

Accessing the Mauna Kea Thirty Meter Telescope Seeing & Weather Data

KECK ADAPTIVE OPTICS NOTE 420

Christopher Neyman August 2, 2006

ABSTRACT

The following note contains a brief description of how to access the Thirty Meter Telescope seeing monitor archive over the Internet. I describe the format of the DIMM, MASS, and weather data files. I also describe how to obtain wind speed profiles from the National Weather Service archive of balloon flights. The last section gives the method I have used to relate profile information to integrated turbulence quantities such as the Fried parameter, r_0 , and Greenwood frequency, f_G .

1. Introduction

As part of the Thirty Meter Telescope (TMT) site selection process, the TMT has installed robotic telescopes that measure the atmospheric turbulence at several sites around the world. See the paper by Riddle¹, Schöck, and Skidmore for additional details about the telescopes and data acquisition system. The TMT seeing monitor on Mauna Kea is at a site that is designated 13 North (13N). This site is located approximately 400 meters west and 100 meters down slope from the Keck domes. The Robotic telescope consists of a DIMM unit and a MASS unit. The DIMM measures the seeing (see papers by Sarazin² and Tokavinin³). The MASS makes low resolution measurements of the distribution of turbulence profile, $C_n^2(h)$ (see Tokovinin⁴ and also <u>http://www.ctio.noao.edu/~atokovin/profiler/index.html</u>). The installation also houses a weather station that records the surface wind speed, wind direction, humidity, temperature, and barometric pressure. Seeing and weather data are logged approximately every two minutes during the night.

<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>G</u> o <u>B</u> ookma	urks <u>T</u> ools <u>H</u>	<u>l</u> elp								
🔶 • 🧼 - 🎅 🌘	• 🖓 - 🤔 🛞 🕎 🗋 http://batman.tmt.org/cgi-bin/dimm_results.pl 🗸 💿 Go 🖸										
🗋 Red Hat, Inc. 📋	Red Hat Netw	ork 🗋 Send 🕻	Support 🗀	Shop 🗀 Pro	oducts 🗀 Trainii	ng					
🗋 yao: examples	yao: examples 🕒 Thirty Meter Telescope Site Surv 🗋 Microsoft Outlook Web Access 📙 Philip Guo - Unison File Synchroniz										
Home		Thirt	v Mete	r Tele	scope a	Site S	urvev (Group			
Status					-						
Calendar				mmm ai	te DIMM R	ogulta					
Site Config				TMT 51	Ce DIMM K	esuits					
	T1-Tolar	T2-Armazones	T2-Tololo	T3-Tololo	T3-Tolonchar	T4-SPM	T5-Palomar	T6-Hawaii			
Daily Update	• 20060731	• <u>20060731</u>	• <u>20041027</u>	• 20051012		• 20060731	• <u>20060726</u>	• <u>20060731</u>			
Backup Logs	20060730		20041026	20051011		• <u>20060730</u>		20060729			
Robotic Logs	20060729	20060729	• 20041025	• 20051010		• 20060729	20060724	• 20060728			
Error Loga	• 20060728	20060728	• 20041024	20051009	• 20060728	• 20060725	20060723	• 20060727			
Cron Logs	• 20060727	20060723	• 20041023	• 20051008	• 20060727	• 20060724	• 20060722	• 20060726			
• Weather Logs	• 20060724	20060722	• 20041022	20051007	• <u>20060724</u>	• 20060723	20060721	• 20060725			
DIMM Results	• 20060723	• <u>20060721</u>	• 20041021	• <u>20051006</u>	• 20060723	• 20060722	• <u>20060720</u>	• 20060724			
MASS Results	 20060722 20060721 	 20060720 20060719 	 20041020 20041019 	 20051005 20051004 	 20060722 20060721 	 20060721 20060720 	 20060719 20060718 	 <u>20060723</u> 20060722 			
<u>MASS</u>				 20051004 20051002 			20060718				
<u>Profiles</u>	• 20060720		• 20041018			• 20060719		• 20060721			
Dust Sensor	 20060719 20060718 		 20041017 20041016 	 20050930 20050929 		 20060713 20060712 	 20060716 20060715 	 20060720 20060719 			
• Sonic	 20060718 20060717 	 20060716 20060715 	 20041016 20041015 	 20050929 20050902 	• <u>20060718</u> • <u>20060717</u>	 <u>20060712</u> <u>20060711</u> 	 20060713 20060714 	 20060719 20060718 			
Anemometer	 20060717 20060716 	 20060715 20060714 	 20041015 20041014 	 20050902 20050901 	 20060717 20060716 	 20060711 20060710 	 20060713 	 20060718 20060717 			
<u>SODAR</u>	 20060716 20060715 	 20060714 20060712 	 20041014 20041013 	 20050901 20050827 	• 20060715	 20060710 20060709 	 20060713 20060712 	 20060717 20060716 			
• IRMA	 20060713 20060714 	 20060712 20060711 	 20041013 20041012 	 20050827 20050826 	• 20060713	 20060709 20060708 	 20060712 20060711 	 20060715 20060715 			
Weather											
Plots	• 20060713	20060710	20041011	• 20050825	• 20060713	• 20060707	20060710	• 20060714			

