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ABSTRACT 

The Keck Next Generation Adaptive Optics (KNGAO) system promises to yield high-Strehl observations over a 

wide range of science wavelengths from the optical through the infrared. We describe the algorithms proposed for a 

Real-Time Controller (RTC) implemented in a massive parallel processor environment. These algorithms take 

advantage of the Fourier domain to speed up processing and ensure minimum variance control that incorporates 

prior as well as current data. We present the unique approach to the design that enables such a complex tomography 

processor to scale more favorably with telescope aperture size than the more traditional RTC approaches. 

Keywords: Real-Time Control, Tomography  

1. INTRODUCTION 

The real-time controller (RTC) has the overall task of taking raw camera data from multiple wavefront sensors and 

determining the commands to place on multiple wavefront correctors. The processing of data and creation of 

commands is to happen within time-slices determined by the wavefront sensor frame sample period ts with the 

wavefront sensors acting as the master reference clock on the cycle. For the Keck Next Generation Adaptive Optics 

(NGAO) system, we have designed the system for operation on a period of ts = 500 s. 

The RTC algorithm must perform the following activities: 

• Process the raw camera data so that its values are proportional to photocounts 

• Perform a reconstruction process that estimates the wavefront correction needed for the science path correction 

and for correction of the tip/tilt stars. 

• Allocate the corrections to woofer and tweeter DMs. 

• Invoke a dynamic compensator, such as integral feedback control, to stabilize the closed-loop path (involving the 

woofer DM) 

• Invoke a non-linearity compensation for all of the DMs, to convert wavefront phase to command voltages. 

• Process low-order (tip/tilt/focus/astigmatism) wavefront data to determine tip/tilt for the science path and for the 

tip/tilt paths. 

The NGAO laser guide star constellation is composed of 4 fixed laser guidestars dedicated to tomography and 3 

roving laser guidestars assigned to correcting the wavefront of tip/tilt reference natural stars. The tomography 

guidestars address a ~40 arcsec field of view (FoV) volume above the on-axis science path, while the remaining 3 

roving LGS are pointable over a 120 arcsecond field. Each LGS has an associated high-order wavefront sensor 

(HOWFS) whether used for tomography or for correcting tip/tilt stars. The tip/tilt/focus/astigmagtism measurements 

are determined in the low-order wavefront sensors (LOWFS) using the NGS light. The HOWFS data from the fixed 

4 guidestars are sent to the RTC tomography engine to compute the wavefront correction to be placed on the science 

path deformable mirror. All the LOWFS data are sent to the RTC for processing in order to determine the tip/tilt 

command to send to the science path fast-steering stage. 

The algorithms implementing the real-time controller are run on a massively parallel processing system whose 

architecture is designed to take advantage of the algorithms’ inherent parallelism. Operations in parallel include the 

independent point-and-shoot wavefront corrections, the independent camera data processing from multiple 

wavefront sensors and the multiple DM nonlinearity compensation. In addition, a great deal of parallelism is 

achieved in the inverse volume tomography algorithm by implementing it in the Fourier domain. The Fourier 
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domain method invokes an approximate inverse, called a preconditioner, which must be iterated to convergence. 

Thus we have had to assure that time spent iterating don’t defeat the parallelism benefit of the Fourier domain 

implementation. Our analyses show that wavefront accuracy requirements for NGAO are achieved with as few as 

three iterations per wavefront measurement cycle, providing a clear advantage to the Fourier domain processing. 

This paper presents the mathematical description of key algorithmic elements in the NGAO RTC processing. 

Although the algorithms are tuned to be implemented in a fast, massively parallel machine architecture, there are no 

approximations in the implementation of minimum variance control except for spatial and temporal sampling, and 

digitization. The wavefront reconstruction and tomography algorithms produce the unique minimum variance 

solutions taking in to account a-priori statistics and measurement noise statistics. To double-check the correctness of 

calculations, an RTC simulator has been coded so that results can be compared against a “traditional” matrix-

multiply invocation of the minimum-variance computation. The RTC simulator will also later serve as a validation 

tool for use during RTC hardware/software integration and test. 

The spatial and temporal sampling and the digitization (finite length machine word) are design choices. We have 

analyzed these and established their design values so as to meet the overall error budget. 

2. ALGORITHMS (MATHEMATICAL DESCRIPTIONS) 

2.1 Definition of terms 

We start with a general description of the wavefront formation from guidestars and turbulent atmosphere. We then 

explain the nonlinearities involved with the wavefront sensing and wavefront control. Starting from these basic 

models and definitions, the subsequent sections will describe each portion of the RTC’s algorithm set. 

