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� Abstract

This is a description of how latency in a [open | closed] loop controller maps to wavefront rms error

� Introduction

The Taylor frozen-flow atmosphere has the power spectrum1

(1)SΦ@fD := 0.0770491 Hr0 � vL-5�3 f-8�3

radians2/Hz. To convert to nanometers2/Hz, multiply by HΛ �2 ΠL2. A control law simply acts as a transfer function, HC@ f D, on the

spectrum of wavefront disturbance. This function is designed to reduce the total power in the final residual but is constrained to
obey laws of causality and, in the case of closed loop control, results in a stable system. The power spectrum of the residual is

In[330]:= °x_´ := Abs@xD

(2)Se@fD := °HC@fD´2 SΦ@fD
For open-loop control, the filtering process consists of subtracting an estimated version of the wavefront from the current wave-
front. The estimate is formed after integrating the wavefront sensor for a cycle time, then waiting one frame cycle for the WFS
camera readout and then a compute delay to calculate the estimate. Finally the estimated wavefront is held on the actuators of the
DM for one cycle time. There is no feedback.

In the Fourier domain, the open loop control process is described by

(3)

OLTF

HOLC@fD = 1 -
1 - ã-ä2ΠfT

-ä2ΠfT
ã-ä2Πf HT+ΤcL 1 - ã-ä2ΠfT

-ä2ΠfT

where T is the sample time and Τcis the compute delay.

A closed-loop controller has a feedback loop. Assuming integral feedback with a gain, Γ, the transfer function is

(4)

CLTF

HCLC@fD =
1

1 +
Γ

1-ã-ä2ΠfT
J 1-ã-ä2ΠfT

-ä2ΠfT
N ã-ä2Πf HT+ΤcL J 1-ã-ä2ΠfT

-ä2ΠfT
N



The residual wavefront variance is determined by integrating Se@f D up to the Nyquist frequency :

(5)ΣBW
2 = 2 à

0

1

2 T
Se@fD âf

This ignores spectral contributions beyond Nyquist, which we'll categorize as "aliasing error" rather than bandwidth error. This
reasonable to do for two reasons: a) the sampling time is usually chosen by design so that out-of-band contributions are negliga-
ble, b) the Hartmann subaperatures actually impose a low-pass filter on the disturbance entering the controller, at a cuttoff of v/d
Hz where v is the wind velocity and d is the subaperture size, and, again, the sampling frequency 1/T is by design chosen much
larger than v/d. In essence, this is saying that aliasing error due to the finite subaperture size has already counted in all the
aliasing, and we don't have to re-count it in the bandwidth error calculation.
Through a change of variables, it is possible to factor out the relevant scale factors and do the integration numerically:

(6)ΣBW
2 = Hv T � r0L5�3 Ζ

where Ζ is a constant that depends on the case of open or closed loop, the delay parameter Α = Τc/T, and in the case of closed

loop, the closed loop gain, Γ. 

� Comparison to a Greenwood Frequency model

The Greenwood Frequency is a parameter relating the rms closed loop residual in an ideal continuous-time integral feedback
controller to the atmospheric conditions and the closed-loop -3db rejection frequency, fc. From Greenwood, formula (9.53):

(7)ΣBW
2 = Ifg � fcM5�3

On the other hand, the parameter Τ0 relates the atmospheric conditions directly to the wind velocity. Applying equations (3.1-49)

and (3.1-48) from KAON 2082 we get its relation to fg. This allows people to use fg  also as a direct measure of the atmosphere

condiitons without reference to a particular controller:

(8)fg = 0.135 � Τ0 =
0.135

0.314
´

v

r0

(9)

eqn9

ΣBW
2 =

0.135

0.314

5�3 1

fc T

5�3 v T

r0

5�3
= Ζg

v T

r0

5�3

The definition of fc  however is rather unclear. Discrete time control systems do not act as simply as continuous time systems

because of system delays inherent with exposure time, readout, and computation. It is difficult to get a rejection bandwidth (-3db
point) that is more than about 1/10 of the sample frequency, and also difficult to create a rejection function that doesn't overshoot
(go above 1) at higher frequencies. The rejection curves in the Appendix show that, with a compute delay combined with the
camera readout, WFS integration, and DM hold times, the bandwidth is about 0.05/T when the compute delay is one sample and

