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1 Introduction

This note rederives and corrects some errors in the analytical expressions for the spatial frequency power spectral
densities (PSDs) of servo-lag, noise and spatial aliasing, as previously given in [2, 1]. The work in [2] was based on
and a development of the initial studies presented in [4]. The current results may be compared and contrasted to
those in [3].

2 Preliminaries

These results are required prior to evaluating the PSDs in section 3.

2.1 Operators

The operator formalism used in the derivations are reviewed here. For a mean-gradient type wavefront sensor (WFS),
with rectangular sub-apertures in a regular rectangular grid, the measurement operator M is (see [2]):

M = comb× [Π ∗ ∇], (1)

which has the Fourier transform (denoted interchangably by tilde ∼ or by F)

F [M] = comb ∗ [Π̃× ∇̃], (2)

since the comb function is its own Fourier transform (see below). The corresponding functions (and their abbreviated
notations) are:

Π
(
x

d

)
=

{
1, |x| ≤ d, |y| ≤ d
0, otherwise

, (3)

∇ =
∂

∂x
=

[
∂

∂x
,

∂

∂y

]
, (4)

comb
(
x

d

)
=

∑

m

δ
(
x

d
−m

)
=

+∞∑

m=−∞

+∞∑

n=−∞

δ
(x

d
−m

)
δ
(y

d
− n

)
, (5)

where boldface denotes a (2-element) vector. The spatial plane coordinate is x = (x, y), with the Fourier conjugate
spatial frequency variable f = (fx, fy). The Fourier transforms of (3)-(5) are:

Π̃(fd) = sinc(fd) =
sin(πfxd)

πfxd
×

sin(πfyd)

πfyd
, (6)

∇̃ = 2πif = 2πi[fx, fy], (7)

F [comb](fd) =
∑

m

δ(fd −m). (8)
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A wavefront reconstructor may be defined as the operator R that fulfills R[M(ϕ‖)] = ϕ‖, where ϕ = ϕ‖ + ϕ⊥ is the
optical phase of the aberrated wavefront split into a low spatial frequency part ϕ‖ defined by the band-filter domain
of the AO system, and a high frequency part ϕ⊥ that passes through the AO system unattenuated (but gives rise to
fitting and aliasing errors). The Fourier domain recostructor that does this is

R̃ =
f
−1

4πi sinc(fd)
. (9)

2.2 Closed loop

A simple model of closed loop operation is derived here. For a simple integrator with a fixed gain g, the mirror
shape s(x, t) at any time step nti is computed as (omitting an additional time delay td and the spatial variable x for
brevity)

s(t− nti) = s[t− (n + 1)ti] + gϕ̂[t− (n + 1)ti], (10)

where ti is the WFS integration time, and ϕ̂ is the AO estimated residual wavefront error. To simplify even more
we will use the abbreviated notation

sn = sn+1 + gϕ̂n+1, (11)

which allows us to write compactly ϕ̂n = Gn − sn. The function Gn is here the open-loop reconstruction of the
wavefront plus reconstructed noise, i.e:

Gn = R[M(In) + ν], (12)

where ν(x, t) is the WFS noise function, and In is defined below in (18). From the recursive relation (11) it is easy
to show that (cf. [2]) the present mirror shape s0 after N time steps is given by

s0 = (1− g)NsN + g

N∑

n=1

Gn(1− g)n−1. (13)

If the AO system is operating in a steady state far enough away from the startup phase, so that initial conditions
no longer matter, we can for any 0 < g < 1 approximate N ≈∞, which gives

s0 = g

∞∑

n=1

Gn(1− g)n−1. (14)

Gn will later be assigned different functions to represent different AO errors.

2.3 Taylor hypothesis

The method assumes the Taylor hypothesis of Nl discrete turbulence layers with frozen flow. Ignoring anisoplanatism
(i.e. doing all calculations for a fixed θ) and introducing the wind velocity profile vl, we obtain the phase summed
over layers after an arbitrary time delay τ as

ϕ(x, t) =

Nl∑

l=1

ϕl(x− vlτ, t), (15)

which has the Fourier transform

ϕ̃(f , t) =

Nl∑

l=1

ϕ̃l(f , t) exp(2πif · vlτ). (16)

It is assumed that each layer ϕl follows von Karman turbulence statistics independently and with separate power,
i.e.

〈ϕ̃l
†ϕ̃l〉 =

0.023

r
5/3
0l

(f2 + f2
0 )−11/6 (17)

where f0 = 1/L0 and L0 is the turbulence model outer scale, and r0l is the Fried parameter per layer l.
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2.4 WFS temporal integration

The measurement operator in (1) only represents the spatial wavefront sampling. To account for the finite integration
time ti of the WFS we must evaluate several (similar) integrals of the type

Ĩn(f , t) =
1

ti

∫ +ti/2

−ti/2

dτ ϕ̃(f , t− td − nti − τ), (18)

where td is an additional temporal delay due to e.g. CCD read-out, centroiding and reconstruction computations.
The integer index n was included for generality and to show the relation to the closed loop function Gn, but for the
remainder of this section we set n = 0 for brevity. Using the result (16) gives

Ĩ0(f , t) =
1

ti

Nl∑

l=1

ϕ̃l(f , t) exp(2πif · vltd)

∫ +ti/2

−ti/2

dτ exp(2πif · vlτ)

︸ ︷︷ ︸
I′

. (19)

The remaining integral I ′ can be evaluated to

I ′ =
1

2πif · vl
[exp(πif · vlti)− exp(−πif · vlti)] (20)

=
sin(πf · vlti)

