

Keck Adaptive Optics Note 456

NEXT GENERATION ADAPTIVE OPTICS: SYSTEM REQUIREMENTS DOCUMENT

Version 1.18 March 26, 2008

KAON456_NGAO_SRD_v1.18.doc

Table of Contents

Summary Table of Contents

1	Introduction	1
2	Scope and Applicability	1
3	References	
4	Revision History	
5	Background	4
6	Overall Requirements	
7	Optical Requirements	55
8	Mechanical Requirements	62
9	Electronic/Electrical Requirments	65
10	Safety Requirements	65
11	Software Requirements	66
12	Interface Requirements	67
13	Reliability Requirements	
14	Spares Requirements	71
15	Service and Maintenance Requirements	71
16	Documentation Requirements	
17	Glossary	

Table of Contents

Intr	oduction		1
Sco	pe and A		
3.1			
3.2	Referen	ced Drawings	2
Rev	vision Hi	story	2
Bac	kground	·	4
	-		
5.3	Overvie	- W	5
Ove			
6.1	Science	Requirements	7
6.	1.1 Pur	pose and Objectives	7
6.	1.2 Sci	ence Performance Requirements	7
	6.1.2.1	High-Redshift Galaxies	8
	6.1.2.2	Nearby AGNs: Black Hole Mass Measurements	11
	6.1.2.3		
	6.1.2.4	Planets Around Low-Mass Stars	14
	Scc Ref 3.1 3.2 Rev Bac 5.1 5.2 5.3 Ove 6.1 6. 6.	Scope and A References 3.1 Related 3.2 Referen Revision His Background 5.1 Purpose 5.2 Motivat 5.3 Overvie Overall Req 6.1 Science 6.1.1 Pur 6.1.2 Scie 6.1.2.1 6.1.2.2 6.1.2.3	 3.1 Related Documents

Table of Contents

	(6.1.2.5 Asteroid Companions Survey	
	(6.1.2.6 Asteroid Companions Orbit Determination	
	(6.1.2.7 QSO Host Galaxies	
	(6.1.2.8 Gravitational Lensing	
	(6.1.2.9 Astrometry Science in Sparse Fields	
	(6.1.2.10 Resolved Stellar Populations in Crowded Fields	
	(6.1.2.11 Debris Disks	
	(6.1.2.12 Young Stellar Objects	
	(6.1.2.13 Asteroid Size, Shape, and Composition	
	(6.1.2.14 Gas Giant Planets	
	(6.1.2.15 Ice Giants: Uranus and Neptune	
	(6.1.2.16 Other: Backup Science	
	(6.1.2.17 Atmospheric Seeing Assumptions	
	6.1	1.3 Science Instrument Requirements	
	6.1	1.4 Science Operations Requirements	
		6.1.4.1 Science-grade quality of the raw data	
	(6.1.4.2 Science-grade quality of the data products	
	(6.1.4.3 Science impact from a given data product	
	6.2	Observatory Overall Requirements	
	6.2		
	6.2	2.2 Facility Requirements	
	6.2	2.3 Telescope and Dome Environment Requirements:	
	6.2	2.4 Observatory Science Instrument Requirements	
	6.2	2.5 Observatory Operational Requirements	
	6.2	2.6 Observatory Implementation Requirements	
7	Opti	tical Requirements	
	7.1	Purpose and Objectives	55
	7.2	Performance Requirements	55
	7.3	Implementation Requirements	55
	7.4	Design Requirements	55
8	Mec	chanical Requirements	
	8.1	Purpose and Objectives	
	8.2	Performance Requirements	
		Implementation Requirements	
	8.4	Design Requirements	
9		ctronic/Electrical Requirments	
	9.1	Purpose and Objectives	65
	9.2	Performance Requirements	
		Implementation Requirements	
		Design Requirements	
1(ifety Requirements	
	10.1	Purpose and Objectives	

Table of Contents

10.2 Scope	66
10.3 Laser Safety Requirements	66
10.4 Laser Projection Safety Requirements	66
10.4.1 Aircraft Safety	
10.4.2 Space Command	
11 Software Requirements	
11.1 Purpose and Objectives	
11.2 Scope	
11.3 Performance Requirements	
11.4 Implementation Requirements	
11.5 Design Requirements	
12 Interface Requirements	
12.1 Purpose and Objectives	
12.2 Design Requirements	
12.2.1 Optical Interface	
12.2.2 Mechanical Interface	
12.2.3 Electrical/Electronic Interface	
12.2.4 Software Interface	70
13 Reliability Requirements	
13.1 Purpose	70
13.2 Scope	. 70
13.3 Performance	. 71
14 Spares Requirements	. 71
15 Service and Maintenance Requirements	. 71
16 Documentation Requirements	. 71
17 Glossary	72

Figures and Tables

Figure 1 Keck telescope structure	6
Table 17. NGAO baseline Mauna Kea C_n^2 Profile	37
Table 2 Glossary of Terms	72

Requirements Tables

Table 1. High-Redshift Galaxies derived requirements	
Table 2. Nearby AGNs derived requirements	
Table 3a. General relativity effects in the Galactic Center derived requirements	
Table 3b. Radial velocity measurements derived requirements	13
Table 4. Planets Around Low Mass Stars derived requirements	
Table 5. Asteroid Companions Survey driven requirements	19
Table 6. Asteroid Companions Orbit Determination driven requirements	22
Table 7. QSO Host galaxies derived requirements	23
Table 8a. Imaging studies of distant galaxies lensed by galaxies	24
Table 8b. Spectroscopic studies of distant galaxies lensed by galaxies	
Table 9a. Imaging studies of distant galaxies lensed by clusters	
Table 9b. Spectroscopic studies of distant galaxies lensed by clusters	
Table 10. Astrometry Science in Sparse Fields derived requirements	29
Table 11. Resolved Stellar Populations in Crowded Fields derived requirements	29
Table 12. Debris Disks derived requirements	29
Table 13. Young Stellar Objects derived requirements	
Table 14. Asteroid size, shape, and composition derived requirements	
Table 15. Gas Giants derived requirements	30
Table 16. Ice Giants derived requirements	
Table 17. Backup Science Observing Modes: NGS	34
Table 18. Science Instrument Requirements	
Table 19. Science Operations Requirements, Raw Data Quality	
Table 20. Science Operations Requirements, Data Products Quality	
Table 21. Science Operations Requirements, Archiving and Retrieval	
Table 21. Facility Requirements	
Table 22. Telescope and Dome Environment Requirements	
Table 23. Observatory Science Instrument Requirements	
Table 24. Observatory Operational Requirements	
Table 25. Observatory Implementation Requirements	
Table 26. Implementation Requirements	
Table 27. Optical Design Requirements	
Table 28. Science Instrument Optical Design Requirements	
Table 29. Non-Interferometric Science Instrument Optical Design Requirements	
Table 30. Interferometry Science Instrument Optical Design Requirements	
Table 31. Mechanical Performance Requirements	
Table 32. Mechanical Implementation Requirements	63

Figures and Tables

Table 33. Mechanical Design Requirements	
Table 34. Electrical Performance Requirements.	65
Table 35. Software Performance Requirements	67
Table 36. Mechanical Interface Requirements	68
Table 37. Electrical Interface Requirements	69
Table 38. Software Interface Requirements	
Table 39. Reliability Performance Requirements	71

1 INTRODUCTION

This document describes the requirements for the Next Generation Adaptive Optics (NGAO) system to be built for the W. M. Keck Observatory (WMKO).

The requirements in this document are intended to be at a level appropriate for the system design phase. Further development of the requirements will take place in the next phase of the project (preliminary design). In particular, parametric performance requirements given at this stage are intended to indicate the scope and format of the requirements, but do not in all cases establish final values for the specified parameters. In some cases values for these parameters have yet to be established and are given as TBD.

A more generic set of requirements for new WMKO instrumentation is described in the Observatory's "Instrumentation Baseline Requirements Document." These requirements are also applicable to NGAO. The NGAO System Requirements Document will take precedence over the "Instrumentation Baseline Requirements Document" in the event of a conflict.

It is important to understand that at this stage of development the requirements provide a basis for identifying the parameters that will be part of the system's specifications, but the values given are subject to change as the development continues. During the next phases of the project work will be done to refine the requirements for review at the preliminary design review. The final requirements to be reviewed at the detailed design review will form the basis for the acceptance test criteria for the instrument.

The purpose of this document is to define and communicate the requirements for the NGAOspecific design and implementation in terms of the needed scientific and technical performance. The document also expresses specific requirements for implementation or design where those requirements are essential to satisfactory integration and interoperation of NGAO with the observatory systems. The document avoids prescribing specific design or implementation solutions except for solutions that embody the Observatory's unique knowledge or experience. The document establishes requirements for the NGAO that will guide the design through the detailed design phase.

2 SCOPE AND APPLICABILITY

This document establishes requirements for all aspects of NGAO beyond those already specified in the "Instrumentation Baseline Requirements Document". This document also establishes requirements for changes to related Keck telescope subsystems and software where required.

This document does not address the requirements for the science instruments that will work with NGAO, although it does cover the NGAO interfaces to these instruments. Separate system requirements documents will need to be prepared for each of these instruments as part of their design process.

3 REFERENCES

3.1 Related Documents

- 1. KAON 572. Instrumentation Baseline Requirements Document.
- 2. KAON 153. Coordination and Use of Laser Beacons for AO on Mauna Kea.
- 3. KAON 399. NGAO Proposal Executive Summary.
- 4. KAON 400. NGAO Proposal.
- 5. KAON 428. Implications and requirements for Interferometry with NGAO.
- 6. KAON 455. NGAO Science Case Requirements Document v2.0.
- 7. KAON 476. NGAO Science Operations Observing Model Trade Study
- 8. ANSI Z136.1 Safe Use of Lasers Indoors (2000).
- 9. ANSI Z136.6 Safe Use of Lasers Outdoors (2000).

3.2 Referenced Drawings

None at this time.

4 REVISION HISTORY

Version	Date	Author	Reason for revision / remarks
0.1	Jan. 16, 2007	Wizinowich	Initial version
0.3	Feb. 1, 2007	Wizinowich	Multiple edits
0.4	Feb. 6, 2007	Wizinowich	Multiple edits. Included seeing & telescope environment in section 6.1.2
1.0	Feb. 21, 2007	Wizinowich	Added Dekany performance requirements input
1.1	Apr. 17, 2007	Wizinowich	Edited section 6
1.2	May 15, 2007	Wizinowich	Incorporated input from NGAO team
			meeting 6
1.3	May 22, 2007	Wizinowich	Miscellaneous
1.4	May 22, 2007	Wizinowich	Mods to the table in section 6.1.2
1.5	May 25, 2007	Wizinowich	Additions to 6.1.4 based on KAON 476
1.6	May 30, 2007	Wizinowich	Science requirement changes based on SRD telecom
1.7	May 31, 2007	Wizinowich	Solar system science requirement input with Le Mignant & Marchis + minor mods to science operation requirements
1.8	June 1, 2007	Wizinowich	Galactic Center & QSO host science cases. Mods to Observatory operational requirements
1.9	June 6, 2007	Wizinowich	AGN science case from Adkins, Le Mignant, Max & McGrath
1.10	June 19, 2007	Wizinowich	Added planets around low mass stars &

	1	1	
			gravitational lensing requirement tables. First cut at asteroid shape & size table. Added H-band to GR Galactic Center case. Minor edits to asteroid companions table.
1.11	June 29, 2007	Wizinowich	Minor edits to science performance requirements
1.12	August 15, 2007	Gavel	Review and edits, highlighting gaps in the flow down from the ScRD. Added a requirements numbering system.
1.13	August 22, 2007	Gavel	Continued edits, through all the science requirements tables and instrument requirements tables (to Table 13). Comments and questions are in red font.
1.14	Sept 4 thru 7, 2007	Max, McGrath, Le Mignant	Revised science requirements tables. We have scrutinized Tables 1, 2, 3, 4, and 6 thoroughly. Things to follow up on are highlighted in yellow.
1.15	Oct. 1 – 3 rd , 2007	D. Le Mignant	Revised observatory requirements (section 6). Things to follow up on are highlighted in yellow. Updated Table numbering and TOC. Removed the obsolete performance requirement tables from optical performance section 7. Consolidated Telescope and Dome Environment requirements in Table 22 and included in section 6.2.3
1.16	Dec. 14 – 19, 2007	E. McGrath	Revised and re-ordered science requirements tables 1-17. Things to follow up on are highlighted in yellow.
1.17	March 13, 2008	D. Gavel	Follow up on traceability of requirements. Revised Science Requirements section (E. McGrath, C. Max)
1.18	March 26, 2008	D. Le Mignant	Check requirement for consistency with other documents, re-arranged sections and tables that are not complete.

5 BACKGROUND

5.1 Purpose

The purpose of the background section of this document is to provide context and related information for the requirements defined in later sections of this document.

5.2 Motivation for the Development of NGAO

The Keck telescopes are the world's largest optical and infrared telescopes. Because of their large apertures the Keck telescopes offer the highest potential sensitivity and angular resolution currently available. WMKO has already demonstrated scientific leadership in high angular resolution astronomy with the first NGS and LGS AO systems on 8-10 m telescopes. The importance of achieving the full potential of the Keck telescopes is recognized in the Observatory's strategic plan which identifies leadership in high angular resolution astronomy as a key long-term goal.

In order to maintain our leadership in this field we must pursue new AO systems and the instrumentation to exploit them. We have examined, and are continuing to examine, a broad range of key science goals in order to identify the most compelling future science goals of our community and to determine what is needed to realize these goals. As a result we have identified that NGAO should provide the following suite of capabilities:

- Near diffraction-limited performance at near infrared wavelengths, producing a point spread function with unprecedented precision, stability and contrast;
- Increased sky coverage and a multiplexing capability, enabling a much broader range of science programs; and
- AO correction in the red portion of the visible spectrum (0.6-1.0 μ m), delivering the highest angular resolution images available for filled aperture telescopes.