The common accepted practice in today’s astronomical AO systems is to assume that the wavefront formation 

process is linear to first order, i.e. that there is a linear relationship between delta index perturbations in the volume 

of atmosphere above the telescope and the wavefront phase as it enters the telescope aperture. The assumption is 

valid for weak atmospheric turbulence, where we can assume that the optical path distance (OPD) of a ray traversing 

through the atmosphere departs from that of a vacuum path according to a line-integral of the delta-index of the air 

along that straight path. The weak turbulence assumption is valid over scales that are larger than the Fresnel zone, a 

transverse length scale associated with ray crossing at the ground due to higher altitude phase aberrations or, 

equivalently, valid for spatial frequency amplitude variations where the associated Talbot length is much longer that 

the atmospheric path. Hardy
 [1]

 discusses these quantities for Earth’s atmosphere. For the NGAO case, where 

subaperture sizes, mapped to the primary, are greater than or equal to 15 cm and we are using the baseline Cn
2
 

profile for design purposes, the weak conditions apply with high accuracy. This is not to say that scintillation in the 

Hartmann wavefront sensing is negligible. This scintillation is an important contributor to the error budget, but is 

tolerable; hence the baseline RTC algorithms are not designed to utilize scintillation information to aid in wavefront 

reconstruction. 

Given that the ray-traces are line integrals, we approximate them as a Riemann sum:   
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where  u


k  are the wavefront phases at the ground, at transverse positions on the telescope aperture u


 from a 

guidestar in direction k


 and at distance 



 (sodium LGS are located at 90 km x sec() where  is the zenith 

pointing angle of the telescope, and natural stars are at 



),   zzz kk ,


u  are the index of refraction 

changes due to atmospheric turbulence at altitude z along the line k


,   kk zzz 1  is the scale factor 

associated with a cone-beam projection, 



 is the wavelength of light for which the phase is defined, and L  is the 

number of discrete layers, indexed by l, in the layered approximation. 



 

Line up all the phase points (sampling in u


-space) for all the wavefront sensors (indexed by k) and put them in a 

single vector, y. The number of elements in y is equal to the grand total count of all the subapertures in the system. 

Similarly, line up all the delta index-of-refractions over all the volume into one single vector, x. Note, the later are 

sampled in both u


 (transverse) and z (longitudinal) space. With these definitions, the Riemann sum integral (1) can 

be written as a linear matrix equation 

  Axy   (2) 

where A is a matrix that maps every volume element to every sample on every wavefront sensor. The A matrix can 

be thought of as consisting of 1’s and 0’s (with a wavelength dependent factor in front to convert OPD to phase), 

however, with the discrete transverse sampling at each layer the lines do not necessarily pierce the layers at discrete 

index points, so the entries in A are the appropriate interpolation coefficients. 

Hartmann wavefront sensors measure subaperture-averaged slopes of wavefronts. Again, we can use a Riemann sum 

to generate a discrete approximation to the averaged gradient operator. 
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where ju


 represents each discrete position (indexed by j) of subapertures in the aperture, and Aj is the area of that 

subaperture.  Note that the Riemann sum allows for sub-sampling of the phase within a subaperture. Each Hartmann 

slope measurement is a 2-vector for each location, one for the x slope and one for the y slope. 

Line up all the phase points (again, sampled in u


-space) for all the wavefront sensors into one vector, y. Line up all 

the discrete slope measurements into one vector, s. Then the Hartmann wavefront sensing operation is denoted as 

  Gys   (4) 

That is a linear operation (s is linearly proportional to y). 

A note on the storage in the vector s: It is arbitrary how the sensor data are arranged in s (so long as the rows of G 

are correspondingly arranged). We adopt the following convention. Each wavefront sensor has a contiguous block of 

elements in s. Within each block assigned to a wavefront sensor, the x slopes are arranged in raster-scan order, then 

the y slopes. 

We should also distinguish whether the elements of s and y include every grid location, or just those enclosed in the 

aperture and illuminated by the guidestar. This is an important distinction for a reconstruction algorithm that utilizes 

Fourier domain techniques, since Fourier transforms need points to be on a rectangular grid and on a rectangular 
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shaped domain. A similar consideration might apply for the elements of the x vector, whether or not it includes only 

volume elements pierced by guidestar rays or fills a rectanguloid shaped volume. 

