Development of New Instruments at the W.M. Keck Observatory

By Sean Adkins August 12, 2004

What is it?

- A framework for development based on a well defined process, consistent with current best practices
- Considers the full life cycle "cradle to grave"
- For each process step, establishes:
 - Organization
 - Accountability
 - Documentation
 - Success criteria
 - Decision points

Who Does It?

Who is the Customer?

What Follows:

Each program step is shown in a process diagram

- -What the step is and how it fits into the overall program
- -What the work activities are
- Which group is accountable for getting the work done (but other groups may participate)
- -What the documentation products are
- –Which group is accountable for getting the documentation done
- -Where the program decision points are and what they are

Science Need

- How are new instrument requirements identified?
- Through various forms of consultation and discussion by the SSC, WMKO and the CARA board
- SSC is the primary group responsible for this
 - Observatory strategic plan astronomy domain
 - Community input
 - Advisory groups formed by the SSC
 - Should follow a process of regular review

New Instrument Proposal

- Based on the science requirements and priorities recommended by the SCC, WMKO drafts a Request for Proposal (RFP)
- RFP
 - References science requirements
 - Defines management requirements
 - Defines proposal content and form
 - Sets the stage for the funding process
- Instrument Proposal
- Funding Proposal

Instrument Program Management

Start with a System Requirements Document

- -System requirements "flow" from the science case
- Based on the science, establish system functions and required performance
- -Establish user needs and features
- -Complete lifecycle considered development and operations

System Design

What happened to Conceptual Design?

- -It is too nebulous and it is under funded
- -We need more systems design thinking
- -A system design discipline is a key to design to cost
- The system design discipline is key to making user requirements paramount (users are the observers <u>and</u> the observatory)

Objective: establish a discipline integrated engineering plan for the proposed design, understand the technical risks, explore tradeoffs, and determine estimates for performance and cost to completion.

Objective: establish the feasibility of the proposed design through research, design, simulation and prototyping. Confirm the estimated performance and cost to completion.

Objective: complete the design, fabrication and assembly documentation for the system and all components and show that the final design demonstrates compliance with all specifications and applicable standards.

What happened to Critical Design?

- -The name just doesn't make sense
- We need finished designs ready to build in full scale development – not incomplete designs or concepts with detail design occurring during full scale development

Objective: produce a working system that meets the specifications and is ready for delivery and commissioning.

Delivery and Commissioning

Instrument Program Management

Facility Class Operation Operational Instrument

When is it "Operational"?

- When the specifications are met?
- When the science time is \geq 75%?

Realities of being operational:

- 1. One of a kind the prototype is the product
- 2. Reliability and maintenance experience must be gained through actual use
- 3. Being there first counts for a lot

Summary

A good process is <u>important</u> to the outcome

- Discipline and coordination can sometimes be painful, but the benefits are worth it
- No, it is not too much documentation!
- As we use the process we will learn from it and make changes

