

Keck Adaptive Optics Note 720

NGAO Preliminary Design Phase Risk Evaluation

Peter Wizinowich, Rich Dekany, Don Gavel May 4, 2010

Introduction

This note is intended to summarize the significant programmatic and technical risks associated with the NGAO program at the end of the preliminary design phase. This KAON is an update to the system design phase programmatic risk evaluation discussed in KAON 566 and the technical risk evaluation discussed in KAON 510.

1. Methodology

The JPL risk evaluation matrix approach used for the Keck Interferometer was selected to track the significant programmatic and technical risks. This matrix ranks each risk by the consequences and likelihood of the risk occurring. A scale of 1 to 5 is used with higher numbers representing higher risk.

Likelihood of Occurrence:				
Level	Definition			
5	Very High	> 70%, almost certain		
4	High	>50%, more likely than not		
3	Moderate	>30%, significant likelihood		
2	Low	>1%, unlikely		
1	Very Low	<1%, very unlikely		

Consequence of Occurrence – Programmatic Risks

(replaced JPL's usage of "launch" with "schedule")

Level	Implementation Risk Definition
5	Overrun budget & contingency. Cannot deliver.
4	Consume all contingency, budget or schedule
3	Significant reduction in contingency or schedule slack
2	Small reduction in budget or schedule slack
1	Minimal reduction in budget or schedule slack

Consequence of Occurrence – Technical Risks

(replaced JPL's usage of "mission return" with "science return"):

Level	Performance Risk Definition
5 Project Failure	
4 Significant reduction in science return	
3	Moderate reduction in science return
2	Small reduction in science return
1 Minimal or no impact to science return	

The JPL-format risk matrices using these definitions are shown in the next section. In this risk matrix red represents high risks that require implementation of new processes or a change in the baseline plan, yellow represents medium risks that need to be aggressively managed including considering alternative approaches, and green represents relatively low risks that should at least be monitored.

2. Programmatic Risks Identification and Ranking

2.1 Programmatic Risk Matrix

The programmatic risk matrix before and after the PDR are shown in the following Figure. At left is the risk matrix presented at the SDR and the current risk matrix is shown at right.

Overall the three risks associated with funding have increased in likelihood (all are in the red), two risks have decreased in both likelihood and consequence (moving them into the green), two other risks have decreased in likelihood and two risks remain unchanged.

2.2 Significant Programmatic Risks

The following table lists the significant programmatic risks that were identified during the system design in the same order as in KAON 566. No new risks have been identified. Each risk has a unique number, a trend column which has been used for tracking which way the risks are moving, a consequence ranking, a likelihood ranking, a description, the status of the risk and plans for mitigation.

		Conse-	Like-			
#	Trend	quence	lihood	Description	PDR Status	PDR Planned Mitigation
					No funding currently available for	
					detailed design.	
					Economy in worse shape than at	 Good project performance,
					end of SD phase.	especially in the system and
					Seeking advancement funding is a	preliminary design phases, will aid
					high priority for WMKO.	the funding search.
					Launch telescope proposal funded.	2) Support WMKO Advancement
				Significant NGAO	IR tip-tilt sensor & laser proposals	Office fundraising efforts.
1	up	5	4	funding needed.	submitted.	Produce funding proposals.
					Preliminary designs successfully	
					produced by two vendors. ESO	
					has placed contract for 4 lasers.	
					Quote received for TOPTICA laser.	
					Build-to-cost design requires less	1) Participate with ESO in laser
				Required lasers	laser power. MRI proposal	final design & prototype phases.
				unavailable &/or	submitted to implement 1st NGAO	Procure 1st laser if MRI
2	down	5	2	costs too high	laser.	proposal funded.
						1) Produce of a viable plan for
					Current plans require a rapid ramp	rapid personnel ramp up.
				Challenge of a	up of personnel between the	Find additional funds early to
				rapid project ramp-	design phase and the full scale	allow more people to be involved
3	up	3	5	up	development phase.	sooner.

