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m Abstract

Thisisadescription of how latency in a[open | closed] loop controller maps to wavefront rms error

= Introduction
The Taylor frozen-flow atmosphere has the power spectrumt
Sy (f]1:=0.0770491 (ro/v)’5/3f*8/3 "

radians’/Hz. To convert to nanometers?/Hz, multiply by (1/27)?. A control law simply acts as a transfer function, He[ f], on the
spectrum of wavefront disturbance. This function is designed to reduce the total power in the final residual but is constrained to
obey laws of causality and, in the case of closed loop control, resultsin a stable system. The power spectrum of theresidual is

n[3301:= {IX_|t : = Abs [X]

Self1:=1HIf1112S,[f] (2)

For open-loop control, the filtering process consists of subtracting an estimated version of the wavefront from the current wave-
front. The estimate is formed after integrating the wavefront sensor for a cycle time, then waiting one frame cycle for the WFS
camerareadout and then a compute delay to calculate the estimate. Finally the estimated wavefront is held on the actuators of the
DM for one cycle time. There is no feedback.

In the Fourier domain, the open loop control process is described by

OLTF
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where T is the sample time and 7.is the compute delay.
A closed-loop controller has a feedback |oop. Assuming integral feedback with again, v, the transfer function is
CLTF
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Theresidual wavefront varianceis determined by integrating Se[f ] up to the Nyquist frequency :

1

OB = Z\J;?Se[f1 af (5)
0

This ignores spectral contributions beyond Nyquist, which we'll categorize as "aiasing error” rather than bandwidth error. This
reasonable to do for two reasons: a) the sampling timeis usually chosen by design so that out-of-band contributions are negliga-
ble, b) the Hartmann subaperatures actually impose a low-pass filter on the disturbance entering the controller, at a cuttoff of v/d
Hz where v is the wind velocity and d is the subaperture size, and, again, the sampling frequency L/T is by design chosen much
larger than v/d. In essence, this is saying that aliasing error due to the finite subaperture size has already counted in al the
diasing, and we don't have to re-count it in the bandwidth error calculation.

Through a change of variables, it is possible to factor out the relevant scale factors and do the integration numerically:

ogw= (VT /rg)%3¢ (6)

where £ is a constant that depends on the case of open or closed loop, the delay parameter a = /T, and in the case of closed
loop, the closed loop gain, .

s Comparison to a Greenwood Frequency model

The Greenwood Frequency is a parameter relating the rms closed loop residua in an idea continuous-time integral feedback
controller to the atmospheric conditions and the closed-loop -3db rejection frequency, f.. From Greenwood, formula (9.53):

O%W: (fg/fc> (7)

On the other hand, the parameter 7 rel ates the atmospheric conditions directly to the wind velocity. Applying equations (3.1-49)

5/3

and (3.1-48) from KAON 2082 we get its relation to fy. This allows people to use fy also as a direct measure of the atmosphere
condiitons without reference to a particular controller:
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The definition of f. however is rather unclear. Discrete time control systems do not act as simply as continuous time systems
because of system delays inherent with exposure time, readout, and computation. It is difficult to get a rejection bandwidth (-3db
point) that is more than about 1/10 of the sample frequency, and aso difficult to create a rejection function that doesn't overshoot
(go above 1) at higher frequencies. The rejection curves in the Appendix show that, with a compute delay combined with the
camera readout, WFS integration, and DM hold times, the bandwidth is about 0.05/T when the compute delay is one sample and
0.025/T when the compute delay is two samples. Substituting thisin to (9) gives approximate values for Cy:

0.135)5/3 [ 1 53 0.05 0.025
o - ( ) VA N ey ) (10)
0.314 feT T T
(36. 0903, 114.579)

s Comparison to a pure time-lag (rg) model

In asimple open-loop lag model, the correction is applied 74 seconds delayed. The residua is then
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We can approximate the WFS stare time and DM hold time as latency delays of 1/2 a sample period each. The approximation is
justified by noting that thisis the "average" age of the datain each case (the calculations in the next section vindicate this). Add
to this WFS readout time and compute delays of either one or two sample periods and the equivalent values for £, are:

T415/3
] /. Tg— {3T, 4T} (12)

Co - 6. 88 (—
-

(42.9329, 69. 3461}

m Discrete time systems

In the Appendix we show that the actual values of ¢ for the discrete transfer function (DTF) are considerably larger than the

mode!l approximations £y and £p, owing to the fact that the delays actually cause overshoot (gains > 1 at some high frequency
band) in the rejection curves. For open-loop the values are: ¢ = 84 and 137 for one and two T compute delays respectively. For
closed-loop (with optimally tuned feedback gain) the values are: ¢ =98 and 172 for one and two T compute delays respectively.

