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1 Introduction

This note addresses two possible methods for how to estimate the spatial power spectral density (PSD) function of residual
turbulence errors from a numerical AO simulation. The central issue is the effect of the telescope aperture (or more generally
any static aberrations) and how to separate it from the PSD of AO residual phase ϕ. The PSF K(α) and the OTF B(ω) of the
system are modeled as

PSF : K(α) = Ktel(α)∗Kϕ(α)∗Kobj(α), (1)

OTF : B(ω) = Btel(ω)×Bϕ(ω)×Bobj(ω), (2)

where asterisk (∗) denotes ordinary convolution. The PSF and OTF are Fourier conjugates, K(α) = F [B(ω)](α), with F
denoting Fourier transform, and {α,ω} are the independent variables of angle and angular frequency in the image plane. It
was assumed that the complex transmission function of the system is isoplanatic. This is an approximation, but it allows the
following sequence of computations:

Bϕ(ω) = exp

[

−
1
2

Dϕ(λω)

]

, (3)

Dϕ(ρ) = 2
[

Cϕ(0)−Cϕ(ρ)
]

, (4)

Φϕ(κ) = F [Cϕ(ρ)](κ). (5)

The functions and variables introduced are: the phase structure function Dϕ, the phase correlation function Cϕ and the phase
power spectrum Φϕ. Eqn. (3) is a consequence of the isoplanaticity property and the assumption that ϕ(ρ) is a zero-mean
Gaussian random variable (by virtue of the central limit theorem). Eqn. (4) follows straight from the definitions of the two
functions:

Dϕ(ρ) = 〈||ϕ(x)−ϕ(x+ρ)||2〉, (6)

Cϕ(ρ) = 〈ϕ(x)ϕ(x+ρ)〉, (7)

where angle brackets denote ensemble average. Finally Eqn. (5) is just a statement of the Wiener-Kinchine theorem. Inverting
the first two expressions gives

Dϕ(ρ) = −2ln
[

Bϕ(λω)
]

, (8)

Cϕ(ρ) = σ2
ϕ−

1
2

Dϕ(ρ), (9)

where σ2
ϕ is the total residual phase variance at the given wavelength. This quantity must be provided separately by the

numerical simulation. Hence, if one can obtain an estimation of the OTF Bϕ, with φ representing the particular AO residual
wavefront errors of interest, it is then straightforward to transform that into various objects characterizing the spatial statistics
of the wavefront. In the following it is assumed that the object is an unresolved point source, whereby Kobj(α) = δ(α) and
this part of the PSF vanishes. It is further assumed that Ktel(α) is a known quantity. Two methods for estimating Bϕ are now
investigated.
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1.1 Method 1 (bad)

From (2) one could try to simply solve for Bϕ by division:

Bϕ(ω) =
B(ω)

Btel(ω)
. (10)

This is rather tricky for two reasons (kids, don’t try this at home). First, both numerator and denominator are zero beyond
the cut-off frequency of the system, and the division can only be carried out within the support of Btel(ω). It is reasonable to
believe that this may produce a decent estimation of Bϕ within a sub-domain of ω that does not reach all the way out the cut-off
frequency. Proceeding with steps (8) and (9) may likewise produce an estimation of Dϕ and Cϕ on this sub-domain. It would
not be advisable, however, to attempt the final step and compute the PSD by Eqn. (5), since there is no way to compute the
Fourier transform for the valid domain without reintroducing artifacts from the boundary region close to and beyond the cut-off
frequency. Some results of applying this method are shown/discussed in Section 2.

1.2 Method 2 (better)

A slightly better method might be to separate out the effects of the telescope aperture by deconvolving the PSF. This would
ideally produce a Kϕ that is completely free from aperture effects, and the analysis could then be taken all the way to computing
the final PSD by Fourier transform. Since these PSFs can be generated without adding noise to them, a simple quadratic
function minimization algorithm may be all the sophistication needed for this purpose. Switching nomenclature for a second,
denote by d and d̂ the observed data and our estimate thereof, computed isoplanatically as d̂ = h∗ ô, where ô is the estimated
object and h is the impulse response of this abstracted imaging system. Now define the quadratic cost function M as

M (ô) = ||d− d̂||2 =
N−1

∑
i=0

(d−h∗ ô)2
i , (11)

where the sum is over all the pixels in the image. Many function minimization algorithms rely on having an analytical expression
of the gradient of the function. These include e.g. the conjugate gradient (CG), quasi-Newton and steepest descent (SD)
methods. The functional derivative of M in the direction v is obtained as

δM (ô;v) = 2(h∗ v)[(h∗ ô)−d], (12)

where v is any admissible function. This is a general result that may be used to compute e.g. a modal derivative of M for any
mode v. To compute a point-wise derivative we set v = δ, where δ is Dirac’s delta function. To ensure positivity of the result
we apply the reparametrization ô = ψ̂2, which gives the expression

δM (ψ̂) = 4h× ψ̂× [(h∗ ψ̂2)−d]. (13)