		Conse-	Like-			
#	Trend	quence	lihood	Description	PDR Status	PDR Planned Mitigation
					A preliminary design level cost	
					estimate has been prepared. Build-	
					to-cost exercise reduced system	
					complexity & cost. The costs	1) Careful monitoring &
					could potentially grow as the	management of potential cost
					design and costs are further	increases.
	left &		_	Growth in cost	developed during the detailed	2) Employ a design to cost
4	down	3	2	estimate	design phases.	approach during DD.
					During the SD phase only one to	
					two people were working	
					essentially full time on NGAO, with	1) Identity further full-time
					the rest working part-time. This	personnel and get them on board
					obviously leads to inefficiencies	as early as possible.
					and the overnead associated with	2) Work with existing personnel to
				Look of full time	keeping more people involved.	transition from other
F	down	2	2		the RD phase	
5	uown	2	3	personner	Committee management structure	NGAO.
					changed to project manager	
				Committee	structure for the PD phase. There	
				management	is still a senior management	
				structure	committee which is needed to	
	L oft &			(Executive	manage the multi-institutional	
6	down	1	1		nature of NGAO	
			•		The science instruments for NGAO	
					were to have been under separate	
					management from the NGAO	
					system. The build-to-cost	
					guidelines moved the instrument	
					design under NGAO project	
					management. The instrument	
					design started late during the	
					NGAO PD. The instrument suite	
				Development	has been reduced to a single	
				schedule for	imager/IFU instrument; the	1) Observatory needs to obtain
				Science	deployable IFS was removed. It	funding for the science
				Instruments is	will be critical to have at least the	instruments.
	No			delayed with	NIR camera available for NGAO	Get active engagement of UCLA
7	change	3	3	respect to NGAO	lab I&T.	instrument team during DD.
					Funding uncertainty makes it more	
					difficult to attract new people.	
					During the PD phase we were	
				Schedule impact of	unable to replace some people	1) Identify more funding. 2) Make
8	Up	3	5	funding uncertainty	who left.	commitments to a few key people.

					Gemini experienced significant slips in their external contracts for MCAO (laser ~ 40 months instead	1) Release long lead external contracts during DD phase. Thi
					of 16 months; RTC ~ 43 months	requires planning to have these
					currently only have scheduled 18	level early. 2) Plan in contingend time for late contract delivery. 3
	No			External contract	detailed design and the start of lab	Carefully monitor contract progre
9	change	3	3	schedule slips	I&T.	and respond to schedule issues.
						1) Switch to full time personnel
					Conflicts were encountered during	where possible and get them on
					the SD & PD phases (better in PD)	board. 2) Clearly identify part-tim
				Schedule slip due	with timely access to part-time	needs and get commitments fron
	No			to personnel	personnel due to the press of other	the relevant staff and their
10	change	2	3	availability	competing activities.	supervisors.

3. Technical Risks Identification and Ranking

3.1 Technical Risk Matrix

The technical risk matrix before and after the PDR are shown in the following Figure. At left is the risk matrix presented at the SDR and the current risk matrix is shown at right.

Overall there are no risks in the red and the risks in the yellow have decreased from 12 to 8 with two of the remaining yellow risks dropping in likelihood; however two new technical risks have been added with the inclusion of the science instrument in the risk assessment. The simplifications introduced by the build-to-cost redesign and the completion of the preliminary design have both resulted in lowering the technical risks.

3.2 Significant Technical Risks

The following table lists the significant programmatic risks that were identified during the system design in the same order as in KAON 510. No new risks have been identified. Each risk has a unique number, a trend column which has been used for tracking which way the risks are moving, a consequence ranking, a likelihood ranking, a description, the status of the risk and plans for mitigation.