Figure 1. The TMT site monitor DIMM results page. The entries in the table indicated with the format Year Month Day a link to the data file with that date's data. The links at the left of the page can also be followed to the MASS profiles; MASS results, weather logs, and error logs.

2. TMT Data Mirror at Keck and Accessing Data over the Internet

August 2, 2006

The TMT site survey group has generously allowed the Keck engineering team to use the data recorded on Mauna Kea for modeling NGAO and analysis of AO operational issues. We have not been granted access to any data from the Chilean sites. This data is proprietary information of TMT, they ask that we not distribute the information from the 13N site to other groups outside of Keck. They have also asked us not to publish results in journals or at conferences without first obtaining permission from the TMT. Questions about distribution of data should be directed to Matthias Schöck at <u>mschoeck@astro.caltech.edu</u>. My experience to date has been that all reasonable requests for use and redistribution of data have been approved by TMT.

The data files can be accessed over the Internet from either of these two sites.

Local 13N site:	http://128.171.116.58:24680/obs.php
TMT site selection server:	http://batman.tmt.org

These sites can be accessed with the username T6_group, see the author for the password. The DIMM results page of the TMT central server is shown in Figure 1. The links at the left of the page can also be followed to the MASS profile, MASS results, weather station, and error log pages. The results files for the DIMM, MASS results, and MASS profiles can be found in /Observations/T6-Hawaii/Results/ directory on the central TMT server. The file organization is slightly different between the local and central sites but the links from the home page are labeled and easy to follow. The results files contain the calibrated and post processed data from each instrument at approximately two minute intervals. All DIMM and MASS results files are columnar ASCII text files. Files indicate a placeholder for future data with four dashes (----). Data that is incorrect due to instrument malfunction or is out of range is indicated with both –NaN and NaN.

The author has started to mirror the TMT site on one of the Linux workstations; the repository includes all DIMM, MASS, MASS profile, and weather station data for the period June 25, 2005, through August 1, 2006. The entire archive is only about 100 MB of disk space.

2.1. DIMM File Format

The DIMM results files are named by the following convention, **results.TMTDIMM.T6-Hawaii.YearMonthDate**. The file extension is the local date (not UT). For example, the file **results.TMTDIMM.T6-Hawaii.20060731** is a DIMM file recorded on Monday July 31, 2006, local time; the UT date would have been August 1, 2006. The DIMM results files contain a two-line header followed by column delimited text data. An example file is shown in Figure 2. The first 10 columns of the data file contain the information most useful for analysis of seeing. The first 6 columns are: date and time, (UT not local time), the target star name is in columns 7 and 8, while column 9 contains the airmass of the observation, the next two columns contain seeing in units of arc seconds calculated by two methods labeled 2pt and 6pt. The methods differ in how the seeing measurement is extrapolated to zero exposure time. I typically use the 6pt method; the difference between the two measurements is usually small, of the order 50 milli arc seconds or less. Both seeing measurements are at a reference wavelength of 500 nm and correct to zenith.

The rest of the columns are fluxes for the two apertures and the background, scintillation in the two apertures, Strehl for the two apertures, the number of data points that were taken and that were good, the peak flux in the apertures, star position information, the exposure time (always 5ms), and the dark frame file. The star position is the measure of how the stars wandered on the CCD during the DIMM exposure: center of aperture 1 and 2, the separation between them, and the initial and final (S*i and S*f) positions of the apertures.

