

Motion Control Architecture Mini-Review

Contributors: Ed Wetherell, Kevin Tsubota, Jason Chin

11 Mar 2010

Schedule

The agenda for the review is as follows (times are HST):

- 8:00 AM: Welcome and introductions
- 8:10 AM: Presentation
- 9:15 AM: Break
- 9:30 AM: Review Comments/ Open discussion
- 10:30 AM: Review committee closed session
- 11:00 AM: Review committee feedback to team

Agenda

- Review Committee Charter
- Scope of the Review
- Requirements Compliance
- Motion Control
 - Types
 - Locations
 - Architectures
- Design Status
- Review Committee Comments
- Summary of Concerns
- Plans for PDR

Review Committee Charter

Reviewers:

Don Gavel (UCO, chair) Alex Delacroix (CalTech) Tomas Krasuski (WMKO)

- Are the requirements understood?
- Does the proposed architecture satisfy the requirements?
- Is the architecture
 - Complete?
 - Technically feasible?
 - Cost effective?
- Is the architecture sufficiently mature that it can be developed to the PDR level by the 2nd Qtr of 2010?

Scope of the Review

- Motion control electronics architecture
 - Control of actuated devices used throughout the various NGAO subsystems
- Not in the scope of this review:
 - Overall architecture of the NGAO control system or the top-level design of the NGAO control system
 - Motion control required for real-time wavefront correction (DMs, T/T) under control of the RTC
 - Software controls
 - Effort Estimates
 - Budget
 - Schedule

Requirements Compliance

- Locating all of the relevant requirements has proven challenging
 - Every subsystem was reviewed for requirements relating to motion control
- PD Requirements Review (Phase II) week of 1March, continued into week of 7March
 - Impact on motion controls has yet to be assessed
- More effort required to
 - Verify all requirements have been identified
 - Determine compliance
 - Address deficiencies in requirements and compliance
- No areas of non-compliance have been identified

Motion Control Types (1)

- Shutters
 - Simple in/out devices with very loose positional requirements
 - Actuators other than motors (e.g., solenoid, pneumatic, etc.) may be considered
 - Switches or hard stops may be used to define the positions, encoders not required
 - Knowledge of actual position when moving, although desirable, is not required
- Low precision, non-tracking
 - A dichroic or fold, for example, that is either in the beam or out of the beam
 - Moved during configuration, not during an observation
 - Position with encoder
- Medium precision, non-tracking
 - Higher precision, still primarily single axis devices
 - Moved during configuration, not during an observation
 - Likely combine this category with Type 1 devices
- High precision, non-tracking
 - aligning a lenslet or focusing a unit
 - moved during configuration or acquisition, not during an observation

Motion Control Types (2)

Tracking

- position calculated from and synchronized to external information (telescope az/el, etc)
- servo loops closed during an observation, command rates of 25mS to 100s of seconds
- generally more stringent requirements on servo loop performance
 - want smooth motion, small following error, minimal overshoot
- various levels of precision required
- ADC, rotators
- Extremely high precision tracking and non-tracking
 - coordinated motion with other DOF(s)
 - may be constantly moving during an observation, update rates of 1Hz or faster
 - generally requires a high precision actuator, not a servo motor
 - examples include steering mirrors and tip/tilt stages
- Pickoff arms coordinated high precision non-tracking
 - most demanding DOF
 - position calculated from and synchronized to external information (telescope az/el, etc)
 - coordinated motion with other DOF(s)
 - spatial position constraints to avoid collision
 - mechanical design may require the device to servo in position

Location Overview

Current NGAO System Total: 54 AO + 29 Laser = 83 DOF

Original Estimate: 150+ DOF

Existing K2AO system: 29 AO + 22 Laser = 51 DOF

Device Summary by Location

Color Codes: Blue - Cooled AO bench, Green - Off-bench AO device,

Brown - Laser enclosure and Gold - Telescope secondary.

Motion Control Architecture (1)

Centralized

- All components are rack-mounted in a single location
- Individual cables flow from the rack to each DOF
- Primary approach taken throughout the observatory
- Pros
 - Familiarity
 - Straight forward heat / power management
 - Single starting point for troubleshooting
 - Potential for reuse of SW and/or HW

Cons

- Cabling lots of it to a single location
- Longer cables may exclude use of low cost PWM amplifiers
- Scalability due to space constraints
- Proposed use
 - AO Electronics Vault
 - Most AO devices
 - Telescope Secondary or Laser Service Enclosure
 - Laser Beam Generation System devices
 - Laser Switchyard devices if equipment in LSE

Motion Control Architecture (2)