		Conse-	Like-			
#	Trend	quence	lihood	Description	PDR Status	DD Planned Mitigation
					Only 1st year of the CfAO funded	Ę
					PSF reconstruction effort occurred;	
					unable to re-hire after Flicker	
					departure.	
					Currently working with Gemini &	 Participate in and monitor
					Groningen to fund Jolissaint to	Jolissaint's effort, including support
					implement PSF reconstruction at	for PSF reconstruction tests &
					Gemini.	demonstrations with the existing
					Some progress with astronomers	Keck AO systems.
				Inadequate PSF	to understand the critical PSF	2) Better understand the key PSF
				calibration to	metrics.	metrics and define the
				support precision	WMKO obtained a TMT	requirements on these metrics.
				astrometry,	MASS/DIMM & this was	Develop a PSF calibration
				photometry and	successfully implemented using	system-level design and design of
	No			companion	Mauna Kea resources under the	the PSF calibration sequences and
1	change	3	4	sensitivity science.	leadership of CFHT.	pipeline.
						1) Prototype a near-IR tip/tilt
					HxRG tests at CI1 indicate that	sensor to demonstrate that
				Inadequate sky	these detectors should meet our	adequate detectors are available
				coverage to	needs.	and that the AU correction is
				support the	Sky coverage calculations checked	adequate (ATT proposal submitted
				wavefront error	Dy Iroy.	for a K1 tip/tilt sensor)
	Davin	2	0	budget and hence	Risk is a modest reduction in sky	2) Demonstrate the technique in
<u> </u>	Down	3	2	science cases.	DDP level designs produced by	the lab and/of on-sky.
					two laser vendors that meet or	
					exceed our requirements	
					TOPTICA produced a	
					demonstrator that exceeded the	
					power requirements & power did	
					not change with gravity vector.	
					ESO has placed a contract with	
					TOPTICA for the final design, pre-	
					production unit & 4 lasers.	
					Some key WMKO requirements	
					incorporated by TOPTICA as part	
					of baseline design.	
					Other WMKO/TMT delta specs will	
					be included in the final design work	
					starting in June/10.	
					Agreement signed with ESO to	
					participate in final design and pre-	1) Participate in the laser final
					production phases.	design & prototype phases.
	_			Required lasers	MRI proposal submitted for a	2) Proceed with laser procurement
3	Down	4	2	unavailable	WMKO laser.	IT MRI proposal funded.
					Several existing terms of the	
				Wavefront error	further developed (e.g. bandwidth	
				hudget not	error) & new terms have been	
				achieved due to	developed (e.g. TWFS budget	
				inadequate	flowdown budgets) We adopted	
				assumptions and	more conservative assumptions	1) Monitor impact of changes
4	Down	2	3	calculations	(i.e., Na return).	during the detailed design phase.

	-		r			1
5	No change	3	3	Inadequate tomographic reconstruction accuracy to support the wavefront error budget and hence specific science cases.	Laser tomography of the atmosphere has not yet been demonstrated or used for AO science. Tomography approach in build-to- cost redesign is considerably simpler, but tomographic errors assumed to be smaller. Wind knowledge demonstrated to reduce error at LAO (backup improvement). NGAO will a pathfinder at our required tomography precision.	 Closely monitor the results of tomography experiments being performed by other groups (Gemini, MMT). Continue to perform lab experiments at the LAO directly in support of NGAO tomography issues.
6	No change	3	3	Astrometry performance requirement not achieved	Astrometry error budget not yet adequately understood. Current understanding summarized in flowdown budget.	 We will continue to work with the UCLA Galactic Center team and with the CIT proper motions team to understand the limitations imposed by the existing Keck AO system and science instrument. A full error budget will be developed during the detailed design phase.
7	Down	3	2	Tomographic reconstruction computer architecture not yet tested in hardware	Good progress on the preliminary design but hardware not yet tested & complexity reduced by build-to- cost redesign.	 Monitor the progress of other projects (i.e., P3K). Benchmark on a software simulator. Benchmark on a scaled subset of hardware.
8	Down	3	2	Keck Interferometer needs not met.	Needs & options documented in KAONs 428 and 483. Conceptual design for implementation partially addressed in the optical relay system design report (KAON 549). A complete layout of the interferometer feed and an analysis of the polarization impact needs to be developed next.	 Complete the detailed design with the interferometer requirements in mind.
9	No	4	2	Complexity and instability of interactions in the overall software control system	NGAO complexity has been reduced by the build-to-cost redesign. NGAO will still be significantly more complex than the existing Keck AO system with many more potentially interacting control loops and significantly more motion control. We are addressing this issue with significant attention to the final science operations product and utilization of significant operational "lessons learned" experience from the current LGS AO system.	 Good system-level design with attention to science observing sequences and operations. Employ a hierarchical control structure and test each level comprehensively before integration.

