TRICK shock isolation analysis

Shawn Callahan, Hector Rodriquez 8/12/2013

What is the required displacement and natural frequrency to keep the accelerations from transportation shocks below 2g using foam and Keck's shock requirement for shipping instruments?

References: http://www.deltaflex.com/lord_pdfs/engineering_guide_ip.pdf

Environmental Conditions for instrumentation November 17, 2009 by Sean Adkins

Assume half sine input at 15g for 0.015 seconds

$$G_{in} := 15 \cdot g$$
 $t_0 := .015 \cdot sec$

Calculate delta V

$$\Delta V := \frac{2 \cdot G_{in} \cdot t_0}{\pi} = 1.405 \frac{m}{s}$$

Now calculate the frequency for a given fragility factor of 2 g's. Note: KCWI is designed to withstand 4 g's in all axes.

$$G_{\text{fragility}} \coloneqq 2 \cdot g$$

TRICK: assume more fragile instrument

Calculate the natural frequency of the isolators to achieve the desired fragility factor.

$$f_{n_max} := \frac{G_{fragility}}{2 \cdot \pi \cdot \Delta V} = 2.222 \text{ Hz}$$

Static deflection from $f=(1/2\pi)(k/m)^{1.5}$

$$\delta_{\text{static}} \coloneqq \frac{g}{\left(2 \cdot \pi \cdot f_{n_{\text{max}}}\right)^2} = 50.302 \,\text{mm}$$

Dynamic deflection

$$\delta_{\text{dynamic}} \coloneqq \frac{\Delta V}{2 \cdot \pi \cdot f_{n_max}} = 100.604 \text{ mm}$$

Assume weight of instrument is 150 lbs.

$$Wt_{dewar} := 100 \cdot lbf = 444.822 N$$

 $Wt_{pedestal} := 35 \cdot lbf = 155.688 N$

 $Wt_{shipping} := 150 \cdot lbf = 667.233 N$

Calculate the maximum stiffness of the foam/isolator

k _{max_isolator} :=	Wt _{shipping}	= 75.742	lbf
	δ _{static}		in

Investigate using **anti-static foam** from the Foam Factory.

http://www.thefoamfactory.com/tech/AntiStaticTech.html

Select an IFD is:

IFD := $35 \cdot lbf$

From the definition of IFD, for a strain of .25 the force is 35 lbs/ 50 in^2:

$$\sigma_{\text{foam}} \coloneqq \frac{\text{IFD}}{50 \cdot \text{in}^2} = 4.826 \times 10^3 \text{ Pa}$$

$$\varepsilon_{\text{foam}} \coloneqq 0.25$$

Calculate the effective modulus of the foam:

$$E_{foam} := \frac{\sigma_{foam}}{\varepsilon_{foam}} = 2.8 \, \text{psi}$$

Determine the stiffness of using two sheets of foam for the bottom and top of the shipping container.

diameter_{bottom} :=
$$15 \cdot in$$
 $no_{bottom_layers} := 3$

Area_{anti_static_bottom} :=
$$\frac{\pi \cdot \text{diameter}_{\text{bottom}}^2}{4}$$

thickness_{anti_static_bottom} := thickness_{foam}·no_{bottom_layers}

$$k_{foam_anti_static} := \frac{E_{foam} \cdot Area_{anti_static_bottom}}{thickness_{anti_static_bottom}} = 54.978 \frac{lbf}{in}$$

Conclusion: two layers is adeuquate to support the bottom and top of the instrument.

Use three 3" thick foam 27" accross with a 12.75 inch hole to constrain side-side.

diameter := $12.75 \cdot in$	Height := 27·in
thickness _{foam_side} := $3 \cdot in$	width _{sides} := $6 \cdot in$

 $Area_{side_side} := diameter \cdot thickness_{foam_side}$

 $no_{side_side} := 3$ $k_{side_side} := \frac{E_{foam} \cdot Area_{side_side}}{width_{sides}} \cdot no_{side_side} = 53.55 \frac{lbf}{in}$

 $k_{max_isolator} = 75.742 \frac{lbf}{in}$

Conclusion: three radial foam supports provides adequate radial isolation.