This is a useful form for the algorithm, and we identify the quantities according to

d = K, (14)

h = Ktel, (15)

ψ̂ =
√

Kϕ. (16)

To use an algorithm like e.g. a multivariate CG or quasi-Newton in IDL, all one needs to do is write a simple function that
computes the cost function (11) and its derivative (13). The quasi-Newton function minimization exists as a standard IDL
routine called DFPMIN (BFGS implementation). Unfortunately, I haven’t been able to get anywhere at all using this agorithm.
Maybe debugging issues, or the method simply does not work well for this particular problem. Next up, a Polak-Ribiere
implementation of the conjugate gradient algorithm is provided by the minF conj grad.pro function contained in the NASA
Astrolib IDL library. For reasons not yet understood, applied to the present deconvolution task, this algorithm also terminates
at a zero convergence rate rather far from the minimum solution. Although to its credit, it gets there very fast.

So if the fancy stuff does not work, we fall back on the simple stuff that does. The steepest descent algorithm takes a lot
of stick from the pundits for being woefully sub-optimal (seeing as this is a branch of optimization theory). But if you have a
well-constrained problem and a little patience, it does the job. The algorithm is simply

ψ̂k+1 = ψ̂k −gkδM (ψ̂k), (17)

where gk is a scalar feedback gain that may also be a function of the time step k, in order to speed up convergence when the
gradient becomes small. What I ended up using for this study was a combination of the CG and SD algorithms, with the CG
acting as a pre-processing step that gets you some of the way, leaving the remainder to the much slower SD.
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Figure 1: LTAO tomography PSFs (stretched) from the numerical simulation, for asterisms 5a (top) and 8a (bottom) and field evaluation
points at distances {0.0,4.2,8.4,5.9,9.4,11.9} arc seconds from the central axis.

Figure 2: Radially averaged phase structure functions Dϕ for asterism 5a (left) and 8a (right) computed by the simple method 1.

2 Sample numerical results

Both method 1 and 2 were applied to simulated AO PSFs produced with a Monte Carlo type simulation code described in
[3]. The setup simulated a 10-m hexagonal telescope and two multi-LGS LTAO configurations with 48× 48 sub-apertures.
Foloowing the method of the NGAO trade study reported in Ref. [1], the code was also rigged so that the only contribution
to the PSF from AO errors came from high-order tomography and anisoplanatism errors. The two asterisms compared were
the 5a and 8a configurations (cf. Ref. [1] or [2]), both operating in an on-axis optimized LTAO mode. To see the influence
of ordinary anisoplanatism as well as LGS tomography, five off-axis PSFs were computed in addition to the on-axis PSF, as
shown in Fig. 1. The radially averaged phase structure functions obtained by deconvolving these PSFs using both methods are
shown in Figs. 2 and 3. With method 1 you can clearly see the effects of the hexagonal aperture kicking around the 8-m mark,
and breaking down completely after ∼9 m where the the support of Btel runs out. With method 2 the effects of the aperture are
almost entirely gone, but you can still see a trace of it around the 9-m mark, which indicates that the deconvolution was not
perfect. This is also evident from looking at the phase error kernel Kϕ (not shown here), which still contains some traces of the
diffraction limited telescope PSF Ktel. The last figure 4 shows the radially averaged phase PSDs computed from the structure
functions obtained with method 2.
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Figure 3: Radially averaged phase structure functions Dϕ for asterism 5a (left) and 8a (right) computed by the Gaussian ML deconvolution
method 2.

3 Notes

3.1 Estimating other AO errors

This example was drawn up for the case of separating only the telescope effects from the residual turbulence wavefront PSD.
One can imagine repeating this process for separating the individual error sources of a general AO PSF, e.g. fitting error,
aliasing, anisoplanatism, servo-lag, noise etc. As an example, spatial aliasing in the WFS is notoriously difficult to model
analytically with good realism, while e.g. the fitting error PSD is trivial. If you arranged a simulation that contained only error
contributions from fitting and aliasing, you could then obtain the aliasing PSD from the above approach by using the convolved
telescope and fitting PSF as the known quantity in the deconvolution step.

3.2 Using with real data

To apply this method to real data rather than simulated, it may behoove us to invoke a different cost function that is modeled
on the presupposed noise statistics inherent in the images. Maximum-likelihood (ML) deconvolution commonly chooses the
cost function M (ô) = − lnP(d|ô) based on the conditional probability function. For Gaussian statistics, the form obtained in
(11) is reproduced, only multiplied by 1/2σ2. For Poissonian noise, the resulting cost function is M (ô) = ∑(d̂−d ln d̂) (these
are derived in e.g. Ref. [4]). Hence, the two most common statistics are trivial to insert into the algorithm discussed above and
caarry out the analysis in the presence of image noise.
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Figure 4: Radially averaged phase power spectrum Φϕ for asterism 5a (left) and 8a (right) computed by the Gaussian ML deconvolution
method 2. The dashed curve shows a −11/3 power law for comparison (not scaled to any physically relevant phase variance).
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