We adopt the following convention: G represents the matrix operation in (4) on a larger, aperture-enclosing square 

grid of subapertures. GP represents a matrix with reduced row dimension that includes only illuminated subapertures 

within the telescope aperture. The pupil operator P is a dimension-reducing matrix that picks data (or matrix rows) 

that are inside the pupil. Thus 

  Pss P  and PGG P  (5) 

The transpose of the pupil operator, P
T
 is a dimension-increasing operation that takes a vector consisting of data 

only from inside the pupil and produces a data vector with the data inside the pupil unchanged and entries for 

positions outside the pupil set to zero on an aperture-enclosing square grid. P
T
P is a masking operation that modifies 

data on a square grid by setting all the elements outside the pupil to zero. 

The matrix A and vector x will not need to have this distinction. They will always represent the full 3-d rectanguloid 

volume. 

For the Fourier domain algorithm discriptions, it is convenient to clearly designate whether a certain operation 

occurs in the spatial domain or in the spatial frequency (Fourier) domain. To do this, we introduce the Fourier 

transform operator F. The elements of F are: 

   fjfj iF fu

 2exp  (6) 

where ff


 is the spatial frequency, indexed by f. Note that 

  



   (7) 

where N is the total number of sample points in the square grid. The Fourier transform of a vector of raster-scanned 

data is 

  



  (8) 

We can also define the Fourier transform of a matrix so that it is consistent with matrix operations on vectors of 

data: 

  



 
 (9) 

The over-tilde designates the Fourier transform of an item. The Fourier transform can only be applied over aperture-

enclosing square grids, thus it cannot be applied to P subscripted items directly (which consist only of data inside 

the aperture), but it can be applied to items that are inserted in to a square grid using the P
T
 operator. So we define 

  
P

T

P sFPs ~  (10) 

For tip/tilt sensors, the sensing process involves propagating to the far-field and determining the center of mass of 

the resulting far-field point spread function (PSF). Again, assuming the weak turbulence hypothesis, the center of 

mass shift is linearly proportional to the average wavefront tilt. This is not to say that there aren’t significant errors 

in this assumption, i.e. the difference between “Z” tilt and “G” tilt is well documented
 [2]

. In particular, an aberrated 

wavefront will have non-symmetric Zernike aberrations other than tip and tilt, such as coma, that will cause a further 

shift of the far-field PSF center of mass. In the NGAO case, this is considerably mitigated by the fact that the tip/tilt 

stars’ wavefronts are partially corrected through the use of dedicated deformable mirrors, and by the woofer mirror, 

in the baseline point-and-shoot architecture. The resulting differences between Z and G tilt are then considered 

tolerable, and included in the error budget. 

Each wavefront sensor and wavefront corrector has associated with it certain nonlinearities as well as grid and 

alignment distortions. These effects are very significant and so are accommodated by the RTC. Correction for grid 

distortions are implemented with a parallel linear multi-point interpolation method on the systolic array architecture. 



A deformable mirror has, in general, complete non-linear cross-dependence of the surface response of the mirror to 

the voltages given to its actuators. We adopt the conventions presented in Morzinski and Gavel
 [3]

 where we presume 

shift-invariance, a linear plate-equation model of the deflection of the surface in response to forces, and arbitrary 

dependence of a given actuator’s force as a function of voltage, but with no cross-coupling of actuators except 

through forces exerted by the top plate. The resulting formulation is: 
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where  u


pf  is the plate restorative force, 



  is the electrostatic deflection force of the j’th actuator, 



  is the spring return force of the j’th actuator, 



  is the deflection of the mirror surface at the actuator post 

location,  u


  is the deflection of the mirror surface over the contiguous face sheet, 



 is the voltage applied to the 

j’th actuator and 



v 
 is the location of the j’th actuator’s post attachment to the face sheet. This model is not perfect, 

but it has been proven accurate to approximately 15 nm surface peak-to-valley on a Boston Micromachines MEMS 

deformable mirror. The error is incorporated in the error budget when applied to open-loop controlled DMs. It is not 

a critical issue for the woofer DM, which is controlled closed loop. The baseline woofer DM is a Cilas mirror that 

uses the latest technology piezo actuators having very little hysteresis. For the woofer, we may adopt the plate-

equation and nonlinear actuator model (6), or a simpler linear superposition model:  

       
j

jjjj rVd uuu


  (12) 

where  
jjr uu


  is a mirror displacement influence function and 



  is a non-linear voltage to displacement 

relation of the j’th actuator. 