_							
						The AODP funded CCDs have	
						made progress: a CCID-74	
						256x256 pixel wafer run shared	
						with TMT & SOR is in progress.	
						12 wafers will be procuded each	
						with ~20 CCID-74s. 4 packaged	
						devices will be available in	1) Monitor the progress of the
						Oct/2011, two of which will be	AODP-funded CCID-74 project.
						available to NGAO. The 1st of 4	2) Identify a funding mechanism, in
						cameras based on the CCID-66 2-	collaboration with IMI, to produce
						stage amp output version of the	a preliminary electronics design &
					Adaquata	CCID-56 IS being installed at SOR	2) If peoded evoluate alternative
		No			Auequale	as part of their AO upgrade. A	options (o.g. 240x240 PN CCD or
1		hande	1	2	CCDs not available		COD OCAM approach)
		nange	4	2		CCID-74 IS III place.	
						Error budget not adequately	1) Develop a more complete
					Photometry	understood. Current	understanding of this performance
					performance	understanding and	budget, which will be closely tied to
		No			requirement not	recommendations summarized in	the quality of PSF determination
1	1 c	hange	2	3	achieved	KAON 474.	(listed as a separate risk item).
						TMT tests by Cilas indicate that the	
					Inadequate tip/tilt	required performance can be met:	1) Monitor GPI woofer on tip-tilt
					performance for	achieved 500 urad PV with 40 nrad	stage performance.
					1st relay DM	rms noise & > 100Hz bandwidth (at	Better modeling of the tip/tilt
					mounted on a	-3dB in closed loop) while	performance during detailed
1	2	Down	2	2	tip/tilt stage	supporting 32 kg DM.	design.
					Inadequate		
					performance		
					(measurement		
					error, reliability &		
					observing	Systems have been significantly	
					efficiency) of	simplified by build-to-cost &	
		No			multiple LGS	design of projection & consing	1) Consider prototyping and LCS
1	2	NO	2	2	projection and	system completed	WES during DD phase
Ľ	3 0	nange	3	2	No workable	system completed.	WFS during DD phase.
					design for		
					deployable near-IR		
					integral field		
		left &			spectrograph (d-	As a result of the build-to-cost re-	
1	4	down	0	0	IFS).	design there is not d-IFS	
					,		1) Learn from Gemini MCAO
1							experience.
1					Rayleigh-scattered		2) Learn from Keck I AO
1					background on	A first-order Rayleigh rejection	experience.
l		No			LGS WFS cannot	trade study has been performed	 Perform additional modeling
1	5 c	change	3	2	be calibrated out.	(KAON 490)	during detailed design phase.
1						Re-evaluated K-band background	
1						based on preliminary design>	
1					K-band	Now -12.5C seems adequate but	
1		Nic			background	continuing to plan for -150 to	1) Dovelop opologije datailad
4		INU	2	2	requirement not	Provide thermal contingency.	design
11	UC	nange	3	∠	auilleveu.	Enclosure design developed.	ucsiyii.