Tc=T|tc=2T
Greenwood model (fg) | 36 115
Timelag model (7,) 43 69
Closedloop DTF 98 172
Openloop DTF 84 137

Table 1 Normalized residual variances, £, as computed by various methods for one and two samples of compute delay.

We can substitute the Keck NGAO nominal values for v and rq to translate these normalized residuals into nanometers of
wavefront error. For the nominal NGAO design conditions, v = 9 m/sec, ro = 16 cm at A = 0.5 um and zenith angle of 30 degrees,
and T = 0.5 msthisyields

in[181]:= Tabl e2

ogw(NM) Te=T |7c=2T
Greenwood moddl | 24 44
out[181]= Time-lag model 27 34

Closed loop DTF | 40 53
OpenLoopDTF | 37 | 48

Table 2 Residual wavefront errors for the NGAO nominal conditionsV = 9 m/sec, ro = 16 cm at A = 0.5 um and zenith angle of 30 degrees,
and T = 0.5 ms. Units are nanometers, rms.

m Keck NGAO parameter study

The control loop residual was calculated for the following cases relevant to NGAO®
- Compute time delays of 0, 1/2, 1, and 2 samples
- Sample rates of 2.0 kHz and 800 Hz (T = 0.5 milliseconds and 1.25 milliseconds)
- Wind speed of 9.5 m/sec and 19 m/sec
-ro =16 cmat Zenith

- Zenith angle of 30 degrees (=>ro = 13.8 cm)
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In[329= ro = 0.16 Cos[30. Pi /180. ]

outz29]= 0. 138564

For open-loop control, we use

500 vT)53
nza= o[v_, T, a_]:= [—) cla] | — (13)
27 lo
where {[a] is the open-loop normalized variance from equation 15 in the Appendix.
in[342]:= Tabl e3
v(m/s) [T(ms) | te=0.T |tc=0.5T | tc=1.T | c=2.T
9.5 0.5 |[31.0037 |37.5371 |43.8629 |55.9779
Out[342]= 9.5 1.25 |66.5319 |80. 5521 |94. 1269 |120. 125
19 0.5 |55.2422 |66.8834 |78.1548 [99. 7413
19 1.25 [118.546 [143.528 [167.715 [214.038
Table 3. Values of open-loop control bandwidth error o, in nanometers rms, for the cases studied.
For closed-loop control we use
500 vT)\53
olv_, T_, o_, v_]:= (—] Cla, ¥l |— (14)
275 lo

where {[a,y] is the closed-loop normalized variance from equation 16 in the Appendix, and use the value of feedback gain, v,
that minimizes the residual in each delay case. From the Appendix, these values are y = 0.6, 0.5, 0.4, and 0.3 respectively for
compute delays of 0, 1/2, 1, and 2 time samples, respectively.

in[343):= ganmmas = {0.6, 0.5, 0.4, 0.3};
Dtable = Table[0, {i, 4}, {j, 4}1;
For[i =1, i 2,0 ++,
For[j =1, ] <4, ] ++,
Dtable[[i, j]1] =o[winds[[1]],
sanmpl eTines[[i 1],
alphas[[j11,
gamas [[j 1]1]
1
1
For[i =3, i <4, i ++,
For[j =1, ] <4, ] ++,
Dtable[[i, j]1] =o[winds[[2]],
sanpl eTimes[[i -2]],
alphas[[j11,
gamas [[j 11]
1
I
TopRow = Map [StringJoin["t:=", ToString[#l1-1.], "T"] & al phas];
Ri ght Col s = Joi n[{TopRow}, Dtabl e];
LeftCols = Join[{{"v(nvs)", "T(ms)"}}, Flatten[Quter [List, wi nds, sanpl eTi nes = 10001, 117;
Tabl e4 = Gri d[Transpose [Joi n[Transpose [Left Col s], Transpose[Ri ghtCol s]]], Frame -» Al | ];



in[3s1):= Tabl e4

V(s) [T(ms) | te=0.T | zc=0.5T | te=1.T | tc=2.T
9.5 | 0.5 |31.4542|39.2017 |47.3859 |62. 7594
out3s1)= 9.5 | 1.25 |67.4986 |84. 1244 |101. 687 |134. 678
19 0.5 | 56.045 |69.8495 |84. 4321 |111.825
19 1.25 |120. 269 |149. 893 |181. 186 | 239. 968

Table4. Vaues of closed-loop control bandwidth error, in nanometers rms, for the cases studied.
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= Appendix: Rejection performance of discrete-time control laws
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In this section we calculate ¢ for the discrete-time control laws. As mentioned in the main text, £ is considerably higher in the

case of areal system with delays than it isin the simplified models.