The grid and alignment distortion will, by convention, be referenced to a common coordinate system, which we 

arbitrarily attach to the 0 km conjugate optical plane at the location of the woofer DM. Even the woofer however 

will need a distortion grid map because the incident angle causes a foreshortening of one axis with respect to the 

other. We use the centered, symmetric Keck pupil to set the scale in x and y so that, nominally, x = y in SI units 

(meters) on the Keck primary. Each of the deformable mirror actuator grids and each of the wavefront sensor 

subaperture grids must be mapped to this common grid. The RTC must use distortion, rotation, and displacement 

coefficients to map wavefronts internally represented in the common coordinate system to subaperture and actuator 

locations, as they are truly located in the optical system. Transformations will be of the form 

  0uu


kk R  (13) 

where 
ku


 is the coordinate system set by the respective DM actuator pitch or WFS subaperture pitch (DM or WFS 

#k) and 
0u


 is the common coordinate system. The distortion mapping is anticipated to be a relatively small 

perturbation that can be implemented in the RTC through localized interpolations. The algorithm is described in the 

Centroiding and DM Command Generation sections. 

2.2  Wave Front Reconstruction 

Wavefront reconstruction is the process of converting surface slopes to surface heights, under the assumption that 

the surface is continuous. The general idea is to take the numerical divergence of the slopes, which is equal to the 

Laplacian of the phases, then numerically inverting the Laplacian operator. In a matrix formulation, this process is 

equivalent to taking the pseudo-inverse of the G matrix in (4):   xGGGy
TT 1

 . In fact, although this is the 

basic idea, there must be considerable modification because of several difficulties: 

 The noise statistics need to be taken into account to form a minimum variance estimate 

 The measurement data has a boundary, the edge of the aperture. Solutions must take in to account the 

discontinuity at this boundary to prevent severe error. 



 The matrix G is not full rank. Piston, and, for some geometries, waffle mode, are in the null space. Thus the 

pseudo-inverse cannot be formulated as shown.  

The approach in the NGAO reconstructor is to solve for the conditional mean phase given the slope data confined to 

the aperture. 
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where  is the expectation operator, which when applied to the outer product of vectors is the cross-covariance of 

the vectors. In matrix form 
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where Psyy ˆ ,



 , 



  , n is the measurement noise, and 



  is the standard deviation 

of the measurement noise, which is assumed to be independent identically distributed Gaussian white noise for each 

channel of the Hartmann sensor. The second line of (15) is a result of applying the Matrix Inversion Lemma, also 

known as the Sherman-Morrison Theorem. The covariance matrices are computed off-line based on the statistical 

steady-state values. These are easily computed in the Fourier domain as each spatial Fourier component is assumed 

statistically independent. The covariance matrices may be changed on a slow time scale by the supervisory 

controller to reflect the changes in seeing conditions. 

Equation (15) (first or second form) must be implemented by the wavefront reconstructor section of the RTC. We 

now show how we plan to implement it using massively parallel computer architecture. 

Using the second form of (15), transform to the Fourier domain: 
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where the superscript H denotes the Hermetian transpose (complex-conjugate of the transpose). Recall from our 

earlier definitions (equation (10)) that ps~ is the slope data inserted in the aperture-enclosing square grid with zeros 

outside the pupil, then Fourier-transformed. 

The advantage of using the Fourier domain is that matrices 
1~

yS , G
~

, and 
H

G
~

 are diagonal with 
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(
1~

yS  is defined in the section on parameters, below). 

If it weren’t for the nested pupil-mask inside the second term of the inverted matrix, this matrix too would be 

diagonal. Then equation (16) would become N independent scalar equations, amenable to an N-fold parallelization 

of its calculation. 

Instead we use the iterative algorithm: 

 
P

H
sGc ~~~   (18) 



 
 

0~~ until
~~~

ˆ
~
ˆ

~
ˆ

~~~~~

iterate
1

112

k

kkk

kTH

yn

k




























Cyy

yGPFFPGSc
 (19) 

where 

   112 ~~~~   GGSC
H

yn  (20) 

and  is a positive gain-iteration factor (generally 5.0 ). C
~

 is a diagonal approximation of the needed matrix 

inverse and is referred to as the Fourier-preconditioner. The elements on the diagonal are 

 



         (21) 

Algorithm (19) operates in parallel, one loop for each frequency domain component, and independently for each 

wavefront sensor. The operation requires a transform into the spatial domain to apply the aperture mask, P, then 

transforming back to the Fourier domain, each time around the iteration loop. 

