatic Unit Testing, Pragmatic Version Control[image: image16.png]

[image: image17.png]YOUR LOGO
HERE

[image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29][image: image30][image: image31][image: image32][image: image33][image: image34][image: image35]
NGAO Software Standards_rev03.doc
Last printed 12/21/2009 5:25:00 PM
NGAO Proposed Software Standards
Page 10
12/9/08