NGAO will be a broad and powerful facility with the potential to achieve major advances in astrophysics. It will provide dramatic gains in solar system and galactic science where AO has already demonstrated a strong scientific impact. NGAO will also allow for extraordinary advances in extragalactic astronomy, far beyond the initial gains being made with the Observatory's current AO systems.

To be clear NGAO need not be a single facility. It may be that the requirements are best met with multiple AO systems.

The NGAO proposal (KAON 400) and NGAO proposal executive summary (KAON 399) provide more background on the motivation for the development of NGAO. Further scientific motivation is provided in the NGAO science case requirements document (KAON 455).

5.3 Overview

The scientific and technical requirements for NGAO result in the following basic systems:

- 1. AO system. The AO system will likely consist of an AO enclosure, an opto-mechanical system, and software and electronics for both non real-time and real-time control.
- 2. Laser facility. The laser facility will likely consist of a laser enclosure, the laser(s), the launch facility including a beam transport system and launch telescope, safety systems and laser system control electronics and software.
- 3. Science operations facility. The science operations facility will primarily include the software and computers required to support operation of the AO system and science instruments. This includes operating the systems for nighttime observing as well as preand post-observing activities.
- 4. Science instruments. The three highest priority instruments are currently a near-IR imager, a visible imager and a deployable near-IR integral field unit (IFU). Three lower priority instruments have also been identified including a near-IR IFU and a visible IFU. There is also a requirement that the NGAO project be designed so as to allow the continued AO support of the Interferometer and the fiber injection module used for the 'OHANA (Optical Hawaiian Array for Nanoradian Astronomy) project.

The AO and laser facilities and the science instruments will have to interface with the telescope structure. Figure 1 shows a schematic view of a Keck telescope. The most likely location for the NGAO system and science instruments is on one of the Nasmyth platforms of the telescope. Nominally we have chosen the left Nasmyth platform of the Keck II telescope as our starting point. The most likely location for the projection telescope is behind the f/15 secondary mirror in the top end of the telescope.

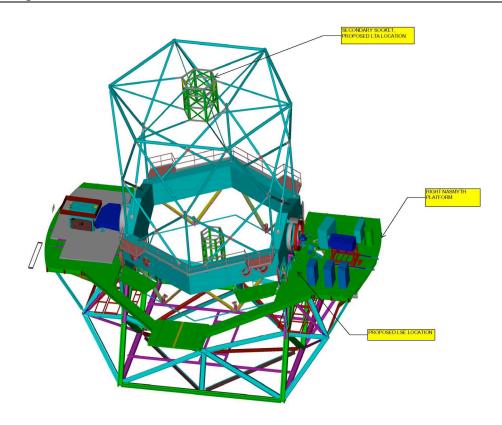


Figure 1 Keck telescope structure

6 OVERALL REQUIREMENTS

6.1 Science Requirements

6.1.1 **Purpose and Objectives**

The purpose of the science overall requirements section is to summarize and convey requirements that apply generally to the overall NGAO system and its accessories. These are based on the NGAO Science Case Requirements Document (SCRD) (KAON 455), various trade studies undertaken and error budgets developed to meet these science requirements, general observatory instrument and interface requirements (KAON 572), and general observatory obligations (KAONs 428 and 153).

6.1.2 Science Performance Requirements

The performance requirements developed in the SCRD are summarized in the following tables. These will be updated as the science case requirements and performance budgets become better defined.

The relevant source of the requirement from the Science Requirements Document (SCRD), KAON 455, is referenced by section number. Some of the requirements have a source other than the SCRD. In these cases the additional source is listed.

We have categorized the various science cases into two classes: those that push the limits of AO system, instrument, and telescope performance (designated "Key Science Drivers"), and those that are less technically demanding than the "Key Science Drivers" but still place important requirements on available observing modes, instruments, and PSF knowledge. We shall call the latter category "Science Drivers."

In the remainder of this section we present tables showing the requirements that flow down from both of these categories of science cases. The cases we shall discuss are listed below, together with their designation as Key Science Drivers (KSD) or "Science Drivers" (SD).

	Title and Number in This Report	Reference in Summary Spreadsheet (KAON 548)
1.	High-redshift galaxies (KSD)	X2
2.	Nearby AGNs: black hole mass measurements (KSD)	X3
3.	General Relativity at Galactic Center (KSD)	G2
	a. Astrometric	G2a
	b. Radial velocity	G2b
4.	Planets around low-mass stars (KSD)	G1

5. Asteroid companions survey (KSD)	S1a
6. Asteroid companions orbit determination (KSD)	S1b
7. QSO host galaxies (SD)	X1
8. Gravitationally lensed galaxies by galaxies (SD)	
a. Imaging	X4b
b. Spectroscopy	X4a
9. Place holder for Gravitationally lensed galaxies by clusters (SD)	
c. Imaging	X4b
d. Spectroscopy	X4a
10. Place-holder for Astrometry in sparse fields (SD)	GX1
11. Place-holder for Resolved stellar populations in crowded fields (SD)	GX2
12. Place-holder for Debris disks (SD)	G3
13. Place-holder for Young stellar objects (SD)	G4
14. Asteroid size, shape, and composition (SD)	S2
15. Moons of the Giant Planets (SD)	S3
16. Uranus and Neptune (SD)	S4
17. Backup science (SD)	Ο

6.1.2.1 High-Redshift Galaxies

The requirements for the *high-redshift galaxies* science case are summarized in the following table (see the Galaxy Assembly and Star Formation History section of KAON 455 (Release 2.1)).

Table 1. High-Redshift Galaxies derived requirements

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement		
1.1	<i>Sensitivity</i> . SNR \geq 10 for	Sufficiently high throughput	
	a $z = 2.6$ galaxy in an	and low emissivity of the AO	
	integration time ≤ 3	system science path to	
	hours for a spectral	achieve this sensitivity.	
	resolution $R = 3500$ with	Background due to emissivity	
	a spatial resolution of 50	less than 30% of unattenuated	
	mas	(sky + telescope).	
	[SCRD §2.1.4]	[SCRD §2.1.5.1 and SCRD	
		Figure 1]	

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement		
1.2	Target sample size of \geq	Multi-object AO system: one	Multiple (6-12) IFUs,
	200 galaxies in \leq 3 years	DM per arm, <i>or</i> an upstream	deployable on the 5 square
	(assuming a target	MCAO system correcting the entire field of regard.	arc minute field of regard
	density of 4 galaxies per square arcmin)	6-12 arms on 5 square arc	
	[SCRD §2.1.3]	minutes patrol field.	
	[5010 32.1.5]	minutes purier nera.	
1.3	Spectroscopic and	AO system must transmit J,	Infrared imager and IFUs
	imaging observing	H, and K bands ^{1}	designed for J, H, and K. ¹
	wavelengths $=$ J, H and		Each entire wavelength band
	K (to 2.4 μ m) ¹		should be observable in one
	[SCRD §2.1.4, §2.1.5.3]		exposure.
1.4	Spectral resolution =		Spectral resolution of >3000
	3000 to 4000		in IFUs
	[SCRD §2.1.5.1, §2.1.5.3]		
1.5	Narrow field imaging:	Wavefront error 170 nm or	Nyquist sampled pixels at
1.0	diffraction limited at J,	better	each wavelength
	H, K		
	[SCRD §2.1.5.3]		
1.6	Encircled energy at least	Wavefront error sufficiently	IFU spaxel size: either 35 or
	50% in 70 mas for sky	low (~170 nm) to achieve the	70 mas, to be determined
	coverage of 30% (see	stated requirement in J, H,	during the design study for
	1.11)	and K bands.	the multiplexed IFU
	[SCRD §2.1.5.2]		spectrograph
1.7	Velocity determined to \leq	PSF intensity distribution	
	20 km/sec for spatial	known to $\leq 10\%$ per spectral	
	resolutions of 70 mas	channel.	
1.8	IFU field of view ≥ 1 " x	Each MOAO IFU channel	Each IFU unit's field of view
	3" in order to allow sky	passes a 1"x3" field.	is 1" x 3"
	background measurement		
	at same time as observing a ~1" galaxy		
	[SCRD §2.1.5.1]		
1.9	Simultaneous sky	See #1.8	
1.7	background		

¹ Note that z band (central wavelength 912 nm) and Y band (central wavelength 1020 nm) are of interest as well, since H α falls in z (Y) band for redshift 0.4 (0.55). The importance of including these two bands in addition to J, H, K is currently being assessed.

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement		
	measurements within a		
	radius of 3" with the same field of view as the		
	science field		
	[SCRD §2.1.5.1]		
1.10	Relative photometry to \leq 5% for observations during a single night	Knowledge of ensquared energy in IFU spaxel to 5%. Telemetry system that monitors tip/tilt star Strehl and other real-time data to estimate the EE vs. time, or other equivalent method to	
		determine PSF to the required accuracy.	
1.11	Sky coverage $\geq 30\%$ at 170 nm wavefront error, to overlap with data sets from other instruments and telescopes [SCRD §2.1.5.2]	Infrared tip/tilt sensors with AO correction of tip/tilt stars	
1.12	Should be able to center a galaxy to $\leq 10\%$ of science field of view		
1.13	Should know the relative position of the galaxy to $\leq 20\%$ of spaxel size		
1.14	Target drift should be \leq 10% of spaxel size in 1 hr		
1.15	The following observing preparation tools are required: PSF simulation and exposure time calculator		
1.16	The following data products are required: calibrated spectral data cube [SCRD §2.1.5.3]		

6.1.2.2 Nearby AGNs: Black Hole Mass Measurements

The requirements for the Nearby AGN science case are summarized in the following table (see the Nearby AGN section of KAON 455 (Release 2.1)).

#	Science Performance	AO Derived Requirements	Instrument Requirements
2.1	RequirementNumber of targetsrequired: to be specifiedin future versions of theSCRD[SCRD §2.2.3]		
2.2	Required wavelength range 0.85 – 2.4 microns [SCRD §2.2.3]		
2.3	Required spatial sampling at least two resolution elements across gravitational sphere of influence. [SCRD §2.2.2]	50% enclosed energy radius < ¹ / ₂ gravitational sphere of influence. Wavefront error requirement to be specified in future versions of this document.	Spectral and imaging pixels/spaxels < ¹ / ₂ gravitational sphere of influence (in the spatial dimension)
2.4	Required field of view for both spectroscopy and imaging > 10 radii of the gravitational sphere of influence. [e.g., SCRD §2.2.4 Figure 3]		Will need to get sky background measurement as efficiently as possible. For IR, consider using a separate d- IFU on the sky.
2.5	Required SNR for spatially resolved spectroscopy of the central black hole region using stellar velocities > 30 per resolution element [SCRD §2.2.3]	PSF stability and knowledge requirements will be discussed in future releases of the SCRD	Spectral resolution R ~ 3000- 4000 with at least two pixels per resolution element; detector limited SNR performance. Spatial sampling at least two resolution elements across the gravitational sphere of influence

Table 2. Nearby AGNs derived requirements

2.6	Required observation planning tools: PSF simulation tools to plan for observations of Seyfert 1 galaxies which have strong central point sources	
2.7	Required data reduction pipeline for IFU	

6.1.2.3 General Relativity Effects in the Galactic Center

The requirements for the *Measurement of General Relativity Effects in the Galactic Center science case* on both precision astrometry and radial velocities are summarized in the following two tables, respectively (see the Precision Astrometry: Measurements of General Relativity Effects in the Galactic Center section of KAON 455 (Release 2.1)).

Table 3a. General relativity effects in the Galactic Center derived requirements

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
3a.1	Astrometric accuracy \leq 100 µas for objects \leq 5" from the Galactic Center [SCRD §2.3.8.1]	High Strehl to reduce confusion limit: rms wavefront error ≤ 170 nm at G.C. IR tip/tilt sensors. Means of aligning and measuring position of tip-tilt sensors so that they permit astrometric accuracy of ≤ 100 µas. Means of preventing WFS- blind field-distortion modes (if multi-DMs are in series). Will require ADC. Need astrometric error budget in order to determine ADC requirements.	Nyquist sampling at H and K. Instrument distortion characterized and stable to ≤ 100 µas.
3a.2	Observing wavelengths: H and K- band [SCRD §2.3.9]	Transmit H and K band to science instrument	
3a.3	Field of view $\ge 10^{\circ}$ x 10" for imaging	Science path shall allow an unvignetted 10" x 10" field.	

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement	-	-
	[SCRD §2.3.9]		
3a.4	Ability to construct		
	40'x40" mosaic to tie		
	to radio astrometric		
	reference frame ²		
	[SCRD §2.3.5]		
3a.5	The following		
	observing preparation		
	tools are required: PSF		
	simulation as function		
	of wavelength and		
	seeing conditions,		
	exposure time		
	calculator.		
3a.6	The following data		
	products are required:		
	Calibrated PSF, data		
	reduction pipeline,		
	accurate distortion map		
	(see 3a.1)		
	[SCRD §2.3.5]		

Table 3b. Radial velocity measurements derived requirements

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
3b.1	<i>Radial velocity</i> accuracy ≤ 10 km/sec for objects ≤ 5" from the Galactic Center [SCRD §2.3.8.2]	170nm wavefront error at G.C.PSF estimation sufficient to measure a radial velocity to 10 km/sec.[suggestions from SCRD §2.3.8.2]	Spectral resolution \geq 4000 Calibration of one IFU relative to other ones sufficient to permit 10 km/sec radial velocity measurement
3b.2	Observing wavelengths H, K-band [SCRD §2.3.6]	Transmit H, K band to science instrument	
3b.3	Spatial sampling ≤ 20 mas (H) or 35 mas (K)		20 and 35 mas spaxel scales at H and K respectively

² Accuracy required needs to be determined

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
	to control confusion		
	within IFU field of view		
	[SCRD §2.3.6]		
3b.4	Field of view ≥ 1 " x 1"		Field of view ≥ 1 " x 1"
	[SCRD §2.3.6]		
3b.5	The following observing		
	preparation tools are		
	required: PSF simulation		
	as function of		
	wavelength and seeing		
	conditions, exposure		
	time calculator.		
3b.6	The following data		
	products are required:		
	IFU pipeline for		
	wavelength/flux		
	calibration		
	[SCRD §2.3.6]		

6.1.2.4 Planets Around Low-Mass Stars

The requirements for the *planets around low-mass stars* science case are summarized in the following table. The key area in which NGAO will excel is the detection of planets around low-mass stars and brown dwarfs because Keck, unlike GPI, will be able to use a laser guide star. NGAO will also be able to search for planets around young solar-type stars where dust extinction is significant. JWST will have coronagraphic capability in the 3 to 5 μ m window, but will have significantly lower spatial resolution than Keck NGAO. In terms of the types of solar systems that can be studied, this means that JWST will focus on older, nearby main sequence stars (since older giant planets will remain visible in 3 to 5 μ m for a longer time). JWST may be more limited than NGAO in doing large surveys, because of its longer slewing time and possibly a lifetime limit on the total number of slews.