Distributed

- Equipment located in close proximity to actuator
- Several options with varying amounts of distributed equipment
 - Distributed amplifier, central controller
 - Distributed controller and amplifier
 - Smart motor: controller and amplifier integrated into motor

Pros

- Significant reduction in cabling effort
- Very scalable
- Possible improvement in servo bandwidth
- Short cables allow use of lower cost PWM drives for some axes
- Allows partial system reset which may reduce the recovery time
 - all stages may not require homing

Cons

- Distributed thermal loads
- Troubleshooting requires knowledge of physical layout with multiple device locations
- Integration with E-stop system
- Propose use of smart motors for low/moderate precision non-tracking devices

Design Status (1)

Controllers

- Use of programmable, multi-axis controllers with Ethernet
 - Delta-Tau PowerPMAC a possibility
- Use of coordinate systems for multi-axis stages
- Prefer distributed control system to communicate via engineering units (mm, field position), not encoder counts
 - Translation at the controller level

Actuators

- must operate in specified environment: -15°C in cold box, -10°C on secondary
- DC motors (brush or brushless)
- Drive or load position encoding, precision dependant
- Precision actuators (piezo t/t stages, linear piezo, voice coil, etc)
- Smart motors
- Normally closed (open when triggered) end of travel switches

Crates / processors

- Separate embedded processors (VxWorks) likely not required
- Higher level server to handle communications and monitoring functions

Design Status (2)

- Observatory E-stop interface
 - Part of the motion control requirements
 - Will likely remove power to all motion amplifiers
 - Preferably preserve encoder/limit switch power to easy recovery
- Cables will need to remain flexible at operating temp
 - Combine multiple axes on single cable where possible
 - -15°C in cold box, -10°C on secondary
 - Attention needed on pickoff arms and devices mounted to an in/out or focus stage to provide adequate range of travel
 - Motors supplied with an integral cable could be a challenge
- Instrument mechanisms
 - Not part of NGAO motion control design
 - Imager+IFS (DAVINCI) has its own motion controls
 - Interferometer DSM supported by IF ancillary electronics rack and IF control system
 - Interferometer will have devices on AO bench
 - Devices will be controlled by NGAO to eliminate any impact on non-IF AO observing
 - Details not known

Proposed Layout of AO Controls on Left Nasmyth

Proposed Layout of AO Controls on Left Nasmyth

- Multi-axis servo controllers located in e-vault
- Smart motors used for intermittent, low or moderate precision devices
 - 6 of these motors inside the cold box, 3 outside
 - Continuous power dissipation of ~0.9 W each
 - Stages must accept NEMA frame motor
 - Requires power supply and terminal server port
 - estimate ~\$400/axis savings (procurements) over centralized approach
- 32 servo devices on cold bench
 - anticipate ~15 W (total, 0.5 per device) of power for encoders alone
 - some DOF in the Cal/Sim unit may have dedicated controllers
- 13 devices in AO Room
 - 7 servo motors, 6 piezo (or equivalent)
- Cabling
 - Anticipate around 16 cables between cold box and e-vault
 - Assumes 2 DOF per servo motor cable
 - Cold box will have bulkhead connectors; environmental seal but not hermetic
- Interface with facility Emergency Stop
 - Prevent motion to protect personnel and equipment
 - Keep encoders/limits powered if possible to speed recovery
- Volume ~ 22U (half 7 foot rack), similar to existing AO system

Proposed Layout of Laser devices w/controllers in LSE

Proposed Layout of Laser devices w/controllers in LSE

- Motion controllers for laser switchyard and beam generation system located in LSE
- Pro:
 - Limited requirement on Elevation cable wrap
 - Space, power and glycol are available in LSE
- Con: cables between secondary and LSE
- Cabling
 - Anticipate 18 cables between LSE and secondary
 - 12 of the 18 for the linear piezo devices, may be able to combine into fewer cables
 - Only infrastructure cables (power, Ethernet, time sync, e-stop)
 between LSE and e-vault
- Volume: 15U of 19" rack (~0.12 m^3)

Alternate Layout of Laser devices w/controllers on Secondary

Alternate Layout of Laser Devices w/controllers on Secondary

- Controllers for BGS devices located on secondary, Switchyard controlled from e-vault
- Pro: Minimal cabling to secondary
- Con:
 - Space and mass on secondary
 - Will require (custom?) cooled enclosure for electronics
 - LSE cables in elevation wrap
- Cabling
 - Requires infrastructure cables (power, Ethernet, time sync, e-stop)
 between secondary and e-vault
 - 10 motion cables between LSE and e-vault (el wrap)
- Volume: 10U of 19" rack (0.08 m^3)