					Good lab experience, but little on- sky performance data and no on- sky lifetime data yet. GPI MEMS delivered in Feb/10; engineering grade version would be suitable for NGAO. Planning not to use MEMS windows assuming a clean dry environment control during operation, as it eliminates 4	 Monitor VILLAGES on-sky experiments and LAO lab experience. Determine how to protect MEMS
17	No change	3	2	Inadequate MEMS performance	surraces. Degradation of actuators and coatings a potential issue.	& during development (use windows) & during operations without windows.
18	No change	3	2	High and low order DM performance inadequate.	High (tweeter) and low (woofer) order DMs are used for the science instruments & the low order wavefront sensors. The high order DMs are used open loop. Such systems have not yet been demonstrated on-sky. UVic successfully demonstrated closed loop operation in the lab (results published).	1) Need to design servo control. 2) Monitor lab & sky demonstrations. UVic performing slower tip-tilt woofer, faster tweeter experiments. UVic planning closed loop woofer/open loop tweeter investigations for Raven. GPI woofer/tweeter/RTC integration at LLNL is happening in early/mid- 2010. PALM-300 will test a woofer- tweeter servo on sky in ~ Feb 2011. Need to quantify the performance results.
19	No change	3	2	Space command shutdowns	No concrete change in US Space Command requirements. NSF level discussions are happening (an NSF group visited Keck in Feb 2010 to learn about impact). Keck has tools in place for submitting target lists & incorporating blackout periods during observing.	1) Monitor progress of discussions with Space Command.
20	down	1	2	Low mass star companions sensitivity science requirement not achieved.	Requirements relaxed as part of the build-to-cost exercise. Coronagraph performance analysed as part of DAVINCI preliminary design.	
21	No change	2	2	Science requirements inadequately understood and/or defined.	Some more progress in understanding the requirements. Flowdown of requirements better documented. Observing Operations Concept Document produced.	
22	Down	2	1	Required dichroic performance not achieved	The number of dichroics was significantly reduced during the build-to-cost redesign.	 Discuss with vendors. Evaluate whether coating tests are valuable.
	No			Impact of telescope vibrations on wavefront error budget higher than	Parametric oscillator will be part of	 Demonstrate parametric oscillator with existing Keck AO. Improve tip/tilt vibration model in the wavefront budget during the detailed design.
23	change	3	1	predicted.	the vibration mitigation design.	3) Reduce tip/tilt vibrations.

_						
						 Evaluate the error budget
				LOWFS-based		impact.
				tip/tilt correction for		2) Measure non-common path
				narrow field	Tip/tilt errors from the 2nd AO relay	tip/tilt on current Keck AO.
				science	or opto-mechanical drifts will not	3) Design a stable system.
	No	1		instruments	be sensed by the low order	4) Design a metrology system if
24	change	2	1	inadequate	wavefront sensors.	needed
	ſ			H4G chip not	Hodapp \$6M proposal funded to	1) Monitor availability progress
				available for	produce these chips with	2) Develop backup interim
25	New	4	2	DAVINCI	Teledyne.	approach to use H2RG (if needed)
				Scattering from		
				hybrid image slicer		
				reformatting optics		
	ſ			exceeds	Have vendor quotes showing	1) Have a prototype mirror made to
26	New	3	3	acceptable limit.	requirements can be met.	evaluate surface quality

4. Risk Mitigation Plan

The risk mitigation plan addresses risks that were shown as "red" or "yellow" in the risk matrices. For "green" items is to simply track these risks and look for opportunities to reduce these risks.

4.1 Programmatic Risk Mitigation Plan

There are three "red" programmatic risks all associated with funding uncertainty:

- Significant NGAO funding needed.
- Challenge of a rapid project ramp-up.
- Schedule impact of funding uncertainty.

The "yellow" risks include:

- Required lasers unavailable &/or costs too high.
- Lack of full-time personnel.
- Development schedule for DAVINCI is delayed with respect to NGAO.
- External contract schedule slips.
- Schedule slip due to personnel availability.

4.2 Technical Risk Mitigation Plan

There are no "red" technical risks. The "yellow" risks include:

- Inadequate PSF calibration to support precision astrometry, photometry and companion sensitivity science.
- Required lasers unavailable.
- Wavefront error budget not achieved due to inadequate assumptions and calculations.
- Inadequate tomographic reconstruction accuracy to support the wavefront error budget and hence specific science cases.
- Astrometry performance requirement not achieved.
- Complexity and instability of interactions in the overall software control system.
- Adequate wavefront sensor CCDs not available.
- Photometry performance requirement not achieved.
- H4RG chip not available for DAVINCI.
- DAVINCI hybrid image slicer reformatting optics scattering exceeds acceptable limit.