Note: this science will usually be in LGS mode. Depending on the target magnitude, may choose to use the parent star as one of the required tip-tilt stars.

	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
4.1	Target sample 1: Old	Observe 20 targets per night	Near infrared imager (possibly

Table 4. Planets Around Low Mass Stars derived requirements

	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
	field brown dwarfs out to distance of 20 pc. Sample size several hundred, desired maximum survey duration 3 yrs (practical publication timescales). [SCRD §2.4.3]	(each with e.g. 20 min integration time). Guide on a tip-tilt star with H=14.	with coronagraph). Survey primary stars at J- and H-band.
4.2	Target sample 2: Young (<100 Myr) field brown dwarfs and low-mass stars to distance of 80 pc. Sample size several hundred, desired maximum survey duration 3 yrs. [SCRD §2.4.3]	Observe 20 targets per night (each with e.g. 20 min integration time).	Near infrared imager (possibly with coronagraph). Survey primary at J- and H-band. Could benefit from dual- or multi-channel mode for rejecting speckle suppression, but not essential for this program.
4.3	Target sample 3: solar type stars in nearby star forming regions such as Taurus and Ophiuchus, and young clusters @ 100 to 150 pc distance. Bright targets (on-axis tip-tilt generally possible: V=14-15, J=10-12). Sample size several hundred, desired maximum survey duration 3 yrs.	(May not require LGS if there is a good enough near-IR wavefront sensor available).	Possible dual- or multi-channel mode for speckle suppression. Alternatively an IFU would help, provided it is Nyquist sampled at H and has FOV > 1 arc sec. Min. IFU spectral resolution is R~100. May need IR ADC for imaging or coronagraphic observations (J or H bands); typical airmass is 1.7 for Ophiuchus.
4.4	Companion Sensitivity Sample 1: assume no companions beyond 15 AU. Targets at 20 to 30 pc; companion distribution peaks at 4 AU = 0.2"; this yields 2 $M_{Jupiter}$ planets at a 0.2" separation with contrast $\otimes H = 10$. Planets have H=24, J=24.7. Parent stars are	Excellent (<10nm) calibration of both initial LGS spot size and quasi-static non-common path aberrations, especially at mid- spatial-frequencies. Needs algorithms such as phase retrieval or speckle nulling (on a fiber source + good stability). Small servo-lag error (<30nm) to avoid scattered light at 0.2 arc sec. Source: Error budget and simulations by Bruce	Inner working angle of 6 λ /D general-purpose coronagraph with a contrast of 10 ⁻⁶ . Detailed design of coronagraph will take place during PDR stage. Speckle suppression capability (multi-spectral imaging); dual- channel imager; stability of static errors ~5nm per sqrt(hr) for PSF subtraction or ADI.

	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement		
	2MASS Brown Dwarfs with H=14. [SCRD §2.4.2.1]	Macintosh.	
4.5	Companion Sensitivity Sample 2: Parent stars are T Tauri, J=11. A 1 $M_{Jupiter}$ planet is at 300K, J=22, (2 $M_{Jupiter}$ is J=19.5). This distribution could have a wider distribution of binaries a) 0.1" separation, $\otimes J =$ 8.5 (2 M_J) b) 0.2" separation, $\otimes J =$ 11 (1 M_J) c) Goal $\otimes J =$ 11 at 0.1" separation (1 M_J) based on properties of the planets you want to look for. [SCRD §2.4.2.2]	Same as #4.4	a) 6 λ /D general-purpose coronagraph b) 6 λ /D general-purpose coronagraph c) (Goal) Not achievable with a general purpose coronagraph May need small Inner Working Distance (2 λ /D) coronagraph. ³ Speckle suppression capability (multi-spectral imaging); dual- channel imager; stability of static errors ~5nm per \sqrt{hr} for PSF subtraction or ADI.
4.6	Goal: Companion Sensitivity Case 3: at 5 Myr, 1 M _{sun} primary; a) goal $\otimes J = 13.5$ to see 1 M _{Jupiter} or b) goal $\otimes J = 9$ for 5 M _{Jupiter} . 0.07" is needed. For apparent magnitudes of parent stars see 4.3	Excellent (10-20nm) calibration of both initial LGS spot size and quasi-static non-common path aberrations, at both low- and mid-spatial-frequencies. Needs algorithms such as phase retrieval or speckle nulling (on a fiber source + good stability). Small servo-lag error (<30nm) to avoid scattered light at 0.2 arc sec. Tomography errors 20- 30nm. Source: error budget and simulations by Bruce Macintosh.	Requires multi- λ speckle suppression; very small inner working angle coronagraph (2 λ /D); static errors in 5-10nm range.
4.7	Sensitivity of H=25 for	Sufficiently high throughput and	

³ Non-redundant aperture masking is an interesting approach for this, limits currently unknown, probably requires low read noise in science detector.

	Science Performance	AO Derived Requirements	Instrument Requirements
4.8	Requirement5-sigma detection in 20minutes, at 1 arcsecseparation from primarystar. (Brown dwarftargets are limited bysky background atlarger angles, of order~1 arcsec).[SCRD §2.4.5.9]H-band relativephotometry (betweenprimary andcompanion): accuracy ≤ 0.1 mag for recoveredcompanions (to estimatemass of thecompanion); goal ofmeasuring colors to0.05 mags (0.03 magper band) to measuretemperatures andsurface gravitiessufficiently accurately(to ~10%).[SCRD §2.4.5.4]	low emissivity to permit detecting H=25 in 20 minutes at 5 sigma above background. Diagnostics on AO data to measure Strehl fluctuations if it takes a while to move on and off the coronagraph (a possible more attractive solution is a specialized coronagraph that simultaneously images the primary)	Induced ghost images of primary; or rapid interleaving of saturated and unsaturated images; or a partially transparent coronagraph
4.9	Requirement: Astrometric precision 2 mas (~1/10 PSF) relative between primary and planet, for initial rejection of background objects. [SCRD §2.4.5.5] Goal: For measuring orbits of nearby field objects, want 0.5 mas to measure masses to 10%. Note this gives you mass of primary star.	 Ways to do this: a) Position stability requirement for star behind coronagraph (e.g., stable to 0.5 or 2 mas over 10 min.). b) Induced ghost image method. Needs a wire grating ahead of the coronagraph, or use DM to induce ghost images. (papers by Marois et al. 2006, ApJ, 647, 612; Sivaramakrishnan & Oppenheimer 2006, ApJ, 647, 620). 	Stability of distortion as required for 0.5 or 2 mas. Also want ghost images of primary (as for photometry #4.8) in order to locate it accurately relative to planet.

	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
	with Doppler measurements if that's practical for the brighter objects.		
4.10	Efficiency: 20 targets per night (30 goal) [SCRD §2.4.6.2]	AO system must be able to absolutely steer objects so they land on the coronagraph. This implies 5 mas reproducibility of field steering –or lock the tip/tilt to this accuracy relative to coronagraph field stop. Final requirement will depend on the details of the coronagraph (5 mas is consistent with GPI modeling).	
4.11	Observing wavelengths JHK bands (strong goal: Y and z for companion temperature characterization) [SCRD §2.4.4, §2.4.7]	Transmit JHK to science instrument. Goal: Y and z.	JHK filters. Methane band filters for rapid discrimination, Y and z, and/or a custom filter for early characterization.
4.12	Able to register and subtract PSFs (with wavelength, time, etc.) for post-processing to get rid of residual speckles. Subtraction needs to be sufficient enough to meet req. #4.4.	PSF knowledge and/ or stability to meet req. #4.4.	At least 1.5 x better than Nyquist sampled at J (goal Y)
4.13	Field of view: must see companions at 100 AU scales at 30 pc (goal 20 pc) [SCRD §2.4.5.3]		Field of view 3" radius (goal 5" radius)
4.14	Characterization of companion [SCRD §2.4.4]		 a) R ~150 IFU, sub-Nyquist sampling spectrograph, or if above not available, b) Nyquist spatial sampling IFU, R ~ 4,000, OH suppressing).

	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
			c) or narrow-band filters. All must be sensitive to $J = 22$ or 23 in ~3 hrs.
4.15	Sky Coverage >30%. (Survey several hundred Brown Dwarfs to H=15 of the ~1000 known targets.) [SCRD §2.4.7]	Technical field for low-order wavefront guidestar pickoff large enough to achieve 30% sky coverage at high galactic latitude. Ability to acquire and track 3 tip/tilt stars. (More lenient if parent star can be used as one of the three TT stars.) Or ability to measure everything sufficiently with a single H=15 TT star (pyramid sensors).	
4.16	The following observing preparation tools are required: guide star finder for high proper-motion stars		

6.1.2.5 Asteroid Companions Survey

The requirements for the *asteroid companions survey* science case are summarized in the following table (see also the Multiplicity of Minor Planets section of KAON 455 (Release 2.1)).

Table 5. A	Asteroid Com	panions Surv	vev driven	requirements

#	Science Performance	AO Derived	Instrument
	Requirement	Requirements	Requirements
5.1	The companion	The asteroid can be used as	Near-IR imager
	<i>sensitivity</i> shall be ⊗J	tip/tilt guidestar (proper	
	\geq 5.5 mag at 0.5"	motion of ≤ 50	
	separation for a $V \le 17$	arcsec/hour). The AO	
	asteroid (J≤15.9)	system has sufficient field	
	(asteroid size < 0.2 ")	of view for objects and for	
	with a proper motion of	their seeing disks (>3	
	\leq 50 arcsec/hour	arcsec, see # 5.6). The tip-	
	[ScRD §2.5.4.6]	tilt residual error will be	
		less than 10 mas (limited	
		by resolved primary) while	

		guiding on one V=17 (J =15.9) object with relative motion of 50 arcsec/hr (14 mas/sec). The AO system has sufficient Strehl to achieve this contrast ratio and sensitivity in 15 min exposure time. KAON 529 suggests that 170nm wavefront error will suffice.	
5.2	J-band relative photometric accuracy (between primary and companion) of 5% at 0.6" for $\otimes J = 3$ for a V ≤ 17 (J ≤ 15.9) asteroid (asteroid size < 0.2") with a proper motion of ≤ 50 arcsec/hour [ScRD §2.5.4.4]		Near- IR imager (no coronagraph because many asteroids will be resolved)
5.3	Target sample \geq 300 asteroids in \leq 4 yr. [SCRD §2.5.3 ¶4] Leads to requirement of \geq 25 targets per 11 hour night. [SCRD §2.5.5.2]	Assumes 3 good nights per year. Needs high observing efficiency: Able to slew to new target and complete the entire observation within 26 minutes on average.	
5.4	Observing wavelengths I through H bands, for optimum companion sensitivity [Source: KAON 529]. J band is best when seeing is good. H band could be used when seeing is poor. [SCRD 2.5.6.6]		Visible and IR imagers.
5.5	Spatial sampling ≤ Nyquist at each observing wavelength. [SCRD §2.5.6.4] Pixel		Spatial sampling \leq Nyquist at the observing wavelength. Pixel sampling of $\lambda/3D$ is

	sampling of $\lambda/3D$ optimal for photometry and astrometry [KAON 529].		optimal at J through H- bands, and $\lambda/2D$ at I through z-band for both photometry and astrometry [see KAON 529].
5.6	Field of view ≥ 3" diameter [SCRD §2.5.6.2]	AO system passes a >3" unvignetted field of view	Imager fields of view ≥ 3 "
5.7	The following observing preparation tools are required: guide star finder for asteroids too faint to use as the only TT star, PSF simulation as function of wavelength and seeing conditions.	Guide star finder tool. PSF simulation tool (predict energy and width of central core to within 10%).	
5.8	The following data products are required: Access to archive with proper identification in World Coordinate System (to within 1 arc sec or better) and with associated calibrated PSF.	Calibrated PSF capability. Accuracy requirement will be discussed in future releases of the SCRD document. Ability to collect AO telemetry data to support the required PSF calibration.	FITS header system capable of handling non- sidereal offsets in reporting object coordinates in the World Coordinate System to within 1 arc sec or better.
5.9	Observing requirements: Observer present either in person or via remote observing rooms, because real-time observing sequence determination is needed.	Classical observing mode or service mode with active observer participation. Remote observing capabilities must allow frequent real-time decisions by observer.	

6.1.2.6 Asteroid Companions Orbit Determination

The requirements for the *asteroid companions orbit determination* science case are summarized in the following table (see also the Multiplicity of Minor Planets section of KAON 455 (Release 2.1)).