The iterative algorithm (19) is proven to be stably convergent
 [4]

  and our simulation experience has shown that about 

30 iterations are necessary to converge to under 10 nm rms in r0 = 15 cm seeing conditions, starting with 0
~
ˆ 0 y . 

We advocate the use of a “warm-restart” in the RTC, where the phase estimate from the prior data time step is the 

starting point for the current time step, i.e.  

    1
~
ˆ

~
ˆ 0  tt K

yy  (22) 

where K is the last iteration at time step t-1. In the moderate baseline case wind conditions for NGAO, 10 m/sec, and 

1 kHz sample rates, our simulations using warm restart and K=3 (one iteration per time step) typically converge to 

the 10 nm level in less than 100 ms. 

2.3 Tomography 

In tomography, the key operations are the forward propagation A and the back-propagation, A
T
. 

The A matrix is of dimension NLNM   where N is the number of grid points in the aperture-enclosing square 

grid of data points, M is the number of wavefront sensors, and L is the number of atmospheric layers. For later 

convenience, we arrange A as an NN  array of LM  blocks. The elements of A are (conceptually, ignoring the 

issue of interpolation coefficients when u does not land on a sample grid point): 

     kllklllk zA  θuuuu  ,, 00  (23) 

where  ,  is the Kroneker delta: = 1 if the two index arguments are equal, 0 otherwise, and a is the spatial 

stretching factor klkl zz1  where zk is the altitude of the laser guidestar. 

In the Fourier domain the elements of A
~

are: 

      klllklllk ziA  ffθfff ,2exp,
~

00   (24) 

In either domain, the output domain map is stretched to conform on the cone beam. In the spatial domain, the points 

at an altitude are stretched apart when mapped to the ground. In the frequency domain, the spatial frequencies at an 

altitude are shrunk to lower frequencies on the ground. 

The back propagation operation A
T
 in the spatial domain is 

    lkkllllk zA θuuuu  00 ,,   (25) 

and, in the frequency domain is 



      00 ,2exp,
~

ffθfff klllklllk ziA    (26) 

Thus, in a similar manner similar to the forward propagator, the back propagation operator’s output map is stretched 

to conform to the cone beam, but now in the opposite sense. 

To compute a minimum-variance tomography solution, we utilize the chain rule of conditional expected values 
[4] 

to 

connect the reconstructed phase estimates from algorithm (19) for each wavefront sensor to a volume estimate of 

turbulence: 

       1ˆ1
1
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

ttt PWPP

T
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PP xAsyeexexsx   (27) 

where  1tx  is the prior estimate of the volume and 



  is the phase on the woofer deformable mirror. In the 

NGAO hybrid closed-loop open-loop architecture, the woofer DM is upstream of the wavefront sensors, subtracting 

its phase optically, thus we need to add it back in numerically. 

In matrix form the estimation formula is: 
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where Psxx ˆ ,      Tx tt 1ˆ1ˆ  xxxxS  the covariance of the error in the current volume 

turbulence estimate and   TPPPPPPny
syysyyS   the covariance of the error in the reconstructed 

phases in the wavefront sensors. 

Assuming we can only approximate the matrix inverse by Q, the iterative reconstructor is 
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Transforming this to the Fourier domain  
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Where 

   1~~~~~ 


yn

H

x SASAQ  (31) 

Q
~

is a block diagonal matrix, with one block of size MM for each spatial frequency. These blocks represent the 

spatial filtering that must be done to combine the M wavefront sensor phases so that they add constructively when 

they are back-propagated into the volume. 



Accordingly, we call the quantity 
K

Pw  the preconditioned wavefront error. When it is back propagated (and then 

post-conditioned by the covariance matrix 
xS ) it will produce the minimum variance update to the volume estimate 



 . Again, a “warm-restart” will be used in the RTC, where the preconditioned wavefront estimate from the prior 

time step is the starting point for the current time step.  I.e.  

    1~~ 0  tt K

PP ww  (32) 

where K is the last iteration at time step t-1. Simulation studies have shown that about 3 iterations per time step are 

sufficient under NGAO nominal conditions in order to maintain tomographic reconstruction error within error 

budget tolerance  

The inverse-tomography reconstructor of equation (30) is implemented in the RTC as shown in Figure 2. Most of 

the operations in the loop are multiply-accumulates of a single data number by a constant, one per spatial frequency 

element. This is done with a massive array of compute elements, each dedicated to a single spatial frequency and all 

operating in parallel. Two Fourier transform pairs are required in algorithm (30). The Fourier transform is 

implemented as a DFT sum at each compute element, which accumulates the terms in the sum as data is shifted 

laterally across the array (shown as ux and uy in the figure). Interpolation of spatial frequencies is required during the 

forward and back propagation steps because of the cone beams. This is not a small grid distortion (metapupils 

contract ~20%) so the sample points contract about a 6 subaps in the most extreme cases. The interpolation step also 

requires lateral shifting across the array as depicted in the figure. 