Accessing the Mauna K	ea TMT Seein	g & Weather Data
August 2, 2006		

<u>F</u> ile <u>E</u> dit	View	<u>G</u> o <u>B</u> ookmarks	<u>T</u> ools <u>H</u> e	elp																()
<	- 🛃 🌘	🕄 🏠 🗋 ht	tp://batman.tm	nt.ora/O	oservat	ions/	16-Hawaii/Resi	ults/results.T	MTDIMM.T6	Hawaii.2	200607	31							~	O Go C.
🗋 Red Hat	t, Inc. 🗋 I	Red Hat Network	🗋 Send 📋	Suppor	t 🗀 S	hop	Products	🗅 Training												
📄 yao: exa	mples		http://l	batman.	.tmH	lawai	i.20060731 <u>C</u>	Google				Phili	ip Guo	-Unis	on File	e Syne	chroniz	····		×
# Date	Time	Star airmass	Seeing [as]		Fluxes		Scintillation	Strehl	Points	Peak	Flux			Star	Posit	iono			exp	Dark File
# Date	TTHE	Star arrinass	6-pt 2-pt	S1	S2	BG	S1 S2	S1 S2	good all	S1	S2	S1	S2	sep	Sli	S2i	S1f	S2f	[ms]	Dark File
			• p• = p•						Boog are					o op					[]	<u>~</u>
2006 08 01	06 10 32	Bet Oph 1.095	1.571 1.551	15141	14470	39	0.022 0.023	0.60 0.63	5969 6000	5317	5202	50.1	70.6	20.5	49.9	71.0	52.2	72.9	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 11 56	Bet Oph 1.093	1.619 1.576	14860	14305	37	0.023 0.027	0.61 0.63	5970 6000	5253	5146	35.4	55.9	20.4	35.8	56.2	36.9	57.5	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 13 19	Bet Oph 1.091	1.371 1.357	15652	15008	38	0.020 0.023	0.62 0.65	5958 6000	5582	5474	37.6	57.8	20.2	37.4	57.9	38.6	59.4	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 14 42	Bet Oph 1.088	1.988 1.963	14642	14060	35	0.029 0.031	0.58 0.61	5971 6000	5034	4925	40.5	60.7	20.3	40.5	60.6	41.7	61.0	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 16 05	Bet Oph 1.086	1.273 1.266	14829	14203	37	0.024 0.027	0.62 0.65	5968 6000	5303	5217	41.3	61.5	20.2	40.8	60.5	42.1	62.7	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 17 28	Bet Oph 1.084	1.247 1.237	14355	13833	30	0.021 0.024	0.62 0.66	5968 6000	5172	5101	40.3	60.4	20.2	41.3	61.7	39.7	60.0	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 18 51	Bet Oph 1.082	1.149 1.121	14791	14210	34	0.021 0.025	0.63 0.66	5969 6000	5341	5268	41.6	61.7	20.1	41.0	61.2	43.2	63.5	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 21 31	Bet Oph 1.079	1.205 1.191	16395	15756	38	0.023 0.025	0.63 0.66	5954 6000	5938	5837	40.5	60.5	20.0	40.7	60.5	41.6	61.6	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 22 55	Bet Oph 1.077	1.509 1.478	15454	14801	39	0.022 0.026	0.61 0.64	5963 6000	5498	5378	40.0	59.9	20.0	40.3	59.7	41.3	61.4	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 24 19	Bet Oph 1.075	1.472 1.433	15323	14701	37	0.024 0.027	0.62 0.65	5970 6000	5480	5369	41.4	61.5	20.1	41.1	61.6	43.0	63.0	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 25 42	Bet Oph 1.073	1.588 1.569	15780	15106	40	0.024 0.028	0.61 0.63	5959 6000	5576	5455	41.9	61.9	20.1	42.9	62.9	42.2	62.9	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 27 07	Bet Oph 1.072	1.301 1.277	15358	14652	34	0.022 0.024	0.63 0.66	5969 6000	5541	5405	41.4	61.5	20.1	40.3	60.2	43.8	64.0	5	dimm.T6-Hawaii.20060801.054952.
2006 08 01	06 28 31	Bet Oph 1.070	$1.416 \ 1.394$	15962	15283	34	0.021 0.023	0.62 0.65	5959 6000	5692	5587	40.0	60.2	20.2	39.6	60.3	40.3	60.5	5	dimm.T6-Hawaii.20060801.054952.
4								11.	/											*
🗵 Find: -	4	6	Find Next	SFind I	Previou	is 🗄	Highlight 🗌 I	Match case												
Done																				

Figure 2. Sample DIMM result file from the TMT seeing monitor, the file is from August 1, 2006, (UT). Seeing is zenith corrected and the reference wavelength is 500 nm.