#	Science Performance	AO Derived	Instrument
	Requirement	Requirements	Requirements
6.1	Companion sensitivity in the near-IR. Same as #5.1	Same as #5.1	Near-IR imager.
6.2	The companion sensitivity in the visible shall be $\otimes I \ge 7.5$ mag at 0.75" separation for a V ≤ 17 (I ≤ 16.1) asteroid (asteroid size < 0.2") with a proper motion of ≤ 50 arcsec/hour [ScRD §2.5.4.6]		Visible Imager. Optimum visible wavelength is I through z bands per KAON 529. Note that if the near-IR imager extends down to I band, a separate visible imager would not be needed for this science case.
6.3	<i>Photometric accuracy:</i> Same as #5.2	Same as #5.2	
6.4	I-band relative astrometric accuracy of ≤ 1.5 mas for a V \leq 17 (J ≤ 15.9) asteroid (asteroid size < 0.2") with a proper motion of \leq 50 arcsec/hour [SCRD §2.5.4.5]	Non-sidereal tracking accuracy sufficiently small to achieve I-band astrometric accuracy ≤ 1.5 mas for a V ≤ 17 (J ≤ 15.9) asteroid with a proper motion of ≤ 50 arcsec/hour	Uncalibrated detector distortion sufficiently small to achieve I-band astrometric accuracy ≤ 1.5 mas for a V ≤ 17 (J ≤ 15.9) asteroid
6.5	Target sample size of \geq 100 asteroids in \leq 3 years. [SCRD §2.5.3 ¶4] Leads to requirement of \geq 25 targets in an 11 hour night. [SCRD §2.5.5.2]	Needs high observing efficiency: Able to slew to new target and complete the entire observation within 25 minutes on average. Will generally only observe at one wavelength (the one that gives the best astrometric information).	
6.6	Observing wavelengths = I, z, J, H bands. (Note: R-band may become a future requirement if R-band		Imager(s) covering range I, z, J, H bands. Note that if the near-IR imager extends down to I band, a separate visible imager would not

Table 6. Asteroid Companions Orbit Determination driven requirements

	Strehl > 15%)		be needed for this science
	[SCRD §2.5.6.6]		case.
6.7	Spatial sampling same		Same as #5.5
	as #5.5		
6.8	Same as #5.6	Same as #5.6	Same as #5.6
6.9	Same as #5.7	Same as #5.7	
6.10	Same as #5.8	See #5.8	
6.11	Observing	Observing model needs to	
	requirements: 7 epochs	accommodate split nights	
	per target	or some level of flexibility.	
	[SCRD §2.5.3 ¶4]		

6.1.2.7 QSO Host Galaxies

The requirements for the *QSO Host Galaxy* science case are summarized in the following table (see also the QSO Host Galaxy section of KAON 455 (Release 2.1)). The typical QSO that we are considering is at redshift 2. Typical galaxy sizes are 0.5 to 2 arc sec. Contrast ratios between the central point source and a galaxy region $\frac{1}{2}$ arc sec away range from 50 to 200 or more. The scientific goals are the following: 1) measure colors and magnitudes for the point source; 2) measure morphology and surface brightness profile for the galaxy; 3) obtain spectrum of point source; 4) obtain spatially resolved spectrum of galaxy in order to study its kinematics and stellar populations. In order to accomplish these things, accurate PSF subtraction will be crucial.

Table 7. QSO Host galaxies derived requirements

Future releases of the SCRD will quantify the requirements for PSF subtraction and stability, required spatial resolution, and coronagraph design. The following table outlines the issues and should be viewed as a place-holder.

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
7.1	1 1	, .	
7.2	Required wavelength range: 0.85 – 2.4 microns		Near IR IFU spectrograph; near IR and visible imagers.
7.3	Required spatial resolution will be discussed in a future release of this document. Will be determined by considerations of PSF	point source as one of the tip-	PSF must be oversampled in order to achieve required subtraction accuracy. Quantitative requirements will be discussed in future releases of the SCRD.

	subtraction accuracy.		
	Hence required		
	resolution will be higher		
	than in the high-z galaxy		
	science case.		
7.4	Photometric accuracy and PSF knowledge required for subtracting the central point source in order to characterize the host galaxy must be adequate to obtain host galaxy colors to 20% for a contrast ratio of up to 200 at a distance of ½ arc sec from the point source.	Requires excellent PSF stability and knowledge; future releases of the SCRD will discuss the quantitative requirements. Will have implications for required AO wavefront error, AO stability, and required signal to noise ratio.	Required calibration stability and accuracy, zero-point stability and knowledge, quality of flat-fielding will be discussed quantitatively in future releases of the SCRD. PSF must be oversampled in order to achieve required subtraction accuracy. Quantitative requirements will be discussed in future releases of the SCRD.
7.5	SNR for spatially resolved spectroscopy of the host galaxy will be determined by accuracy of PSF subtraction and by minimization of scattered light from the central point source.		May benefit from specialized coronagraph design to block light from central point source.
7.6	Required observation planning tools (e.g. guide stars); PSF simulation tools to plan for whether PSF subtraction will be good enough to see the host galaxy		
7.7	Required data reduction pipeline for IFU		

6.1.2.8 Gravitational Lensing

The requirements for the *gravitational lensing* science case are summarized in the following four tables (see the Gravitational Lensing section of KAON 455 (Release 2.1)).

Table 8a. Imaging studies of distant galaxies lensed by galaxies

Goal: screen potential lensed-galaxy targets for more detailed and lengthy spectroscopic study.

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement	Ro Derived Requirements	instrument Requirements
8a.1	Sensitivity: SNR \geq 3 per pixel (100 per source) for a z = 1 - 2 galaxy in an integration time \leq 1/2 hour.	Background due to emissivity less than 30% of unattenuated (sky + tel).	
8a.2	Target sample size of \geq 200 galaxies, with density on the sky of 10 per square degree. Survey time ~ 3 years.	Overhead less than 10 min between targets.	10 per square degree implies that you will only be able to observe one target at a time – average of 1 in every ~19'x19' patch.
8a.3	Observing wavelengths = I through K (to 2.4 µm). Emphasis is on shorter wavelengths. Thermal part of K band less important. [SCRD §3.2.6.5]		
8a.4	Spatial resolution better than 50 mas at J band, for 30% sky coverage.	Need a good model of the PSF or a simultaneous image of a PSF star. Need a figure of merit for goodness of the PSF: how well the model fits the "real" PSF in two dimensions. Will quantify in future releases of the SCRD.	Nyquist sampling of pixels at each wavelength.
8a.5	Field of view > 15" diameter for survey. Bigger is better. Some degradation between center and edge of field is tolerable. Will quantify in future releases of the SCRD. [SCRD §3.2.6.2]		
8a.6	Relative photometry to \leq 0.1 mag for observations during a single night [SCRD §3.2.4.4]		
8a.7	Absolute photometry ≤ 0.3 mag [SCRD §3.2.4.4]		
8a.8	Sky coverage at least 30%		

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement	No Derived Requirements	instrument requirements
	with enclosed energy radius within 0.07 arc sec at H or K. [SCRD §3.2.4.9]		
8a.9	Dithering and offset considerations: 1) Initially should be able to center a galaxy to $\leq 10\%$ of science field of view. 2) Should know the relative position of the galaxy after a dither to $\leq 20\%$ of pixel size.		
8a.10	The following observing preparation tools are required: PSF simulation and exposure time calculator		
8a.11	The following data products are required: accurate distortion map (to 1% of the size of the galaxy, or 0.01 arc sec rms)		

Table 8b. Spectroscopic studies of distant galaxies lensed by galaxies

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
8b.1	SNR ≥ 10 for a z = 1 - 2 galaxy in an integration time \leq 3 hours for a Gaussian width 20 km/sec Gaussian width (50 km/sec FWHM) with a spatial resolution of 50 mas	less than 30% of unattenuated	R ~ 5000 (or whatever is needed to achieve 20 km/sec sigma on these targets)
8b.2	Target sample size of \geq 50 galaxies, with density on the sky of 10 per square degree. Survey time ~ 3 years.	plus preferably one to monitor the PSF and one to monitor the	

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
		other ways to monitor the PSF and the sky background.	
8b.3	Observing wavelengths = J, H and K (to 2.4 μ m) required, with emphasis on J band. Goal: also use z and I bands. [SCRD §3.2.6.5]		
8b.4	Spectral resolution: whatever is needed to get 20 km/sec radial velocity Gaussian sigma		
8b.5	Spatial resolution 50 mas at J band		
8b.6	Velocity determined to ≤ 20 km/sec Gaussian sigma for spatial resolutions of 50 mas	Required level of PSF knowledge will be assessed in future releases of the SCRD.	
8b.7	Field of view: Typical lens is 2 to 6 arc sec diameter. For IFU fields of view smaller than the lens size, one would use mosaicing. Desirable to take in blank sky in addition to the lens (if possible). Requirement: FOV \geq 3" diameter. Goal: \geq 4" diameter. [SCRD §3.2.6.2]		Requirement: IFU FOV ≥ 3" diameter. Goal: ≥ 4" diameter.
8b.8	Simultaneous sky background measurements		Preferably sky determination within the field of view of the IFU. Less preferably, through use of offsetting to sky or via a separate IFU looking at sky.
8b.9	Relative photometry to $\leq 0.1 \text{ mag}$ for observations during a single night [SCRD §3.2.4.4]		

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement		
8b.10	Absolute photometry \leq		
	0.3 mag		
	[SCRD §3.2.4.4]		
8b.11	Sky coverage at least		
	30% with enclosed		
	energy radius within 50		
	mas at J band.		
	[SCRD §3.2.4.9]		
8b.12	Dithering and offset		
	considerations: 1)		
	Initially should be able		
	to center a galaxy to \leq		
	10% of science field of		
	view. 2) Should know		
	the relative position of		
	the galaxy after a dither		
	to $\leq 20\%$ of spaxel size.		
8b.13	Target drift should be \leq		
	10% of spaxel size in 1		
	hr		
8b.14	The following observing		
	preparation tools are		
	required: PSF		
	simulation and exposure		
	time calculator		
8b.15	The following data		
50.10	products are required:		
	calibrated spectral data		
	cube		
	cube		

Table 9a. Imaging studies of distant galaxies lensed by clusters

Table 9b. Spectroscopic studies of distant galaxies lensed by clusters

6.1.2.9 Astrometry Science in Sparse Fields

Text and tables will be included in a future release of the SRD. This science case will be a driver for low and/or very well calibrated instrument distortions, compensation for atmospheric differential refraction, and good temperature control of the AO system.

Table 10. Astrometry Science in Sparse Fields derived requirements

6.1.2.10 Resolved Stellar Populations in Crowded Fields

Text and tables will be included in a future release of the SRD.

Table 11. Resolved Stellar Populations in Crowded Fields derived requirements

6.1.2.11 Debris Disks

Text and tables will be included in a future release of the SRD. This science case will be a driver for coronagraph design.

Table 12. Debris Disks derived requirements

6.1.2.12 Young Stellar Objects

Text and tables will be included in a future release of the SRD. This science case may be a driver towards having an infrared wavefront sensor.

Table 13. Young Stellar Objects derived requirements

6.1.2.13 Asteroid Size, Shape, and Composition

The requirements for the *asteroid size and shape* (characterize surface and orbital parameters) science case are summarized in the following table. In addition to the requirement of a high resolution visible imager, the slope of the visible spectrum is needed to determine the asteroid age or surface type. This case requires a spectral resolution of $R \sim 100$ for $0.7 - 1.0 \mu m$ wavelength with Nyquist sampling. If $R \sim 100$ is not available, some of this work can be achieved either with multiple narrow-band filters or with a higher-resolution spectrograph.

#	Science Performance	AO Derived Requirements	Instrument Requirements
	Requirement		
14.1	Target sample size of \geq	#6.5 is stricter requirement.	
	300 asteroids in \leq 3yrs		
	years. < 10 targets in an		
	11 hour night		
	[SCRD §3.6.3]		

Table 14. Asteroid size, shape, and composition derived requirements

			1
14.2	Observing wavelengths	AO system must pass 0.7 to	Imagers (R through J band)
	0.7 – 1.0 μm. Strong	1.0 micron wavelengths	with narrow-band filters or
	preference for R band		slit spectrograph (R~100), or
	because optimum to		possibly visible IFU
	obtain shape of asteroid.		(R~100).
	[SCRD §3.6.6.6]		
14.3	Spatial sampling same	Same as #5.5	Same as #5.5
	as #5.5		
14.4	Field of view ≥ 3 "	Same as #6.8	Same as #6.8
	diameter		
	[SCRD §3.6.6.2]		
14.5	Ability to measure the		
	spectral slope with R \sim		
	100 at 0.85-1.0 μm		
	[SCRD §3.6.6.7]		
14.6	Ability to measure the		Spectroscopic imaging at
	SO_2 frost bands at		R~1000 to 5000 in the H and
	R=1000 (R=5000 is		K bands.
	acceptable) at 1.98 and		
	2.12 µm, crystalline ice		
	band at 1.65 microns.		
	[SCRD §3.6.6.7]		
14.7	Same as #5.7	Same as #5.7	
14.8	Same as #5.8	Same as #5.8	
	(1214 Car C	ant Dlan atg	

6.1.2.14 Gas Giant Planets

The requirements for the *Gas Giants* science case (all three goals) are summarized in the following table (see the section on Characterization of Gas Giant Planets of KAON 455 (Release 2.1)).