0.025/T when the compute delay is two samples. Substituting this in to (9) gives approximate values for Ζg:

(10)Ζg =
0.135

0.314

5�3 1

fc T

5�3 �. fc ® 90.05
T

,
0.025

T
=

836.0903, 114.579<

� Comparison to a pure time-lag (Τ0) model

In a simple open-loop lag model, the correction is applied Τd  seconds delayed. The residual is then
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(11)ΣBW
2 = 6.88

v Τd

r0

5�3
= Ζ0

v T

r0

5�3

We can approximate the WFS stare time and DM hold time as latency delays of 1/2 a sample period each. The approximation is
justified by noting that this is the "average" age of the data in each case (the calculations in the next section vindicate this). Add
to this WFS readout time and compute delays of either one or two sample periods and the equivalent values for Ζ0 are:

(12)Ζ0 = 6.88
Τd

T

5�3 �. Τd ® 83 T, 4 T<
842.9329, 69.3461<

� Discrete time systems

In the Appendix we show that the actual values of Ζ for the discrete transfer function (DTF) are considerably larger than the
model approximations Ζg  and Ζ0, owing to the fact that the delays actually cause overshoot (gains > 1 at some high frequency

band) in the rejection curves. For open-loop the values are: Ζ = 84 and 137 for one and two T compute delays respectively. For
closed-loop (with optimally tuned feedback gain) the values are: Ζ = 98 and 172 for one and two T compute delays respectively.

Τc = T Τc = 2 T

Greenwood model IfgM 36 115

Time lag model IΤ0M 43 69

Closed loop DTF 98 172

Open loop DTF 84 137

Table 1 Normalized residual variances, Ζ,  as computed by various methods for one and two samples of compute delay.

We can substitute the Keck NGAO nominal values for v and r0  to translate these normalized residuals into nanometers of

wavefront error. For the nominal NGAO design conditions, v = 9 m/sec, r0 = 16 cm at Λ = 0.5 Μm and zenith angle of 30 degrees,

and T = 0.5 ms this yields

In[181]:= Table2

Out[181]=

ΣBWHnmL Τc=T Τc=2T

Greenwood model 24 44
Time-lag model 27 34
Closed loop DTF 40 53
Open Loop DTF 37 48

Table 2 Residual wavefront errors for the NGAO nominal conditions v = 9 m/sec, r0 = 16 cm at Λ = 0.5 Μm and zenith angle of 30 degrees,

and T = 0.5 ms. Units are nanometers, rms.

� Keck NGAO parameter study

The control loop residual was calculated for the following cases relevant to NGAO3

  - Compute time delays of 0, 1/2, 1, and 2 samples
  - Sample rates of 2.0 kHz and 800 Hz (T = 0.5 milliseconds and 1.25 milliseconds)
  - Wind speed of 9.5 m/sec and 19 m/sec
  - r0 = 16 cm at Zenith

  - Zenith angle of 30 degrees (=> r0 = 13.8 cm)
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In[329]:= r0 = 0.16 Cos@30. Pi � 180.D
Out[329]= 0.138564

For open-loop control, we use 

(13)In[123]:= Σ@v_, T_, Α_D :=
500

2 Π
Ζ@ΑD v T

r0

5�3

where Ζ[Α] is the open-loop normalized variance from equation 15 in the Appendix.

In[342]:= Table3

Out[342]=

vHm�sL THmsL Τc=0.T Τc=0.5T Τc=1.T Τc=2.T

9.5 0.5 31.0037 37.5371 43.8629 55.9779

9.5 1.25 66.5319 80.5521 94.1269 120.125

19 0.5 55.2422 66.8834 78.1548 99.7413

19 1.25 118.546 143.528 167.715 214.038

Table 3. Values of open-loop control bandwidth error Σ, in nanometers rms, for the cases studied.