The DIMM instrument makes an integrated seeing measurement for the entire atmosphere, i.e from the telescope entrance to the top the stratosphere (~30 km). The DIMM measures the image motion of a single star at high speed with two subapertures; the differential image motion is a measure of the strength of the atmospheric turbulence and is independent of windshake and telescope tracking errors. For the TMT DIMM, the seeing measurement is given at the reference wavelength of 500 nm and corrected to zenith. The seeing is given as a FWHM in arc seconds. The seeing can be converted to an r_0 by using the formula^{2,3}

$$FWHM = \frac{0.98\lambda}{r_0}.$$
 (1)

2.2. MASS Profile Data Format

The MASS profile data is contained in the same directory as the DIMM data on both the local and the central data servers. The MASS profile files are designated **results.TMTMASS_profile.T6-Hawaii.YearMonthDate**. As with the DIMM files, the file extension is the local time and date (not UT). An example file is shown in Figure 3. The columns 1-6 are UT year, date, and time. The next column is a letter code that denotes the fitting method used to estimate the atmospheric profile, X is a fit to six layers with fixed altitudes; L is for a fit to 3 layers with varying layer altitudes. Column 8 is the number of levels used in the fit either 3 or 6. Column 9 is a chi-squared number for the turbulence layer fit (experts at the TMT claim it can be ignored). Column 10 is the MASS free atmosphere seeing in units of arc seconds. Note that free atmosphere seeing does not include turbulence below about 0.5 km which is often the dominant contribution to total seeing. The next columns (11-22) will contain pairs of numbers corresponding to fitted altitudes and integrated turbulence of the atmospheric profile. For the X line, there are six layer altitude, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 km, and after each layer altitude is the integrated C_n^2 in that layer, in units of m^{1/3}. The L line values are the results from a fit to both the turbulence strength and layer altitudes, results are given in the same units as the X line fits. The author has only used the X profiles to date. Like the DIMM data, the MASS results are referenced to a wavelength of 500 nm and zenith corrected. The MASS layer altitudes are referenced to the telescope entrance pupil not mean sea level.

The MASS unit measures the atmospheric turbulence by estimating the integrated turbulence in several discrete layers depending on the method used for the analysis. One should be clear that the MASS does not report $C_n^2(h)$, but several integrals of the form:

Accessing the Mauna Kea TMT Seeing & Weather Data August 2, 2006

$$\int_{\substack{i_{th}-layer}} C_n^2(h)w(h)dh \qquad (2)$$

The integration in equation (2) is centered about the layer heights reported in the data file. The weight function w(h) is an idealized MASS instrument response function. It is a triangular function that is unity at h_i dropping linearly to zero at $2h_i$ and $h_i/2$ (or zero for the lowest altitude layer). More details can be found in the paper by Tokovinin⁴.

<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
🔶 🗣 🖓 🧭 🚱 😭 🗋 http://batman.tmt.org/Observations/T6-Hawaii/Results/results.TMTMASS_profile.T6-Hawaii.20060731 🔽 🕻	G
🗋 Red Hat, Inc. 🗋 Red Hat Network 🗋 Send 🧰 Support 🚞 Shop 📁 Products 🗁 Training	
http://batman.tmHawaii.20060731 Microsoft Outlook Web Access	
2006 08 01 06 22 01 L 3 11.57 0.47 1.6 1.18e-13 4.9 5.75e-14 16.6 1.78e-14 2006 08 01 06 22 01 X 6 11.09 0.50 0.5 8.10e-18 1.0 8.16e-14 2.0 5.37e-14 4.0 4.31e-14 8.0 1.71e-14 16.0 1.74e-14 2006 08 01 06 23 26 L 3 12.54 0.45 0.9 9.55e-14 3.2 6.74e-14 18.1 1.91e-14 2006 08 01 06 23 26 X 6 13.02 0.49 0.5 7.52e-14 1.0 3.35e-14 2.0 4.38e-14 4.0 3.05e-14 8.0 1.22e-22 16.0 2.30e-14	
2006 08 01 06 24 50 I 3 6.28 0.51 0.9 1.17e-13 2.7 7.62e-14 15.3 3.05e-14 2006 08 01 06 24 50 X 6 6.44 0.56 0.5 1.10e-13 1.0 2.39e-14 2.0 7.29e-14 4.0 2.66e-14 8.0 2.83e-18 16.0 2.77e-14 2006 08 01 06 26 14 I 3 6.89 0.45 1.5 1.31e-13 5.9 2.56e-14 16.6 2.48e-14 2006 08 01 06 26 14 X 6 8.76 0.58 0.5 1.29e-13 1.0 4.91e-14 2.0 3.87e-14 4.0 2.99e-14 8.0 2.07e-15 16.0 2.80e-14	
2006 08 01 62 14 14 16 <	