Table 15. Gas Giants derived requirements

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
15.1	Capability of tracking a moving target with rate up \leq 50 arcseconds per hour (14 mas/second) [SCRD §3.7.5.1]		
15.2	Capability of using at least one tip-tilt star	Motion of low order wavefront sensor to track	

r	T		
	that is moving with respect to the (moving) target planet. (For example, a moon of Jupiter or Saturn) [SCRD §3.7.5.1]	tip-tilt star.	
15.3	Ability to acquire Io within 5" of Jupiter and to track it to within 2.5" of Jupiter. Note that this is a goal but perhaps not a rigid requirement: we know we can acquire within 10" today.	May require either a diaphragm or a filter to attenuate the light from Jupiter.	See AO derived requirement.
15.4	<i>Sensitivity:</i> comparable to the current Keck system		
15.5	Absolute Photometric accuracy: comparable to the current Keck system (≤ 0.05 mag) [SCRD §3.7.4.4]	PSF knowledge	Detector flat-fielding requirements, linearity, etc will flow down from required photometric accuracy.
15.6	<i>Targets</i> : Jupiter and Saturn systems, with special focus on Io and Titan	AO system capable of working in the presence of scattered light from nearby extended objects; NGS option for bright moons	Jupiter & Saturn: near-IR imager from 0.8-2.4 µm Io: IFU 0.8-2.4 µ Titan: IFU 0.8-2.4 µm
15.7	<i>Observing wavelengths</i> I, z/Y, J, H, K [SCRD §3.7.6.5]	AO system must pass these wavelengths to science instruments.	Near- IR imager and IFU spectrometer, $\lambda = 0.8-2.4$ µm
15.8	<i>Spatial sampling:</i> for imager, ≤ Nyquist at the observing wavelength		For imager, spatial sampling \leq Nyquist at the observing wavelength. For IFU, spatial sampling $\sim \lambda/D$.
15.9	Imager field of view \geq 30" diameter at K band, \geq 20" diameter at J and H bands (goal 30") [SCRD §3.7.6.1]	AO system passes a >30" unvignetted field of view	Imager field of view ≥ 30 " diameter at K band, ≥ 20 " diameter at J and H bands (goal 30")
15.10	IFU field of view as		If IFU FOV is only a few

	1	
	large as possible, up to	arc sec, desirable to be able
	15" (Jupiter's diameter	to place different IFUs as
	is 30", Great Red Spot	close together as possible.
	is 13" diameter)	No firm numerical
	[SCRD §3.7.6.1]	requirement.
15.11	Moons are very bright:	Either need to use neutral
	do not allow saturation.	density filters, or have a
	Typical brightness: 5	fast shutter, or have a
	mag per square arc sec.	detector with large wells or
		very short exposure times
		(and low read noise).
		Note: these observations
		will have high overhead.
15.12	The following	<u> </u>
	observing preparation	
	tools are required: PSF	
	simulation, target	
	ephemeris, exposure	
	time calculator to	
	enable choice of ND	
	filter and exposure	
	time.	
15.13	The following data	
15.15	products are required:	
	Calibrated PSF.	
15.14	Observing	
13.14	requirements: Io and	
	Titan are time domain	
	targets; Io requires ≤ 1 hr notification of	
	volcano activity.	
	Typical timescales for	
	clouds on Titan are of	
	order days to weeks.	

6.1.2.15 Ice Giants: Uranus and Neptune

The requirements for the *Ice Giants* science case (all four goals) are summarized in the following table (see the section on Characterization of Ice Giant Planets of KAON 455 (Release 2.1)).

Table 16. Ice Giants derived requirements

#	Science Performance	AO Derived	Instrument
---	---------------------	------------	------------

	Requirement	Requirements	Requirements
16.0	Capability of tracking a moving target with rate up \leq 5.0 arcseconds per hour (1.4 mas/sec) [SCRD §3.8.5.1]	 The planet can be used as tip/tilt guidestar (proper motion of ≤ 5.0 arcsec/hour). The AO system requires sufficient field of view for planets and for their seeing disks (>5 arcsec). The tip-tilt residual error will be less than 10 mas (limited by resolved primary) while guiding on one planet at 5.0 arcsec/hr (1.4 mas/sec). 	
16.1	<i>Sensitivity:</i> comparable to the current Keck system		Near-IR imager, 0.8 - 2.4 µm
16.2	Photometric accuracy: comparable to the current Keck system [SCRD §3.8.4.5]		Near- IR imager
16.3	<i>Targets:</i> Uranus and Neptune systems. Observations of atmospheric vertical structure will require a near-IR IFU, to be described in more detail in a future release of the SCRD.	AO system (both LGS and NGS) capable of correcting on extended objects. • Uranus = 3.4 arcsec • Neptune = 2.3 arcsec	Near-IR imager, 0.8 – 2.4 µm, Near-IR IFU 1.0 – 2.4 µm
16.4	Observing wavelengths: J, H, K [SCRD §3.8.6.5]		Near- IR imager, Near-IR IFU
16.5	Spatial sampling: \leq Nyquist at theobserving wavelengths		Spatial sampling ≤ Nyquist at the observing wavelength
16.6	<i>Imager field of view:</i> ≥ 15" diameter [SCRD §3.8.6.2]	AO system passes a >15" unvignetted field of view	Imager fields of view \geq 15"
16.7	IFU field of view: as large as possible, up to ≥ 15 " diameter [SCRD §3.8.6.2]		If IFU FOV is only a few arc sec, desirable to be able to place different IFUs as close together as possible.

		No firm numerical
1.6.0		requirement.
16.8	Spectral resolution: R	Near-IR IFU with R~3000
	\geq 3000 to resolve	
	methane absorption	
	features.	
	[SCRD §3.8.6.6]	
16.9	Observing	
	requirements: one run	
	per semester with at	
	least 4 contiguous	
	(partial) nights; both	
	targets can be studied	
	during one run	
16.10	The following	
	observing preparation	
	tools are required: PSF	
	simulation, target	
	ephemeris, exposure	
	time calculator to	
	enable choice of ND	
	filter and exposure	
	time.	
16.11	The following data	
	products are required:	
	Calibrated PSF.	
16.12	Observing	
	requirements: some	
	science goals would be	
	well suited to queue or	
	service observing	
	modes	
	moues	

6.1.2.16 Other: Backup Science

This will primarily be NGS science that can be done when the lasers cannot be propagated (e.g. due to cirrus), or less-demanding examples of LGS science that can be done when the laser power available is lower than nominal due to hardware problems. The derived requirements for Backup Science will largely involve science preparation and operations issues.

Table 17. Backup Science Observing Modes: NGS

#	Science Performance	AO Derived	Instrument
	Requirement	Requirements	Requirements
17.1	<i>NGS mode.</i> NGS as a backup observing mode for when conditions restrict propagation of the lasers.		
17.2	Sky coverage ≥5% to ensure at least one- sixth of the off-axis LGS targets will still be observable if it is necessary to go to an NGS backup mode.	Assuming b=30°, For 5% sky coverage: • R=14 mag guide star with 60" diameter field of regard (FOR) • R=15 mag guide star with 45" diameter FOR [Keck Observatory Report No. 208, p. 4-100]	
17.3	Capability to switch between NGS and LGS modes in ≤ 15 minutes (not including target acquisition) to enable flexibility if conditions change.		
17.4	Sensitivity. SNR ≥ 10 for a z = 2.6 galaxy in an integration time ≤ 3 hours for a spectral resolution R = 3500 with a spatial resolution of 50 mas	Sufficiently high throughput and low emissivity of the AO system science path to achieve this sensitivity. Background due to emissivity less than 30% of unattenuated (sky + tel).	
17.5	Observing wavelengths = J, H and K (to 2.4 µm)	AO system must transmit J, H, and K bands	Infrared single IFU and imager designed for J, H, and K.
17.6	Spectral resolution = 3000 to 4000		Spectral resolution of >3000 in IFU
17.7	<i>Imaging:</i> Nyquist sampled at H-band		Nyquist sampled IR imager (at H-band)
17.8	Encircled energy 50%	Wavefront error	Optimum spaxel size will

#	Science Performance	AO Derived	Instrument
	Requirement	Requirements	Requirements
	in 70 mas for a bright NGS guide star within 10 arc sec	sufficiently low (~170 nm) to achieve the stated requirement in J, H, and K bands.	be determined during a detailed study of the IFU instrument.
17.9	If a new instrument: IFU field of view ≥ 1 " x 3" to allow simultaneous background measurements while observing a 1" galaxy. OSIRIS FOV would be adequate.	Narrow relay passes 1"x3" field	If a new instrument: IFU field of view ≥ 1 " x 3" to allow simultaneous background measurements while observing a 1" galaxy. OSIRIS FOV would be adequate.
17.10	Imager FOV ≥ 10 " x 10" for galactic center and gravitational lensing science		Imager FOV ≥ 10 " x 10"
17.11	Relative photometry to \leq 5% for observations during a single night, provided the night is photometric	Knowledge of ensquared energy in IFU spaxel to 5%.	
17.12	Should be able to initially center a galaxy to $\leq 10\%$ of science field of view		
17.13	Should know the relative position of the galaxy to $\leq 20\%$ of spaxel or pixel size		
17.14	Target drift should be $\leq 10\%$ of spaxel size in 1 hr		
17.15	The following observing preparation tools are required: NGS guide star finding tool; PSF simulation and exposure time		

#	Science Performance Requirement	AO Derived Requirements	Instrument Requirements
	calculator		
17.16	The following data products are required: calibrated spectral data cube		

6.1.2.17 **Atmospheric Seeing Assumptions**

The atmosphere and telescope parameters assumed for achieving these numbers are summarized below.

The NGAO system shall provide its nominal performance when the atmospheric seeing is characterized by the following conditions. An evaluation of existing seeing data has been performed (KAON 303). The KAON 303 profile was modified to include a stronger ground layer and represent the median values for the seeing parameters (50th percentile). The resultant baseline median C_n^2 profile is presented in Table 1. From this model we calculate the following turbulence parameters for 0.5 µm wavelength (note that r_0 , θ_0 and $1/f_G$ increase as $\lambda^{6/5}$):

•	Fried's seeing parameter	$r_0 = 16 \text{ cm}$
•	Isoplanatic angle	$\theta_0 = 2.7$ arcsec
•	Turbulence characteristic frequency	$f_G = 39 Hz$

In addition, we have adopted a standard deviation for r_0 of $\sigma_{r0} = 3$ cm with a characteristic evolution time of t = 3 min.

Table 17a. NC	Table 17a. NGAO baseline Mauna Kea C _n ² Profile			
Altitude (km)	Fractional C	Wind Speed (m/s)		
0.0	0.471	6.7		
2.1	0.184	13.9		
4.1	0.107	20.8		
6.5	0.085	29.0		
9.0	0.038	29.0		
12.0	0.093	29.0		
14.8	0.023	29.0		

6.1.3 Science Instrument Requirements

The NGAO system must be capable of supporting the following science instruments (in rough order of priority), based on the NGAO proposal and SCRD:

- Visible imager. Wavelength range = 0.6 to 1.1 μ m. Field of view = 20"x20". Image sampling = 6 mas pixels.
- Near-IR imager. Wavelength range = 1.0 to $2.45 \mu m$. Field of view = $20^{\circ}x20^{\circ}$. Image sampling = 10 mas.
- Deployable near-IR Integral Field Unit (IFU). Wavelength range = 1.0 to $2.45 \mu m$. Field of Regard = 1.5'x1.5' with 3x3.4'' fields of view for each IFU. Image sampling = 100 mas.
- Near-IR IFU. Wavelength range = 1.0 to 2.45 μm. Field of view from 2"x1.25" to 16"x5". Image sampling = 20 to 100 mas.
- Visible IFU. Wavelength range = 0.6 to 1.1 μ m. Field of view from 1.2"x1.36" to 12"x6.8". Image sampling = 20 to 100 mas.
- Future science instruments from the above list or completely new instruments. These future science instruments would need to be designed so as to fit at a movable port or to replace a fixed first generation instrument.

#	Science Instrument	Discussion	Based on
	Requirement		
18.1	Visible Imager: the field		SCRD §2.1.6.2, §2.5:
	of view shall be ≥ 2		asteroid shapes and
	arcsec diameter		companions
18.2	NIR Imager: the field of		SCRD §2.1.6.2, §2.5: Io,
	view shall be ≥ 2 arcsec		Titan, debris disks and QSO
			host galaxies
18.3	NIR Imager: the field the		SCRD §2.2.5.3: planets
	field of view shall be ≥ 3		around low mass stars
	arcsec		
18.4	NIR Imager: the field the		SCRD §2.3.11: Galactic
	field of view shall be \geq		Center
	10 x 10 arcsec		
18.5	NIR Imager: shall		SCRD §2.2.4, RollUp_v1 G5
	provide a coronagraph		: planets around low mass
			stars, debris disks and QSO
			host galaxies
18.6	NIR Imager: wavelength		SCRD §2.2.4, RollUp_v1 B5:
	coverage shall be at least		planets around low mass stars
	0.9 to 2.4 μm		
18.7	NIR IFU: field of view	Only 1" is required for the	SCRD §2.1.6.2: Asteroids,
	shall be ≥ 2 arcsec	Galactic Center	Titan
18.8	Visible IFU: field of view		SCRD §2.5: Nearby AGNs

Table 18. Science Instrument Requirements

	shall be ≥ 2 arcsec		
18.9	Visible IFU: spectral resolution shall be R ~ 4000	What range is acceptable? Note: Asteroid size and shape prefers R=1000 but tolerates 4000 [SCRD §2.1.6.6]	SCRD §2.3.6: Galactic center radial velocity, Nearby AGNs
18.10	NIR deployable IFU: field of view shall be 1"x3" arcsec	1"x3" or larger required for high z galaxies. (see #9.8opt for an option to this) Galactic Center needs a dIFU.	SCRD §2.4.5.1: High z galaxies, gravitational lensing
18.11	NIR deployable Imager: field of view shall be ≥ 2 arcsec		SCRD §2.4.5.1:: high z galaxies

It is TBD whether the NGAO system will be required to support any of the existing science instruments (NIRC2, NIRSPEC or OSIRIS), however we are baselining a requirement that OSIRIS be fed by the narrow field (high Strehl) NGAO optical feed. The Interferometer and 'OHANA requirements are discussed in section 6.2.4.