For closed-loop control we use

(14)Σ@v_, T_, Α_, Γ_D :=
500

2 Π
Ζ@Α, ΓD v T

r0

5�3

where Ζ[Α,ý] is the closed-loop normalized variance from equation 16 in the Appendix, and use the value of feedback gain, Γ,

that minimizes the residual in each delay case. From the Appendix, these values are Γ = 0.6, 0.5, 0.4, and 0.3 respectively for
compute delays of 0, 1/2, 1, and 2 time samples, respectively.

In[343]:= gammas = 80.6, 0.5, 0.4, 0.3<;
Dtable = Table@0, 8i, 4<, 8j, 4<D;
For@i = 1, i £ 2, i++,

For@j = 1, j £ 4, j++,

Dtable@@i, jDD = Σ@winds@@1DD,
sampleTimes@@iDD,
alphas@@jDD,
gammas@@jDDD

D
D;

For@i = 3, i £ 4, i++,

For@j = 1, j £ 4, j++,

Dtable@@i, jDD = Σ@winds@@2DD,
sampleTimes@@i - 2DD,
alphas@@jDD,
gammas@@jDDD

D
D;

TopRow = Map@StringJoin@"Τc=", ToString@ð1 - 1.D, "T"D &, alphasD;
RightCols = Join@8TopRow<, DtableD;
LeftCols = Join@88"vHm�sL", "THmsL"<<, Flatten@Outer@List, winds, sampleTimes * 1000D, 1DD;
Table4 = Grid@Transpose@Join@Transpose@LeftColsD, Transpose@RightColsDDD, Frame ® AllD;
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In[351]:= Table4

Out[351]=

vHm�sL THmsL Τc=0.T Τc=0.5T Τc=1.T Τc=2.T

9.5 0.5 31.4542 39.2017 47.3859 62.7594

9.5 1.25 67.4986 84.1244 101.687 134.678

19 0.5 56.045 69.8495 84.4321 111.825

19 1.25 120.269 149.893 181.186 239.968

Table 4.  Values of closed-loop control bandwidth error, in nanometers rms, for the cases studied.

� References

1. Greenwood, D. P., "Bandwidth Specification for Adaptive Optics Systems," JOSA-A, 67, 3, 1977, pp. 390-392.
2. Chanan, G., et. al., "Adaptive Optics for Keck Observatory," Keck Observatory Report No. 208, 1996.
3. KAON 644, "Build-to-Cost Architecture Performance Analysis," Appendix.

� Appendix: Rejection performance of discrete-time control laws

In this section we calculate Ζ for the discrete-time control laws. As mentioned in the main text, Ζ is considerably higher in the
case of a real system with delays than it is in the simplified models. 

� Open loop transfer function curves

The following are curves of the open loop transfer function (equation 3) and the corresponding residual power spectrum.

In[264]:= FigureA1

Out[264]=
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Figure A1. Open loop transfer functions for 1 and 2 sample-time compute delays (increasing crossover frequency with decreasing compute delay). The

dashed curves represent the "average age of data" approximation where we substute the WFS stare and DM hold transfer functions each with 1/2 sample

time delays.
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In[265]:= FigureA2

Out[265]=

0.01 0.02 0.05 0.10 0.20 0.50

10

100

1000

104

Figure A2. Open loop residual spectra for 1 and 2 sample-time compute delays (decreasing residual with decreasing compute delay). The dashed curves

represent the "average age of data" approximation where we substute the WFS stare and DM hold transfer functions each with 1/2 sample time delays.

The integrated residual spectra is evaluated for the case of the compute delay, Τc equals 0, 1/2, 1, and 2 time samples and the

camera readout delay equals 1 time sample to calculate the respective normalized variances:

(15)

OLNV

Ζ@Α_D :=

0.0770491 ´ 2 NIntegrateA 1 - ã-ä 2 Π Α f
1 - ã-ä 2 Π f

-ä 2 Π f

2 2

f-8�3, 9f, 10-6, 1 � 2=E

+ 12 Π2 H1 + ΑL2 f1
1�3 �. f1 -> 10-6 �� Re

where Α is the total delay including readout delay and compute delay, in units of sample period, T.