Figure 3. A sample MASS profile data file, the columns are UT year, date, and time. Next is a letter code that denotes the fitting method; X is a fit to five fixed layers, L is fit to three layers with varying altitude and turbulence strength. The next column is the number of profile layers that were fit. The following column is a chi-squared estimate of the fit. Next is the MASS free atmospheric seeing in units of arc seconds. The next columns will contain pairs of numbers corresponding to altitude and integrated turbulence (see text for details). MASS data is zenith corrected and given at reference wavelength of 500 nm.

2.3. MASS Results File Format

The MASS results files are contained in the same directory as the DIMM and MASS profile data on both the local and the central data servers. The MASS results files are designated **results.TMTMASS.T6-Hawaii.YearMonthDate**. As with the DIMM files, the file name extension is the local year, month, and date (not UT). An example file is shown in Figure 4. Columns 1-6 are the UT year, date and time. The free atmosphere seeing in column seven is computed directly from the scintillation measurements. The free atmospheric seeing reported in the MASS profile data file is the result of integrating the turbulence profile fits. Usually the three free atmospheric seeing values are in close agreement, and this might be useful as an indicator of fit quality. Column 19 is the isoplanatic angle in arc seconds. Column 23 is the τ_0 given in milliseconds. The other columns are diagnostics of the MASS unit and can be ignored.

Accessing the Mauna K	Kea TMT	Seeing &	Weather Data
August 2, 2006			

<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>G</u> o	<u>B</u> ookma	urks	<u>T</u> ools <u>H</u> elp										
🔶 • 🧼 • 🎅	8	🕜 🗋	http:/	//batman.tmt.org/C	Dbservations/T6-H	lawaii/F	Results	/results.7	гмтм	ASS.T6	-Hawa	ii.20060731		
🗋 Red Hat, Inc. 📔	Red H	lat Netw	ork	🗋 Send 🗀 Suppo	ort 🗀 Shop 🗀	Product	s 🗀 1	raining						
📄 yao: examples				📄 http://batmar	n.tmHawaii.20	060731	GG	oogle				Philip	Guo - Unison	File Synchron
		0.070		0.000 2.11e-13	0.116 1.00e-17	0.000	7972	0.070	1	0.000		0.024 8.62e-06	0.080 6.08	0.122
2006 08 01 06 23 26 2006 08 01 06 24 50		0.070 0.059	0.00	0.000 1.96e-13 0.000 2.39e-13	0.117 1.00e-17 0.098 1.00e-17	0.000	9088 8726	0.077 0.073	1	0.000		0.027 8.03e-06 0.026 9.14e-06	0.082 8.78 0.080 5.98	0.207 0.122
2006 08 01 06 26 14	0.49		0.00	0.000 2.19e-13	0.112 1.00e-17	0.000	9381	0.073	1	0.000		0.027 9.62e-06	0.078 6.69	0.132
2006 08 01 06 27 37 2006 08 01 06 29 02	0.48 0.38	$0.066 \\ 0.100$	0.00	0.000 2.17e-13 0.000 1.45e-13	0.110 1.00e-17 0.166 1.00e-17	0.000	7912 9802	0.074 0.074	1 1	0.000		0.025 7.08e-06 0.024 7.64e-06	0.081 10.07 0.077 8.82	0.259 0.215

Figure 4. Sample MASS file; Columns 1-6 are the UT year, date, and time. The free seeing in column seven is computed directly from the scintillation measurements. Column 19 is the isoplanatic angle in arc seconds. Column 23 is the τ_0 given in milliseconds. The other columns are diagnostics of the MASS unit and can be ignored. MASS summary data is referenced to 500 nm wavelength and zenith corrected.