It is a goal for NGAO to support visitor science instruments.

6.1.4 Science Operations Requirements

The top-level science operations goals for the NGAO system including the science instruments are the following (see KAON 476):

- 1. Science-grade quality of the raw data (i.e., image quality and completeness of observations).
- 2. Science-grade quality of the data products (i.e., photometry, astrometry, etc.).
- 3. Science impact from a given data product (i.e., number of publications and citations).

The requirements that support these top-level goals are defined in the following tables.

6.1.4.1 Science-grade quality of the raw data

Table 19. Science Operations Requirements, Raw Data Quality

#	Science Operations	Discussion	Based on
	Requirement		
19.1	Provide an extensive set of tools for instrument performance simulation and observing preparations	The requirement is that an observer should be able to prepare the observing sequences and simulate the science performance in terms of SNR, EE, SR and total observing time given a set of observing parameters and observing conditions. The suite of functions from the planning tools includes: resolve target, check observability, find suitable NGS, select and simulate instrument setup, simulate AO and instrument performance for various parameters, simulate observing sequence and efficiency, exposure time calculator, save target information, save observing setup. The tools should be designed with the end user in mind: user friendly, configurable, stand- alone and available at the observing site.	Required by most Science Cases. See e.g., #1.7, #6.16, #12.9. KAON 476 Observing Models Study, section 6.2.1.
19.2	Document the instrument performance at an appropriate level to support observing preparations	This is both a development and operations requirement, since a continued effort will be required to characterize, monitor and document the performance. This should be based on an extensive science verification phase.	KAON 476, section 6.2.1 and 6.2.3

#	Science Operations	Discussion	Based on
	Requirement		
19.3	Provide a semi-real-time level 1 data reduction pipeline for each instrument to at minimum perform background subtraction, cosmetic correction and shift-and- add of images.	This is an operation requirement to support # 14.2 and # 14.4 for any science instrument as well as a science requirements for IFU instruments.	KAON 476, section 6.2.1
19.4	Provide semi-real-time tools to perform an assessment of the image quality on the level 1 data including SNR, Strehl and encircled energy.	It is required that the observing support team as well as the observer have the tools to check the image performance at the focal plane of the science instrument.	KAON 476, section 6.2.1
19.5	Provide a science operations paradigm that optimizes the completion rate for a significant fraction (TBD) of observing programs.	It is ** not required ** to develop a plan for queue scheduling and service observing. Yet, it is required to provide the necessary tools to 1) simulate, prepare and run the observing sequences; 2) assess the science-grade quality of the data on-the-fly and subsequently 3) decide (or not) to switch to a different observing sequence, a different observing program either by the same observer or not. Particularly, a goal is to develop a science operations paradigm that allows for (and encourages?) flexible scheduling per TAC, to optimize the match between required observing conditions for a science program and real conditions.	KAON 476, section 6.2.1

6.1.4.2 Science-grade quality of the data products

Table 20. Science Operations Requirements, Data Products Quality

#	Science Operations Requirement	Discussion	Based on
20.1	Provide the required calibration methods and tools to achieve the astrometry performance requirements	This requires four important steps: 1) the tools and methods to calibrate for the astrometry are specified and designed, 2) the tools and methods are implemented, demonstrated, and optimized during the science engineering and verification phase, 3) the tools and methods are handed over to the observing support team, and 4) the performance is regularly documented and posted using the tools and methods.	KAON 476, section 6.2.2
20.2	Provide the required calibration methods and tools to achieve the photometry performance requirements	Same as above	KAON 476, section 6.2.2
20.3	Provide the required calibration methods and tools to achieve the PSF characterization requirements	This is in support of # 15.1, 15.2. as well as 14.1 to 3;	KAON 476, section 6.2.2

6.1.4.3 Science impact from a given data product

Table 21. Science Operations Requirements, Archiving and Retrieval

#	Science Operations	Discussion	Based on
	Requirement		
20.1	Develop a plan for data archival	Data archival is critical for 1) science programs such as proper motion studies, transient phenomena (GRB, SN, Titan, etc), 2) the semi- automated monitoring of instrument performance and 3) the long-term visibility of Keck NGAO (either from direct science impact, or the use of the archive by the general public, e.g. CADC, google sky). It's very likely that the archive may not be supported at first, but it's essential to develop a plan for it and understand the requirements for the FITS information, the data storage format, etc	Science Case Requirement #1.8 KAON 476, section 6.2.3
20.2	Develop a plan for data retrieval from the data archive	Same as above	KAON 476, section 6.2.3
20.3	Document the on-sky science performance of each science instrument with NGAO		KAON 476, section 6.2.3

6.2 **Observatory Overall Requirements**

6.2.1 **Purpose and Objectives**

The purpose of the overall requirements section is to convey requirements that apply generally to the overall instrument and its accessories based on the Observatory's requirements.

Note that the Observatory's standard requirements for all new instrumentation are summarized in the Instrumentation Baseline Requirements Document. Additional Observatory requirements specific to NGAO are listed in the following sections.

6.2.2 Facility Requirements

The following are requirements imposed by the nature of the existing facility.

#	Facility Requirement	Discussion	Based on
21.1	The NGAO system must be facility-class	Facility-class has many implications on safety, operability, reliability, maintainability, lifetime, documentation, configuration management, etc.	KAON 572 (Baseline Instrument Requirements), KAON 463 and 476
21.2	The NGAO system & science instruments should be located on the Nasmyth platform of one of the Keck telescopes	The Keck telescope foci and Nasmyth deck storage locations are already heavily utilized. The current AO systems occupy the left Nasmyth platform locations of both telescopes. HIRES occupies the right Nasmyth on Keck I while DEIMOS and NIRSPEC share the right Nasmyth on Keck II. The Cassegrain foci are occupied by LRIS (and MOSFIRE in the future) on Keck I and by ESI on Keck II. The bent Cassegrain ports are believed to have inadequate space and weight capacities. The prime focus could potentially be available but there would be many constraints on an	System architecture decision by NGAO engineering team (see KAON 499)

Table 21. Facility Requirements

		instrument at this location. The most viable option is in the location of an existing AO system. Alternatives would be to decommission HIRES or for the existing AO system and the NGAO system to be	
		able to share the same platform.	
21.3	The NGAO system should accommodate the entire Keck pupil	The Keck primary has a maximum edge-to-edge diameter of 10.949 m.	System architecture decision by NGAO engineering team (see KAON 499)
21.4	If the existing f/15 or f/40 secondary mirrors are used then the NGAO system will be constrained by the resultant f/#, focal plane and pupil location	Both telescopes have f/15 secondary mirrors, as well as chopping secondary units that can accommodate f/25 and f/40 secondary mirrors. The choice of f/15 secondary mirrors for the current AO systems was largely driven by the resultant reduced size of the AO systems and the availability of PCS (Phasing Camera System) via a rotation of the tertiary mirror. The inability of the current systems to chop at the telescope pupil has been a limitation for thermal IR observations. The focal length of the telescope with the f/15 secondary mirror is 150 m. The 10.949 m primary corresponds to an f/13.66 beam with an exit pupil diameter of 1.460 m located 19.948 m in front of the focal plane.	Engineering decision to avoid the cost of constructing another secondary

21.5	The NGAO facility must	This requirement is intended	KAON 572 Baseline
	not compromise the	to ensure that the NGAO	Instrument Requirements, e.g.
	performance of a non-	facility, when not in use, does	§8.2.2.2, §9.3.2.1
	NGAO instrument when	not introduce vibrations or	
	that instrument is being	stray light that might impact	
	used for science or	the performance of another	
	engineering	science instrument or an	
		engineering instrument such	
		as PCS.	
21.6	The NGAO facility must	The NGAO system should not	KAON 572 Baseline
	not compromise the	impact the dynamic	Instrument Requirements
	performance of the	performance of the telescope	_
	telescope when the	through vibrations or different	
	telescope is used for non-	telescope dynamics.	
	NGAO observations.		
		If NGAO hardware is to be	
		mounted in the top-end then it	
		must be	
		designed/implemented not to	
		compromise the secondary	
		mirror performance.	
21.7	The NGAO facility /	The Alt-Az telescope design	KAON 455 Science Case
	science instrument	requires compensation for	Requirements Document
	combination should	field rotation in order to keep	(various science case
	provide compensation for	the science field fixed on the	observing modes)
	science field rotation	science instrument.	
21.8	The NGAO facility /	The Alt-Az telescope design	KAON 455 Science Case
	science instrument	and the irregular shape of the	Requirements Document,
	combination should	Keck primary mirror require	high contrast imaging mode
	provide compensation for	that NGAO system provide	§2.1.4.4
	pupil rotation	appropriate compensation for	
		pupil rotation. Examples: The	
		existing Keck AO system	
		updates the reconstructor to	
		compensate for pupil	
		orientation. The NIRC2	
		coronagraph mask rotates to	
		match the rotating pupil.	

		l	г
21.9	The NGAO facility	The Alt-Az telescope design	Practical requirement in order
	should provide	will cause the laser projector	to accommodate LGS
	compensation for LGS	(and the resultant LGS	wavefront sensors' Nasymth
	projector rotation	asterism) to rotate with respect	location (see requirement
		to the Nasmyth platform.	21.2)
		Compensation will be required	
		to maintain the off-axis LGS	
		on the corresponding	
		wavefront sensor.	
21.10	The NGAO facility	For example, access to the	KAON 572 Baseline
	should accommodate	elevation journal, elevation	Instrument Requirements,
	access for routine	wrap, bent Cassegrain	section 15
	maintenance of the	platform and stairwell to the	
	telescope	mirror cell	
21.11	The NGAO facility		KAON 463 and 476
	should not routinely		(Observing model studies)
	require more than 30		
	minutes of daytime		
	telescope restriction on		
	an NGAO science night.		
21.12	The NGAO system must	See the conditions specified in	KAON 572 Baseline
	operate within	the Instrument Baseline	Instrument Requirements,
	specifications under the	Requirements Document.	§6.2.1.2.3
	normal summit		
	temperature and		
	humidity conditions		

6.2.3 Telescope and Dome Environment Requirements:

The NGAO system shall provide its nominal performance when the telescope and dome environment can be characterized by the following conditions.

#	Observatory Instrument Requirement	Discussion	Based on
22.1	Dome & telescope seeing less than 0.1"	The Keck dome and telescope environment degrades the intrinsic seeing by less than 0.1 arcsec, in quadrature, as measured from the effective increase in image FWHM (this change corresponds to decreasing the r ₀ parameter from 18 cm to 17.8 cm).	KAON482, Keck Telescope Wavefront Error trade study, and references therin
22.2	The phasing errors will be 10 nm rms wavefront or less before NGAO correction.	Standard performance is 60 nm rms currently. Currently available algorithms have demonstrated 10 nm rms. This error interacts with the segment figure error discussed next. We may want to place an error on the overall telescope wavefront figure PSD instead.	KAON482, Keck Telescope Wavefront Error trade study, and references therin
22.3	Segment figure : The wavefront error of the 36 segments will be less than 80 nm rms wavefront after warping, but before NGAO correction.	This number is an average over all 36 segments segment. As a goal the wavefront error shall be 80 nm rms over each segment.	KAON482, Keck Telescope Wavefront Error trade study, and references therin
22.4	Stacking: The segment stacking errors will contribute less than 20 nm rms wavefront to the overall wavefront error before NGAO correction.		KAON482, Keck Telescope Wavefront Error trade study, and references therin

Table 22. Telescope and Dome Environment Requirements

22.5	Line of sight jitter: The	This vibration is known to	KAON482, Keck Telescope
	aggregate line of sight	currently be largely dominated	Wavefront Error trade study,
	jitter (wavefront tip and	by a narrow resonance at ~ 29	and references therin
	5 1	5	and references therm
	tilt) resulting from motion	Hz.	
	of the primary, secondary		
	and tertiary mirrors will		
	be less than 0.020 arc		
	seconds rms before		
	correction by the NGAO.		
22.6	Segment motion: The	This vibration is known to	KAON482, Keck Telescope
	motion of each segment	currently be largely in a	Wavefront Error trade study,
	as a solid body will be	narrow resonance at ~29 Hz.	and references therin
	less than 0.015 arc		
	seconds rms before		
	correction by the NGAO.		

6.2.4 Observatory Science Instrument Requirements

In addition to the science instrument requirements specified in section 6.1.3 the NGAO facility must allow the Observatory to continue supporting Interferometer science with the two Keck telescopes. The requirements for these instruments are developed in KAON 428 and are further specified in later sections.

#	Observatory	Discussion	Based on
	Instrument		
	Requirement		
23.1	The NGAO facility should support the Keck Interferometer (KI) with performance as good or better than provided by the pre-NGAO Keck AO systems	The KI dual star modules (DSM) currently move into both AO enclosures on rails to feed the KI. The requirement to feed the KI requires that collimated and f/15 light can be fed to the DSM and that the field rotation, pupil rotation, longitudinal dispersion and polarization from the NGAO system and the AO system on the other telescope be identical. See KAON 428	Existing Keck Observatory commitments to NASA and NSF
		Implications and Requirements for Interferometry with NGAO.	
23.2	The NGAO system	Injection modules are currently	Existing Keck Observatory

Table 23. Observatory Science Instrument Requirements

should support the	placed on each AO bench to	commitments to NASA and
'OHANA interferometer	feed an optical fiber that goes	NSF
with performance as	to the KI. In future the output	
good or better than	from these fibers will be	
provided by the pre-	interfered with those from	
NGAO Keck AO	multiple telescopes.	
systems		

6.2.5 **Observatory Operational Requirements**

The purpose of this section is to document the Observatory's overall requirements for the support of science operations. These requirements can be divided into the following categories:

- Percent of time collecting science quality data.
- Capability to support a certain number of nights per year of science operations.
- Operational costs.
- Impact on daytime and nighttime operations.
- Compliance with regulations, including safety, Mauna Kea policies, FAA and U.S. Space Command.