The following asymptotic formula is used to help compute the portion of the integral near f = 0:

SeriesB 1 - ã-ä 2 Π Α f
1 - ã-ä 2 Π f

-ä 2 Π f

2

1 - ãä 2 Π Α f
1 - ãä 2 Π f

ä 2 Π f

2

f-8�3, 8f, 0, 3<F

4 Π2 H1 + ΑL2

f2�3 -
1

9
IΠ4 I23 + 72 Α + 84 Α2 + 48 Α3 + 12 Α4MM f4�3 + O@fD10�3

IntegrateB4 Π2 H1 + ΑL2

f2�3
, 8f, 0, f1<F

12 Π2 H1 + ΑL2 f1
1�3

� Closed loop transfer function curves

The following are curves of the closed loop transfer function (equation 4) and the corresponding residual power spectrum.
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In[258]:= FigureA3

Out[258]=
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Figure A3. Closed loop transfer functions for various feedback gains (increasing crossover and resonant peak with increasing gain). The solid lines are for

one sample time compute delay; dashed lines are two sample times of compute delay. Thick lines indicate optimal total-power-rejection curves for a

Kolmogorov disturbulence input spectrum.

In[259]:= FigureA4

Out[259]=
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Figure A4. Closed loop residual spectra for various feedback gains (increasing crossover and resonant peak with increasing gain). The solid lines are for

one sample time compute delay; dashed lines are two sample times of compute delay. Thick lines indicate the least-total-integrated power curves.

The integrated closed loop residual spectra is evaluated for the case of the compute delay, Τc equals 0, 1/2, 1, and 2 time samples

and the camera readout delay equals 1 time sample to calculate the respective normalized variances. In this case we must find the
feedback gain, Γ, that minimizes the residual within a range where the control loop is stable.

(16)

In[11]:=
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(16)

In[11]:=

CLNV

Ζ@Α_, Γ_D := 0.0770491 ´ 2 NIntegrateA

1

1 +
Γ

1-ã-ä 2 Π f
ã-ä 2 Π Α f J 1-ã-ä 2 Π f

-ä 2 Π f
N2

2

f-8�3, 9f, 10-6, 1 � 2=E

+
12 Π2 f1

1�3
Γ2

�. f1 -> 10-6 �� Re

In[263]:= TableA1

Out[263]=

ΖCL Τc=0. T Τc=0.5 T Τc=1. T Τc=2. T

Γ=0.6 43.1888 70.0042 268.782 73.6983

Γ=0.5 50.3684 67.0849 108.9 238.783

Γ=0.4 64.7406 77.0322 98.0197 279.958

Γ=0.3 94.6965 104.892 119.002 171.938

Γ=0.2 171.445 181.021 192.586 224.203

Γ=0.1 508.411 519.548 531.724 559.595

Γ=0.01 22 427.3 22 465.9 22 505. 22 584.2

Table A1. Normalized residual variance for a closed-loop discrete time control law with various feedback gains, Γ, for various
cases of compute-time delay, Τc.

The integration again required an asymptotic approximation near f = 0:

SeriesB 1

1 +
Γ

1-ã-ä 2 Π f
ã-ä 2 Π Α f J 1-ã-ä 2 Π f

-ä 2 Π f
N2

1

1 +
Γ

1-ãä 2 Π f
ãä 2 Π Α f J 1-ãä 2 Π f

ä 2 Π f
N2

f-8�3, 8f, 0, 3<F

4 Π2

Γ2 f2�3 +

4 I-12 Π4 + 12 Π4 Γ + 24 Π4 Α Γ + Π4 Γ2M f4�3

3 Γ4
+ O@fD10�3

IntegrateB 4 Π2

Γ2 f2�3
, 8f, 0, f1<F

12 Π2 f1
1�3

Γ2
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