2.4. TMT Weather Station File Format

The TMT weather station files are located in the weather directory on both the local and central TMT sites. Weather station files are designated **weather_station.T6-Hawaii.YearMonthDay**. Weather data is logged 24 hours a day. A new file is created at sunrise each day and the archive is labeled with the local year, month, and date. A sample data file is shown in Figure 5. Weather data files have a one-line header. The first 6 columns are the UT year, date, and time. Weather data is given in the next five columns: air temperature in degrees Celsius, relative humidity, wind speed, wind direction, and atmospheric pressure.

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> o	<u>B</u> ookmark	s <u>T</u> ools	<u>H</u> elp									O
🥠 • 🏟 •	- 🛃 🗵	😭 🗋 h	ttp://batm	an.tmt.org/	Observatio	ons/T6-Haw	aii/Weathe	r/weather_	_station.T6	-Hawaii.20	060731	🖌 🜔 Go	G, atmospheric pressure
🗋 Red Hat,	Inc. 🗋 Red	Hat Networ	k 🗋 Sen	d 🗀 Supp	port 🗋 Sh	iop 🗀 Pro	ducts 🗀 T	raining					
🗋 http://bati	man.tmHa	awaii.200607	731 🗋 M	icrosoft Οι	ıtlook Web	Access	🗋 At	mospheric	pressure	Wikipedia	a, t		×
# Date	Time	Air [C]	%	km/h	deg	hPa	W/m2 S	oil [C]	Batt [V]	W/m2	W/m2	%	*
2006 07 31	15 38 03	0.258	85.02	6.390	192.70	607.15	4.8		6.27	-72.4	-31.8	0.00	
2006 07 31	15 40 03	0.230	83.13	3.710	197.97	607.15	5.0		6.27	-72.7	-31.8	0.00	
2006 07 31	15 42 04	0.252	83.83	4.970	198.96	607.20	5.3		6.26	-72.7	-31.4	0.00	
2006 07 31	15 44 04	0.034	86.84	4.620	199.50	607.20	5.6		6.26	-71.8	-31.4	0.00	
2006 07 31	15 46 03	0.732	81.71	0.000	232.96	607.25	6.1		6.26	-75.4	-31.8	0.00	
2006 07 31	15 48 03	0.436	85.78	9.620	196.45	607.25	6.7		6.26	-71.6	-31.6	0.00	
2006 07 31	15 50 04	0.368	88.36	14.270	207.26	607.25	7.4		6.26	-71.6	-31.8	0.00	
2006 07 31	15 52 04	0.160	87.90	0.000	206.71	607.25	8.1		6.26	-72.2	-31.8	0.00	

Figure 5. A sample weather station data file from the TMT site monitor.

3. Balloon Weather Data from the Hilo and Lihue Airports

The National Weather Service launches balloons from the Hilo and Lihue (Kauai) Airports at 0 and 12 hours UT each day. The data are archived at <u>http://weather.uwyo.edu/upperair/sounding.html</u>. The JAVA form on this web page can be used to query the database for atmospheric information from the balloon launches. The data file is returned as an html page, the results include: atmospheric pressure, altitude (ref. to mean sea level), wind speed and direction. The data are unevenly spaced in altitude because the balloons rate of ascent through the atmosphere is uncontrolled. The data are typically spaced between 100m and 500m in altitude. A sample screen shot of the data file is shown in Figure 6.

Accessing the Mauna Kea TMT Seeing & Weather Data August 2, 2006

<u>F</u> ile <u>E</u> di	t <u>V</u> iew	<u>G</u> o	<u>B</u> ookma	arks <u>1</u>	ools <u>I</u>	<u>H</u> elp					
🧇 • 🖨	> - 🎅		1	http://	weather.	uwyo.edı	ı/cgi-bin	/soundir	~ ()	Go G	_
🗋 Red H	at, Inc.	🗋 Red	Hat Netv	vork 🗋	Send	🔁 Suppo	rt 🗋 Si	hop 🗀 I	Products	🗀 Training	
										0.0.5	
91285	PH	ro h	lilo ()	bser	vatio	ons at	: 12Z	03 A	ug 2	006	
PRES	HGHT	TEMP	DWPT	RELH	MIXR	DRCT	SKNT	THTA	THTE	THTV	
hPa	m	С	С	%	g/kg	deg	knot	К	К	К	
1017.0	11	24.4	21.7	85	16.36	210	4	296.1	343.4	299.0	
1000.0	162	24.2	22.0	88	16.96	130	7	297.4	346.6	300.4	
983.8	305	23.0	21.2	89	16.37	65	10	297.6	345.1	300.5	
954.0	573	20.8	19.6	93	15.29	65	9	297.9	342.5	300.7	
950.0	610	20.6	18.7	89	14.52	65	9	298.1	340.4	300.6	
937.0	729	19.8	15.9	78	12.27	55	7	298.4	334.4	300.6	
							_				

Figure 6. Sample data file from Hilo balloon launch, from Aug 03 2006 (UT). Columns are barometric pressure, height, temperature, dew point, relative humidity, mixing ratio, wind direction and wind speed, in knots. Note one knot = 1 nautical mile/hour = 0.5144 m/s.