 

Figure 2. Mapping of the tomography problem to a massively parallel processor in systolic array architecture. Each 

white box depicts a separate compute element working in parallel. The compute elements communicate only with their 

neighbors. Some operations (DFT, interpolation) require broad distribution of data, implemented with lateral shifts (ux, 

uy) across the array. 

2.4 DM Command Generation 

DM command generation consists of the following steps: 

 Given the volume estimate of delta-index variations 



  produced by the tomography engine, forward 

propagate in the science direction (on-axis) to the ground layer. 

 Split the commands into woofer and tweeter components. 

 Do a least-squares fit of the woofer actuator influence functions to the desired woofer shape to produce 

woofer actuator commands 



 Apply the open-loop nonlinear model to the desired tweeter shape to produce tweeter actuator commands. 

The forward propagation, since it is on-axis, involves simply adding all the layers in the volume: 

 



   


   (33) 

To determine which portion goes on the woofer, we make a least squares fit to the portion of the wavefront that has 

Frequency components less than the woofer’s Nyquist frequency, 



. 
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We assume that the woofer’s response is a linear superposition of actuator influence functions, described by the 

spatial filter function 



 . 

 



       (35) 

We ignore the nonlinearities because this DM is driven in closed loop. An approximation 



  to the inverse of 



  is used to provide the least-squares fit of actuator commands to the desired low-order shape. 

       www Ba fffff  ;
~~~   (36) 

Where we’ve used the shorthand notation 



  to represent inside the Nyquist box 



  . 



  
is actually a parameter that can be tailored by the AO operator. Since DMs tend to act like low-pass filters, one 

might be tempted to “boost” the high frequency components in order to compensate. The penalty is that 



  can 

have (depending on the DM) significant spatial frequency components beyond Nyquist, and these will be aliased and 

amplified by 



 . It might be a better trade-off to allow some spectral energy near the woofer’s Nyquist be 

corrected instead by the tweeter in order to limit the amount of re-correction of aliased woofer commands. The exact 

choice of 



  will have to be done experimentally once 



  is known so as to optimize the use of stroke on 

both deformable mirrors. 

Outside the woofer-Nyquist box, the spectrum of actuator commands 



  must be mirror-replicated to account 

for aliasing 
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until the entire spatial frequency grid associated with the high-order wavefront sensor (HOWFS) is filled out. Then, 

the shape of the woofer is 

 



       (38) 

The desired shape on the tweeter is then 

 



      (39) 

Tweeter command generation follows a more complicated set of operations because of the need to control these 

DMs open loop to high accuracy. The method outlined below is considerably more accurate than assuming a linear 

superposition fit 
[3]

. 



The voltages that need to be applied to MEMS actuators depend on both the top plate displacement and the force 

that needs to be exerted on the top plate by the actuator. To close approximation, the relationship between the 

displacements and forces is linear (equation 12), albeit the forces are cross-coupled to neighboring actuators by the 

partial-differential plate equation. 

The first step is to calculate these forces using the Fourier domain equivalent to the plate-equation’s bi-Laplacian 

operator: 

 



     (40) 

The second step is to transform both 



   and 



  to the spatial domain 

 


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 
 (41) 

then, for each actuator individually, use a nonlinear function (implemented as a lookup table or with spline fits) to 

determine the actuator voltages: 

     jtwjpj fvV uu ,  (42) 

3. SUMMARY 

In this paper we have presented the baseline concept for the Keck Next Generation Adaptive Optics Real-Time 

Control system. This system has at its heart a tomography reconstructor which combines information from all of the 

wavefront sensors and results in an estimate of the 3-dimensional turbulence variations in the volume above the 

telescope from which wavefront phase correction in any given direction through that volume can be derived. 

We also described the method of distributing the control to a woofer-tweeter combination of deformable mirrors, the 

methods for accounting for nonlinearities of deformable mirrors and of wavefront sensors, and our approach to 

accounting for pupil distortions amongst all of the relayed pupils within the system. 

Convergence properties and accuracy of the presented algorithms have been validated with simulations. A 

preliminary design of a custom FPGA based hardware for the tomography engine is now under investigation.  
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