= Open loop transfer function curves

The following are curves of the open loop transfer function (equation 3) and the corresponding residual power spectrum.
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Figure Al. Open loop transfer functions for 1 and 2 sample-time compute delays (increasing crossover frequency with decreasing compute delay). The
dashed curves represent the "average age of data' approximation where we substute the WFS stare and DM hold transfer functions each with 1/2 sample

time delays.
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in[265):= Fi gur eA2
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Figure A2. Open loop residua spectrafor 1 and 2 sample-time compute delays (decreasing residual with decreasing compute delay). The dashed curves
represent the "average age of data" approximation where we substute the WFS stare and DM hold transfer functions each with 1/2 sample time delays.

The integrated residual spectrais evaluated for the case of the compute delay, 7. equals 0, 1/2, 1, and 2 time samples and the

camerareadout delay equals 1 time sample to calculate the respective normalized variances:
OLNV

Cla_]:=

2

0.0770491x2 |Nintegrate| f-83 {f, 10°% 1/2}]

1_gi2rf)?
1_6—1127rotf
( 12 f ]

(15)
+127% (1+a)2f33 /. £, ->10°| //Re

where a isthe total delay including readout delay and compute delay, in units of sample period, T.
The following asymptotic formulais used to help compute the portion of the integral near f = 0:

_ 1_ei2nf)? . 1_et2nfy2
Series[ (N L L [ 1-et27ef [ £-8/3 (f, 0, 3}]
-12x f

12x f

472 1+0)? 1
—————  — (n* (283+720+840a% +48 0% + 12 0%) ) f4/2 4 O[f 11072
f2/3 9
472 (1+a)?
Integrate[T, {f, 0, fl}]

1272 (1+o)2fY3

m Closed loop transfer function curves

The following are curves of the closed loop transfer function (equation 4) and the corresponding residual power spectrum.
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Figure A3. Closed loop transfer functions for various feedback gains (increasing crossover and resonant peak with increasing gain). The solid lines are for

one sample time compute delay; dashed lines are two sample times of compute delay. Thick lines indicate optimal total-power-rejection curves for a
Kolmogorov disturbulence input spectrum.
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Figure A4. Closed loop residual spectra for various feedback gains (increasing crossover and resonant peak with increasing gain). The solid lines are for
one sample time compute delay; dashed lines are two sample times of compute delay. Thick lines indicate the least-total-integrated power curves.

The integrated closed loop residual spectrais evaluated for the case of the compute delay, . equals 0, 1/2, 1, and 2 time samples

and the camera readout delay equals 1 time sample to calculate the respective normalized variances. In this case we must find the
feedback gain, y, that minimizesthe residua within arange where the control loop is stable.
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CLNV

ni= Clo_, y_]:=0.0770491x2 [Nintegrate]|

! f83 [f, 10 1/2}]

1+ Y e—jZnaf (1*67“” )2

1 e inf i2nt
12 72 f %/3 .
+7/.f17>10 //Re
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in[263:= Tabl eAl

Ca Te=0. T |1¢=0.5 T|te=1l. T|tc=2. T
v=0.6 | 43.1888 | 70. 0042 |268. 782 | 73. 6983
vy=0.5 | 50.3684 | 67.0849 | 108.9 |238.783
S v=0.4 | 64.7406 | 77.0322 |98. 0197 | 279. 958
v=0.3 | 94.6965 | 104.892 [119.002 |171.938
v=0.2 | 171. 445 | 181. 021 |192. 586 | 224. 203
vy=0.1 | 508.411 | 519. 548 |531. 724 | 559. 595
y=0.01|22427.3 |22465.9 | 22505. |22584.2

Table Al. Normalized residual variance for a closed-loop discrete time control law with various feedback gains, vy, for various
cases of compute-time delay, 7.

The integration again required an asymptotic approximation near f = 0:

1 1

Series[ f-83 (f, 0, 3}]

i l-e-i2ni |2 ¥ . 1_ei2nf |2
1+ ¥ e-i2naf ( ) 1+ ei2nmaf ( )
1-ei2xi 12 f 1-gi2nf a2nf

4 72 4(—127T4+127147(+247T4om/+714)(2)f4/3

. + O[f 11073
Y2 1273 3 44
4 52
Integrate[yzfz/s, {f, o, fl}]
12 n2 18

‘{2
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