4. Preliminary Calculation of Integrated Turbulence Parameters

My method for calculating r_0 uses the DIMM data files 6 point seeing measurement and equation (1). When calculating integrated turbulence parameters such as d_0 or the isoplanatic angel (θ_0), where the ground layer drops out of the calculation, I use the MASS 6 layer profile. I have treated the MASS layers as delta functions centered at the peaks of the ideal MASS response functions⁴. The definitions in appendix A are used to calculate d_0 and θ_0 . It may be better to convolve the turbulence with the MASS triangle response functions, but I have used this simpler method to date.

For turbulence parameters that depend on the wind profile, such as the Greenwood frequency, I have used the balloon data from the Hilo Airport. I interpolate this data using the 3 nearest balloon flights to the time stamp of the MASS data. The ground wind speed is taken from the weather data files and interpolated to the same time stamps as the MASS data. The difference between the integral of the MASS profile and integrated turbulence from the DIMM can be used to infer the strength of the ground layer. The integrated turbulence is calculated from the DIMM seeing, the definition of r_0 and equation (1). So far this method has been successful, I have not encountered any profiles with negative turbulence ground layers. I assume that the ground layer is located at an altitude of 0 m above the seeing monitor telescopes. Since the MASS and DIMM data are not synchronous in time, I interpolate the DIMM data to the MASS time stamps. The combined wind and turbulence profiles are integrated using the formula in the appendix A to calculate the Greenwood frequency.

Appendix A. Formulas for the Computation of Key Atmospheric Parameters

Standard formulas for r_0 , d_0 , θ_0 , and the f_G may be found in Hardy⁵. The turbulence profile is $C_n^2(h)$ and the wind speed profile is given by v(h). The reference wavelength λ is typically 500 nm, although other wavelengths can be used. When observing at zenith the following definitions hold:

Accessing the Mauna Kea TMT Seeing & Weather Data August 2, 2006

$$\begin{split} r_{0} &= \left[0.4233 \left(\frac{2\pi}{\lambda} \right)^{2} \int C_{n}^{2}(h) dh \right]^{-3/5}, \\ \vartheta_{0} &= \left[2.914 \left(\frac{2\pi}{\lambda} \right)^{2} \int C_{n}^{2}(h) h^{5/3} dh \right]^{-3/5}, \\ f_{G} &= 0.2549 \left[\left(\frac{2\pi}{\lambda} \right)^{2} \int C_{n}^{2}(h) v(h)^{5/3} dh \right]^{3/5}. \end{split}$$

When observing with laser guide stars d_0 , is a function of the altitude of the laser guide star, H. I typically quote d_0 for a guide star altitude of 90 km above the telescope. When H is larger than about 30 km, then d_0 can be approximated by,

$$d_{0} = \left[\left(\frac{2\pi}{\lambda} \right)^{2} \left(0.5H^{-5/3} \int C_{n}^{2}(h)h^{5/3} dh - 0.452H^{-2} \int C_{n}^{2}(h)h^{2} dh \right) \right]^{-3/5}.$$

References

- 1. R. Riddle, M. Schöck, W. Skidmore, "The Thirty Meter Telescope site testing robotic computer system", Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray. Edited by M. Turner; and G. Hasinger, Proceedings of the SPIE, **6267** (2006).
- 2. M. Sarazin and F. Roddier, "ESO differential image motion monitor", Astron. & Astrophys., 227, 294-300 (1990).
- 3. A. Tokovinin, "From Differential Image Motion to Seeing", PASP, **114**, 1156-1166, (2002).
- A. Tokovinin, V. Kornilov, N. Shatsky, O. Voziakova, "Restoration of turbulence profiles from scintillation indices", Mon. Not. R. Aston. Soc., 343, 891-899 (2003).
- 5. J. Hardy, Adaptive Optics for Astronomical Telescope (New York, NY Oxford University Press), 1998