Alternate Layout of Laser devices w/ all controllers in E-vault

- Controllers for all laser devices located in E-vault (not illustrated)
- Pro:
 - Heat/power management
- Con:
 - Some equipment still likely in LSE or secondary
 - Would require cooled enclosure
 - 40m cables from secondary to e-vault, through elevation wrap
 - Devices must meet spec
 - Voltage drop across cable must be managed
 - Differential drivers required for encoders
 - Actuators with single-ended encoders would require design of custom driver board
 - LSE cables in elevation wrap
- Cabling
 - 18 cables between secondary and e-vault
 - may be able to reduce this to 12
 - 10 cables between LSE and e-vault
- Volume: 15U of 19" rack (0.12 m^3) in e-vault

BREAK

Review Committee Comments(1)

- Mahalo to everyone for your detailed review of this material
- Revision to documents forthcoming

Review Committee Comments(2)

- Need definition of terms
 - Reviewers noted inconsistency of naming
 - Project needs to publish preferred names and definitions
- Need agreement on required controls (tracking) and precision of devices
 - Perhaps some differing ideas about definition of tracking
 - Servo loops closed during observation
- Recycling of existing equipment (OBS)
 - Not likely despite apparent compatibility
 - Much is obsolete or would require upgrade
- Concern about smart motors inside cold enclosure
 - Not a significant heat source, compared to traditional motors
 - Some in-house testing is required to verify manufacturer claims
 - Changing the design to conventional servo motors straight forward

Review Committee Comments(3)

- Comment regarding controls split between AO and IF in current system
 - NGAO will control all devices on AO bench.
 - NGAO will control all hatches
 - Eliminate problems in existing distribution of control
 - NGAO will need the output hatches closed during observing (and presumably daytime prep/stabilization)
 - NGAO is required for IF observing, the converse is not true. IF should not be required for NGAO to work
- Is there any allocation for expansion?
 - Not in the strict sense of x% free channels
 - Need guidance from the project
 - Adding smart motors to the ring is easy
 - Probably a limit based on communication bus speed
 - Depending on choice of controller, expansion would only be limited by available rack space

Review Committee Comments(4)

- Type and amount of diagnostics was questioned
 - This needs work.
 - At present, no additional hardware is anticipated
- Heat analysis of Cold Enclosure
 - Estimate of steady state load provided
 - ~20W of encoder
 - Active limit switches have negligible contribution
 - Active state much harder to predict
 - Need payload information from subsystems designers to estimate required motor power
 - Need duty cycle information for devices with intermittent motion
 - Work with Mechanical engineers to estimate thermal constants of enclosure
 - Need analysis of how thermal gradients, bench 'seeing', local hot spots, etc. impact performance

Review Committee Comments(4)

- Reviewer suggests a survey of existing motion systems for 'likes' and 'dislikes'
 - Worthwhile
 - Some of this is already included given the experience of the team on both AO an IF
- Reviewer comment on missing reference on pg13 of KAON 715
 - Typo, should be KAON 643 section 7.6 (not 6.7), will be corrected
- Reviewer responded to concerns about probe arm limit switches
 - Updated design that uses load cells to determine direction of travel
 - This helps recover from a limit condition
 - Concern about interface to motion control system
 - Still a concern about homing these stages
- Reviewer concern about flow-down requirements listed in KAON 715
 - These are flow-down, not functional requirements
 - Not aware of a decision to manage this type of requirement in Contour

Reviewer Feedback

- Any questions?
- Detailed responses to individual comments are (or will be) posted on the TWiki

Summary of Concerns (1)

- Better collaboration between subsystem design teams
- Need agreement on required controls and precision of devices
 - Need completion of Master Device List with all relevant information
- Need better understanding of pickoff arm controls (homing)

Summary of Concerns (2)

- Nearly every subsystem requires motion control
 - Insufficient detail on some subsystem designs
- Need to understand goals for DD and I&T
 - Which team is responsible for what
 - How much duplicate equipment is required in California
 - What level of performance validation is performed by subsystem designers
- Understand cabling requirements
 - Clean enclosure
 - work out baseline for connectors/cables
 - Telescope cable wraps

Plans for PDR

- Work with Systems Engineering to get a complete approved set of requirements
- Work with subsystem designers to complete the Motion Control design
- Decide on location of laser control electronics
- Provide estimates for power/volume/mass
- Maintain KAON 682 (Master Device List)
- Complete KAON 715 (Preliminary Motion Control Design)
- Identify risks and mitigation plans
- Budget and Schedule

Review Comittee Session

- Given the short time to the PDR, we request an informal report via email, rather than a formal write-up
 - this will decrease the turn around time and limit additional effort required by the reviewers
- If the reviewers prefer a formal write-up, please provide this within a week