Each of these categories is represented in one of the following tables. In addition, all of the above categories require a facility-class NGAO system and science instruments, and this requirement is reflected in the final table.

#	Observatory	AO Derived	Instrument Derived	Based on
	Operational	Requirements	Requirements	
	Requirement			
24.1	RequirementAssuming a classical observing model* and adequate observing conditions for the science program, more than 80% of the observing time is spent on collecting science- quality data for the deployable science instruments.*See KAON 476 for definitions of observing models	Observing model should allow flexible scheduling and quick- and-easy switching of observing modes and instrument. Observing overhead is minimized, particularly by being able to center multiple targets and reference guide stars with a < 0.3" accuracy. Observing reliability is critical to avoid canceling long integration: there should be less than 2 faults per night (one system fault is equivalent ~ 20-30 min	The deployable instrument are used for faint object spectroscopy with much longer time on target, hence less observing setup overhead. One should be able to stop, abort and restart an integration on command.	KAON 455 (ScRD) science target samples and survey durations, combined with efficiency analyses given in KAON 476
		lost time on faint targets for the worst cases). Observing tools should allow for automated		
		observing sequences.		

Table 24. Observatory Operational Requirements

	1	1	1	· · · · ·
24.2	Assuming a classical observing	Same as above. In addition, observing	The narrow field science instruments are	KAON 455 (ScRD) science
	model and adequate	efficiency is critical for	used on brighter targets	target samples
	observing	survey mode (see	in imaging,	and survey
	conditions for the	Science Case 1)	coronagraphy and	durations,
	science program,	Acquisition sequences	spectroscopy modes.	combined with
	more than 70% of	must be fully	The science instrument	efficiency
	the observing time	automated.	interface command	analyses given in
	is spent on	Overhead must be	must allow for parallel	KAON 476
	collecting science-	reduced by allowing	sequences, e.g, start a	
	quality data for the	parallel sequences	nod/dither sequence	
	narrow-field science	between telescope, AO,	immediately after the	
	instruments.	laser and science	pixel readout.	
		instrument.		
24.3	The NGAO system	Observatory currently		KAON 455
	must be capable of	willing to support 140		(ScRD) science
	supporting 200	nights/year.		target samples
	nights/year of			and survey
	science operations			durations,
	and keep the total			combined with
	annual operational			efficiency
	personnel within the			analyses given in
	5-year plan			KAON 476
	Observatory			
	operation budget,			
	including non- personnel costs.			
24.4	The NGAO facility			KAON 572
24.4	should not require			Baseline
	more than TBD			Instrument
	engineering nights			Requirements,
	per year for system			section 13
	maintenance.			500101115
L	mannenance.	l	l	1]

24.5	The Mauna Kea	This includes	Mauna Kea laser	KAON 153
	laser projection	requirements on laser	projection requirement	Requirements on
	requirements must	power, wavelength,		laser traffic
	be satisfied	laser traffic control		control
		participation, aircraft		participation,
		safety and space		aircraft safety,
		command. See KAON		and space
		153. The current		command
		policy only accepts		compliance for
		sodium wavelength		satellite safety.
		lasers, and requires that		
		a single laser beacon		
		not exceed 50W and		
		that a maximum of 200		
		W be projected from a		
		single facility, and that		
		laser beacons not be		
		projected below 70°		
		zenith angle.		

6.2.6 **Observatory Implementation Requirements**

Table 25. Observatory Implementation Requirements

#	Observatory	Discussion	Based on
	Implementation		
	Requirement		
25.1	The NGAO system and		Sean Adkins, "An Overview
	instruments must		of the WMKO Development
	complete the Observatory		Phases," WM Keck
	standard design review		Observatory Instrument
	process.		Program Management Memo,
			December 8, 2005 link

25.2	The time between	Minimize down time impact	Director's discretion
	decommissioning an AO	on Interferometer and AO	
	capability on the	science at the Observatory. It	
	telescope where the	is suggested that it should not	
	NGAO system is to be	be longer than 6 months.	
	installed and making	C	
	NGAO available for		
	limited shared-risk		
	science must be agreed		
	upon with the		
	Observatory Director.		
25.3	The telescope downtime	Minimize down time impact	Director's discretion
	required to implement	on Interferometer and AO	
	NGAO must not be	science at the Observatory. It	
	longer than an amount	is suggested that it should not	
	agreed upon with the	be longer than 5 days.	
	Observatory Director.		
25.4	The NGAO system must	This has implications on	Sean Adkins, "An Overview
	complete an operations	defining transition	of the WMKO Development
	transition review where	requirements and on training.	Phases," WM Keck
	operational responsibility		Observatory Instrument
	is transferred from		Program Management Memo,
	development to		December 8, 2005 link
	operations		

7 **OPTICAL REQUIREMENTS**

7.1 **Purpose and Objectives**

The purpose of this section is to describe optical requirements for the performance, implementation and design of the NGAO optical system.

7.2 **Performance Requirements**

The following performance requirements are duplicated from the Science Performance Requirements in section 6.1.2 since these are direct optical performance requirements. The following performance requirements are derived from the Science Performance Requirements in Section 6.1.2 and the relevant performance budgets.

7.3 Implementation Requirements

Table 26. Implementation Requirements

#	Optical Implementation	Discussion	Based on
	Requirement		
26.1	The NGAO optical axis	This assures that the telescope	See Table 22
	shall be coincident to the	achieves its nominal	
	telescope's elevation axis	performance requirements	
	to \leq TBD.	delineated in Table 22.	

7.4 **Design Requirements**

NGAO is required to provide an AO corrected beam to each of the science instruments, including the Interferometer and 'OHANA fiber injection module. This may be accomplished with one or more AO systems. The following requirements are valid for all of these science instruments.

Table 27. Optical Design Requirements

#	Optical Design	Discussion	Based on
	Requirement		
27.1	The focal ratio provided	These requirements will be	
	to the science instruments	deferred pending an interface	
	should be TBD	definition between KNGAO	
		and new instruments, OSIRIS,	
		and the interferometers, to be	
		written during Preliminary	
		Design Phase	

NGAO System	Requirements Document
-------------	------------------------------

27.2	The exit pupil location provided to the science instruments should be TBD	These requirements will be deferred pending an interface definition between KNGAO and new instruments, OSIRIS, and the interferometers, to be written during Preliminary Design Phase	
27.3	The NGAO system and science instrument combination should be capable of keeping the field or pupil fixed on the science instrument.		See requirements 21.7 and 21.8
27.4	The NGAO system shall have ≤ TBD of non- common path aberration delivered to the science instruments.	These requirements will be deferred pending an interface definition between KNGAO and new instruments, OSIRIS, and the interferometers, to be written during Preliminary Design Phase	
27.5	The NGAO system should be capable of correcting ≥ TBD nm of low spatial frequency (Zernikes 4 to 15) non- common path aberration in the science instruments.	Image sharpening can be used to correct for aberrations in the science instruments. New science instruments should be designed to have small optical aberrations. The interferometer and possible legacy instruments such as NIRC2 or OSIRIS may be allowed larger aberration budgets.	Keck NGAO Error Budget requirements (KAON 471) in support of Science Case Requirements (KAON 455)

27.6	1 1 0	The existing Keck AO	See section 6.1.2.17
	of tip/tilt correction	systems have a peak-to-peak	Atmospheric Seeing
	provided by NGAO shall	range of 1.6" which has	Assumptions and Table 22
	be \geq 3" on sky.	proven to be inadequate in	Telescope and Dome
		windy conditions.	Environment
			AssumptionsAtmospheric
			Seeing
			AssumptionsAtmospheric
			Seeing
			AssumptionsAtmospheric
			Seeing
			AssumptionsAtmospheric
			Seeing
			AssumptionsAtmospheric
			Seeing Assumptions

The following design requirements are duplicated from the Science Performance Requirements in section 6.1.2 since these are direct optical performance requirements.

#	Science Instrument Optical Design Requirement	Discussion	Based on
28.1	Unvignetted contiguous fields shall be provided to the NIR and visible science imagers and single field IFUs. The maximum field size is 20"x20".		Science requirements on the contiguous field science instruments. (KAON 455, Tables 1-17)
28.2	Multiple unvignetted contiguous fields shall be provided to the NIR d- IFU. Each field should be ≥ 4 " in diameter.		Science requirements on the NIR d-IFU. (KAON 455, Tables 1-17)
28.3	The unvignetted field of regard provided to the NIR d-IFU shall have a total area of $\geq 6 \operatorname{arcmin}^2$ and shall have a maximum off-axis distance of ≤ 1.5 ' with respect to the telescope's		Science requirements on the NIR d-IFU. (KAON 455, Tables 1-17)

	optical axis.	
28.4	NGAO shall provide	Science Cases Requirements -
	appropriate outputs to \geq	KAON 455
	TBD science instruments.	

The following design requirements are imposed by the non-interferometric science instruments.

#	Science Instrument Optical Design Requirement	Discussion	Based on
29.1	A wavelength range of 0.7 to 1.0 µm must be provided to the visible science instruments (imager and IFU)		Science Case Requirements Document (KAON 455), and KAON 548.
29.2	A wavelength range of 1.0 to 2.45 µm must be provided to the NIR science instruments (imager, IFU and deployable IFU)		Science Case Requirements Document (KAON 455), and KAON 548
29.3	A wavelength range of 3.0 to 5.3 µm must be provided to the thermal NIR imager	This is currently low priority and should be discussed if this drives the design.	Requirement deleted
29.4	An unvignetted field of view ≥ 20 "x20" must be provided to the science imagers (visible and NIR)		Science Case Requirements Document (KAON 455), and KAON 548
29.5	An unvignetted field of view ≥ 12 " diameter must be provided to the visible IFU		Science Case Requirements Document (KAON 455), and KAON 548
29.6	An unvignetted field of view ≥ 16 " diameter must be provided to the NIR IFU		Science Case Requirements Document (KAON 455), and KAON 548
29.7	A field of regard of \geq 1.5' diameter must be provided to the NIR deployable IFU with		Science Case Requirements Document (KAON 455), and KAON 548.

	vignetting by all sources		
	\leq TBD over TBD % of		
	the field of regard		
29.8	A field of view of	Low priority.	Requirement deleted
	25"x25" must be		
	provided to the L and M-		
	band imager		
29.9	An unvignetted science		Science Case Requirements
	target field \geq 3" x 3.4"		Document (KAON 455), and
	shall be provided to each		KAON 548
	channel of the NIR		
	deployable IFU		
29.10	The NGAO + deployable	There is no requirement for	Requirement deleted
	IFU system shall support	simultaneous nearest-	
	simultaneous	neighbor target distances less	
	observations of at least	than 5".	
	two science targets		
	separated by ≤ 5 "		
29.11	The NGAO + deployable		Science Case Requirements
	IFU system shall support		Document (KAON 455)
	simultaneous		requirement 1.2.
	observations of at least		
	six science target fields		
	inscribed within a 5		
	square arcminute field		
29.12	NGAO shall be capable		Wavefront error requirement
	of compensating for		(SCRD KAON 455) coupled
	focus changes due to		to NGAO Error Budget
	changing filters or modes		

The following design requirements are imposed by the Interferometer and/or 'OHANA support requirements.

#	Interferometry Optical Design Requirement	Discussion	Based on
30.1	A wavelength range of 1.1 to 14 μm must be provided to the Interferometer		KAON 428 Requirements for Interferometry with NGAO

-	1		1
30.2	A wavelength range of		KAON 428
	1.1 to 2.45 μm must be		
	provided to the OHANA		
	injection module		
30.3	A field of view of ≥ 1 '		KAON 428
	diameter must be		
	provided to the		
	Interferometer		
30.4	A field of view of 5"		KAON 428
	diameter must be		
	provided to the OHANA		
	injection module		
30.5	NGAO must be able to	The nuller requires small	KAON 428
	support a chopping mode	amplitude chopping with the	
	for the interferometer.	AO loops closed at each end	
		of the chop for alignment	
		purposes.	
30.6	The interferometer output	The current KI achieves	KAON 428
	of NGAO must be	polarization matching by	
	polarization matched to	keeping the number, angle	
	the interferometer output	and coatings of all reflections	
	of the AO system on the	the same in the beam trains	
	other telescope in order	from each telescope. The	
	to produce $\leq 3^{\circ}$ of	differential s-p phase shift in	
	differential s-p phase	the current KI is measured at	
	shift	6° resulting in a loss in V ² of	
		0.003.	
30.7	The interferometer output		KAON 428
	of NGAO must have the		
	same image rotation as		
	the interferometer output		
	of the AO system on the		
	other telescope		
30.8	The interferometer output		KAON 428
	of NGAO must have the		
	same pupil rotation as the		
	interferometer output of		
	the AO system on the		
	other telescope		
	other terescope		

30.9	The interferometer output of NGAO must have the same longitudinal chromatic dispersion as the interferometer output of the AO system on the other telescope	Transmissive optics fabricated from different materials can have different amounts of longitudinal chromatic dispersion resulting in the loss of fringe visibility	KAON 428
30.10	The ratio of the Strehls from the interferometer output of NGAO and the interferometer output of the AO system on the other telescope must be \leq 1.2 and \geq 0.9.	A Strehl mismatch of 22% or an intensity ratio of 1.22 results in a V^2 loss of 0.010.	KAON 428
30.11	NGAO must be able to accommodate the accelerometers needed to support the Interferometer	On the current AO bench one accelerometer is placed near the telescope focus and another near the output to the DSM. These are used to measure vibration along the optical path and are used in the fringe tracker control system. The accelerometer acquisition system is housed in an electronics rack in the AO electronics vault.	KAON 428
30.12	NGAO or NGAO in combination with a modified DSM must be capable of supporting the laser metrology beams from the interferometer	These metrology beams are a potential source of background light on the wavefront sensors	KAON 428
30.13	NGAO must incorporate the required tools and tolerances to support alignment to the interferometer	For example, the current AO bench hosts a corner cube to aid in aligning the interferometer to the optical axis of the AO system and telescope	KAON 428

30.14	NGAO or NGAO in combination with a modified DSM must provide a collimated 100 mm diameter beam to the interferometer	In the current AO system a removable (on a translation stage) dichroic beamsplitter, located between the deformable mirror and second off-axis parabola, folds the collimated beam to the DSM	KAON 428
30.15	The rms residual tilt at the NGAO system output to the interferometer should be ≤ 0.007 " for TBD guide star.		KAON 428

8 MECHANICAL REQUIREMENTS

8.1 **Purpose and Objectives**

The purpose of this section is to describe mechanical requirements for the performance, implementation and design of the NGAO mechanical systems.

8.2 **Performance Requirements**

#	Mechanical	Discussion	Based on
	Performance		
	Requirement		
31.1	The NGAO AO system		Instrument Baseline
	shall not exceed a thermal		Requirements, KAON 572,
	dissipation budget, into		requirement 8.2.1.3
	the dome environment, of		_
	100 W		
31.2	The NGAO laser system		Instrument Baseline
	shall not exceed a thermal		Requirements, KAON 572,
	dissipation budget, into		requirement 8.2.1.3
	the dome environment, of		-
	100 W		
31.3	The NGAO AO system		Instrument Baseline
	shall not exceed a thermal		Requirements, KAON 572,
	dissipation budget at the		requirement 8.2.1.3
	top-end of the telescope,		-
	into the dome		
	environment, of 50 W		

Table 31. Mechanical Performance Requirements

8.3 Implementation Requirements

Table 32. Mechanical Implementation Requirements

#	Mechanical	Discussion	Based on
	Implementation		
	Requirement		
32.1	The NGAO facility must	Refer to KAON 531 for a	See Table 18 (which is
	allow a means to install	discussion of instrument	derived from KAON 455,
	the new science	interface issues, and to KAON	Science Case Requirements
	instruments delineated for	493 for a discussion of	Document, Instrument
	NGAO optical feed, and	OSIRIS instrument reuse.	Requirements sections for
	to install the OSRIS		each science case.)
	instrument to the NGAO		
	optical feed.		

8.4 **Design Requirements**

Table 33. Mechanical Design Requirements

#	Mechanical Design	Discussion	Based on
	Requirement		
33.1	The maximum weight of	The weight requirements are	Instrument Baseline
	the AO system on the	imposed by limits on what the	Requirements, KAON 572
	Nasmyth platform shall	telescope can support at	
	not exceed 10,000 kg	various locations without	
		changing its performance.	
33.2	The maximum weight of		Instrument Baseline
	the laser facility on the		Requirements, KAON 572
	azimuth rotating part of		
	the telescope shall not		
	exceed 10,000 kg		
33.3	The maximum weight of		Instrument Baseline
	the beam transport		Requirements, KAON 572
	system on the elevation		
	portion of the telescope		
	shall not exceed 150 kg		
33.4	The maximum weight of		Instrument Baseline
	the laser launch facility		Requirements, KAON 572
	in the top-end module		
	shall not exceed 150 kg		

a		
33.5	If mounted behind the	Required to support regular
	f/15 secondary mirror,	observatory science
	the launch telescope	operations with alternative
	facility must allow for	secondary mirrors.
	the removal, storage and	
	installation of the f/15	
	secondary module	
33.6	If mounted behind the	1) Error and emissivity
	f/15 secondary mirror,	budgets KAON 501 do not
	the launch telescope	allow for an increased
	facility must 1) not	secondary obscuration
	extend beyond the	2) The dimensions of the
	module in the x,y-	telescope structure, dome, and
	directions and 2) must	allowance for safety clearance
	not extend more than 1 m	– refer to drawing or
	beyond the top of the	document number XXX
	telescope structure.	
33.7	The NGAO facility must	Observatory standards for
	fit within the mechanical	safety clearance when moving
	constraints of a Nasmyth	the telescope. Instrument
	platform (nominally the	Baseline Requirements,
	Keck II left Nasmyth	KAON 572
	platform)	
33.8	The NGAO facility must	Instrument Baseline
	provide access and space	Requirements, KAON 572
	for the installation of	
	each science instrument	
	and a mechanical	
	interface on which to	
	mount each instrument	
33.9	The NGAO facility must	Instrument Baseline
	provide access for routine	Requirements, KAON 572,
	maintenance of the	Section 15
	elevation bearing,	
	elevation wrap, bent	
	Cassegrain platform and	
	mirror cell stairwell	
33.10	The required glycol flow	Instrument Baseline
22.10	rate and pressure for	Requirements, KAON 572
	cooling the NGAO	
	facility shall not exceed	
	TBD and TBD,	
	respectively	
	respectively	

9 ELECTRONIC/ELECTRICAL REQUIRMENTS

9.1 **Purpose and Objectives**

The purpose of this section is to describe electronic and electrical requirements for the performance, implementation and design of the NGAO electronic and electrical systems.

9.2 **Performance Requirements**

9.3 Implementation Requirements

9.4 **Design Requirements**

Table 34. Electrical Performance Requirements

#	Electrical Performance	Discussion	Based on
	Requirement		
34.1	The entire NGAO facility		Instrument Baseline
	must not exceed a total		Requirements, KAON 572
	electrical power		
	requirement of 30 kW		
34.2	The NGAO facility		Instrument Baseline
	cabling through the		Requirements, KAON 572
	azimuth wrap must not		
	require an area of more		
	than TBD		
34.3	The NGAO facility		Instrument Baseline
	cabling through the left		Requirements, KAON 572
	Nasmyth elevation wrap		
	must not exceed an area		
	of more than TBD		
34.4	The NGAO facility		Instrument Baseline
	cabling through the right		Requirements, KAON 572
	Nasmyth elevation wrap		
	must not exceed an area		
	of more than TBD		

10 SAFETY REQUIREMENTS

10.1 Purpose and Objectives

Safety is the paramount concern for all activities at the observatory. The purpose of this section is to provide requirements related to specific safety concerns during the operation and handling of NGAO.

10.2 Scope

The general Observatory safety requirements that are also applicable to NGAO are already contained in the Instrumentation Baseline Requirements Document. This section covers the additional laser safety and laser projection safety requirements.

Adequate earthquake restraints are also required for all systems.

10.3 Laser Safety Requirements

A safety system will be implemented to ensure the safe use of the laser. This safety system will include both engineering and administrative/procedural controls to assure safe operations. The system will apply ANSI Z136.1 and Z136.6 standards for safe use of laser for indoor and outdoor.

The NGAO system will conform to OSHA and local codes in addition to codes specified for each subsystem.

10.4 Laser Projection Safety Requirements

This section covers the additional requirements on safety for projecting the laser beams outside the dome.

10.4.1 Aircraft Safety

An aircraft safety system compliant with FAA requirements must be implemented and approved by the FAA.

10.4.2 Space Command

A system must be implemented to facilitate effective communication with U.S. Space Command of projection dates and targets, and to ensure that no projection occurs on a target without Space Command approval. This requirement may be deleted if it is determined that Space Command approval is no longer required.

11 SOFTWARE REQUIREMENTS

11.1 Purpose and Objectives

The software requirements section describes requirements for performance, implementation and design. The software requirements for the W. M. Keck Observatory are described in the Instrument Baseline Requirements (KAON 572).

11.2 Scope

Unless otherwise indicated all of the requirements of this section apply to all software components of NGAO.

11.3 Performance Requirements

Table 35 presents the software requirements for NGAO. The performance requirements will be detailed during the Preliminary Design phase.

#	Software Design	Discussion	Based on
	Requirement		
35.1	The NGAO system must be able to support the external interfaces supported by the existing AO systems	The external keywords and EPICS channels used by the existing AO systems are documented in KAON 315, Summary of External Interfaces in the Current WFC and Implications for the NGWFC Design"	KAON 315
35.2	The NGAO system must be able to accept tip/tilt offloads from the science instrument		Science Case Requirments KAON 455 (wavefront error and tip/tilt error requirements)

Table 35. Software Performance Requirements

11.4 Implementation Requirements

The implementation requirements will be documented during the Preliminary Design phase.

11.5 Design Requirements

Some of the design requirements for the non-RTC software, the acquisition camera, the science operations have been documented in KAON 567, 569 and 511. The implementation requirements will be completed during the Preliminary Design phase.

12 INTERFACE REQUIREMENTS

12.1 Purpose and Objectives

This section is reserved for interface requirements that are not addressed by other portions of the document.

12.2 Design Requirements

12.2.1 Optical Interface

The optical interface requirements for NGAO are described in the Instrument Baseline Requirements (KAON 572) and in the "AO to Instrument Interface Definitions" KAON 555.

12.2.2 Mechanical Interface

#	Mechanical Interface	Discussion	Based on
	Requirement		
36.1	An agreed upon kinematic interface between the NGAO opto- mechanical systems and the telescope structure must be provided	Kinematic interfaces are proposed so that thermal changes do not distort optical benches.	Instrument Baseline Requirements, KAON 572
36.2	NGAO must be compatible with the interferometer dual star module (DSM) or replicate its functionality	The current Keck AO systems interface to the interferometer via an opto-mechanical system known as the DSM.	KAON 428 Requirements for Interferometry with NGAO
36.3	An agreed upon mechanical interface between the NGAO electronics and the telescope must be provided		Instrument Baseline Requirements, KAON 572
36.4	An agreed upon mechanical interface between any NGAO enclosures and the telescope must be provided.		Instrument Baseline Requirements, KAON 572
36.5	An agreed upon mechanical interface between any NGAO glycol cooled systems and the telescope instrument and/or facility glycol systems must be provided		Instrument Baseline Requirements, KAON 572

Table 36. Mechanical Interface Requirements

36.6	An agreed upon	Instrument Baseline	
	mechanical interface	Requirements, KAON 572	
	between any NGAO		
	CCR-cooled systems		
	must be provided		

12.2.3 Electrical/Electronic Interface

#	Electrical Interface Requirement	Discussion	Based on
37.1	An agreed upon electrical interface for power between NGAO systems and the Observatory /telescope must be provided	The Observatory is responsible for providing power to the various NGAO system locations.	Instrument Baseline Requirements, KAON 572
37.2	An agreed upon interface for communication between NGAO systems and the Observatory/telescope must be provided	The Observatory is responsible for the implementation of all cables between NGAO system locations. The Observatory must in particular approve all cabling required to go in the elevation or azimuth wraps.	Instrument Baseline Requirements, KAON 572

Table 37. Electrical Interface Requirements

12.2.4 Software Interface

Table 38. Software Interface Requirements

#	Software Interface Requirement	Discussion	Based on
38.1	An interface should be provided to offload tip/tilt errors to telescope pointing through the telescope drive and control system (DCS)		Science Case Requirments KAON 455 (wavefront error and tip/tilt error requirements) and NGAO error budget assumptions
38.2	An interface should be provided to offload focus errors to the secondary mirror piston through DCS		Science Case Requirments KAON 455 (wavefront error and tip/tilt error requirements) and NGAO error budget assumptions
38.3	An interface should be provided to offload coma errors to the secondary mirror tilt through DCS		Science Case Requirments KAON 455 (wavefront error and tip/tilt error requirements) and NGAO error budget assumptions
38.4	An interface should be provided to offload segment stacking errors to the active control system (ACS)		Science Case Requirments KAON 455 (wavefront error and tip/tilt error requirements) and NGAO error budget assumptions

13 RELIABILITY REQUIREMENTS

13.1 Purpose

A process should take place to confirm that the NGAO system will provide a high level of reliability for a 10 year lifetime.

13.2 Scope

Unless otherwise indicated all of the requirements of this section apply to all components of NGAO.

13.3 Performance

System downtime should be minimized by a combination of component reliability, ease of repair, maintenance and appropriate sparing.

#	Reliability Performance Requirement	Discussion	Based on
39.1	\leq 5% of observing time lost to problems	This includes any loss to an exposure in progress and the time to start the next exposure after recovering from a fault	Science Case target sample size and survey durations (KAON 455). Analysis of current LGS system efficiency (KAON 463).
39.2	The median time between faults during observing time should be ≥ 4 hrs	Frequent short duration faults are not acceptable since they have a high impact on science productivity	Science Case target sample size and survey durations (KAON 455). Analysis of current LGS system efficiency (KAON 463).

Table 39. Reliability Performance Requirements

14 SPARES REQUIREMENTS

The spares requirements will be documented during the preliminary design phase.

15 SERVICE AND MAINTENANCE REQUIREMENTS

Refer to Instrument Baseline Requirements, KAON 572.

16 DOCUMENTATION REQUIREMENTS

The documentation requirements are defined in the Instrumentation Baseline Requirements Document, KAON 572

17 GLOSSARY

Table 2 defines the acronyms and specialized terms used in this document.

Table 2 Glossary of Terms

Term	Definition
ACS	Active Control System
ANSI	American National Standards Institute
AO	Adaptive Optics
DCS	Drive and Control System
DSM	Dual Star Module
FAA	Federal Aviation Administration
FOV	Field Of View
FWHM	Full Width at Half Maximum.
IFU	Integral Field Unit
KAON	Keck Adaptive Optics Note
KI	Keck Interferometer
LGS	Laser Guide Star
MTBF	Mean Time Between Failures
NGAO	Next Generation Adaptive Optics
NGS	Natural Guide Star
NIR	Near InfraRed
NIRC2	NIR Camera 2
NIRSPEC	NIR SPECtrometer
'OHANA	Optical Hawaiian Array for Nanoradian Astronomy
OSHA	Occupational Safety and Health Administration
OSIRIS	OH-Suppression InfraRed Integral field Spectrograph
TBC	To Be Completed
TBD	To Be Determined
WMKO	W. M. Keck Observatory