πf · vl
= ti sinc(f · vlti), (21)

and the whole expression becomes

Ĩ0(f , t) =

Nl∑

l=1

ϕ̃l(f , t) sinc(f · vlti) exp(2πif · vltd). (22)

3 Power spectral densities

3.1 Servo-lag

In this section ϕ = ϕ‖. The closed-loop expression for the servo-lag error PSD Φsl is

Φsl(f) =
〈
|F {ϕ(x, t) − s0(x, t)}|2

〉
. (23)

Shifting the noise term to the noise PSD (to not count it twice), we have that Gn = R[M(In)], cf. equations (14)
and (22), which simplifies to Gn = In upon invoking perfect reconstruction R[M(ϕ‖)] = ϕ‖. Applying the Fourier
transform and writing it out gives

Φsl(f) =

〈∣∣∣∣∣

Nl∑

l=1

ϕ̃l(f , t)−

Nl∑

l=1

ϕ̃l(f , t) sinc(f · vlti) g

∞∑

n=1

(1− g)n−1 exp[2πif · vl(td + nti)]

∣∣∣∣∣

2〉
(24)

=

〈∣∣∣∣∣

Nl∑

l=1

ϕ̃l(f , t)

[
1− sinc(f · vlti) g

∞∑

n=1

(1− g)n−1 exp[2πif · vl(td + nti)]

]∣∣∣∣∣

2〉
(25)

=

Nl∑

l=1

Nl∑

k=1

〈
ϕ̃†l (f , t)ϕ̃k(f , t)

〉
Γ†l (f)Γk(f), (26)

where we defined

Γl(f) = 1− sinc(f · vlti) exp(2πif · vltd) g
∞∑

n=1

(1− g)n−1 exp(2πif · vlnti). (27)
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Separate turbulence layers are assumed to be uncorrelated, i.e. 〈ϕlϕk〉 = 〈|ϕl|
2〉δkl, so this simplifies to the tubulence

PSD (17) and removes one summation. Defining a = 1− g and bl = 2πf · vlti, the summation over n in expression
(27) can be written

Sl = a−1
∞∑

n=1

aneinbl (28)

= a−1
∞∑

n=1

an(cosnbl + i sinnbl), (29)

This can be evaluated as two separate trigonometric series that have closed analytical forms:

n∑

k=0

rk cos kx =
(1− r cosx)(1− rn cosnx) + rn+1 sin x sin nx

1− 2r cosx + r2
, (30)

n∑

k=1

rk sin kx =
r sin x(1− rn cosnx)− (1− r cosx)rn sin nx

1− 2r cosx + r2
(31)

These sums will convege as n → ∞ for any |r| < 1. Evaluating the asymptotic forms, substituting back into (29)
and combining terms gives eventually

Sl =
eibl − a

1− 2a cos bl + a2
. (32)

We can now jump to the final form of the PSD directly:

Φsl(f) =
0.023

(f2 + f2
0 )
×

Nl∑

l=1

r
−5/3
0l |Γl(f)|

2
, (33)

where

Γl(f) = 1− sinc(f · vlti) exp(2πif · vltd)×
g(eibl − a)

1− 2a cos bl + a2
(34)

with a and bl defined as above.

3.2 Noise

For WFS noise the function Gn = R(νn), and the closed-loop PSD is given by

Φnoise(f) =
〈
|F {s0(x, t)}|

2
〉

(35)

=

〈∣∣∣∣∣F
{

g
∞∑

n=1

(1− g)n−1R[νn(x, t)]

}∣∣∣∣∣

2〉
(36)

= g2R̃†R̃

∞∑

m=1

∞∑

n=1

(1− g)m+n−2
〈
ν̃†m(f , t) ν̃n(f , t)

〉
. (37)

Assuming spatially and temporally uncorrelated noise we have that
〈
ν̃†mν̃n

〉
= δmnΦν , the power spectrum of the

input noise ν. Defining a = (1− g)2 we have that

Φnoise(f) = g2R̃†R̃Φν(f)

∞∑

n=1

a(n−1). (38)

The sum is a geometric series with the closed form 1/(1− a), and substituting the form for the reconstructor from
(9) gives the final expression

Φnoise(f) =
g

2− g
×

Φν(f)

sinc2(fd)

(
1

f2
x

+
1

f2
y

)
. (39)
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3.3 Aliasing (open loop)

In this section ϕ = ϕ⊥, so for aliasing Gn = R[M(In)], and perfect reconstruction can no longer be invoked. This,
generally speaking, leads to a mess. Doing the calculation first for the open-loop case (the closed loop adjustment
will be easier to implement afterward this way), the form is as before

Φalias(f) =
〈
|F {s0(x, t)}|

2
〉

=

〈∣∣∣R̃M̃[Ĩn]
∣∣∣
2
〉

. (40)

Taking this one step at a time, we have that

M̃[Ĩn](f , t) = comb(fd) ∗
[
sinc(fd)× 2πif Ĩn(f , t)

]
. (41)

Introducing the shorthand notation fm = f −md−1, we can evaluate this as

M̃[Ĩn](f , t) = 2πi
∑

m

fm sinc(dfm)

Nl∑

l=1

ϕ̃l(fm, t) sinc(fm · vlti) exp(2πifm · vltd). (42)

Including the reconstructor we can write

R̃M̃[Ĩn](f , t) =
1

2 sinc(fd)
×

∑

m

A(fm, t)

Nl∑

l=1

ϕ̃l(fm, t)El(fm, t), (43)

where we defined the two quantities

A(fm, t) = (f−1 · fm) sinc(dfm), (44)

El(fm, t) = exp(2πifm · vltd) sinc(fm · vlti). (45)

Evaluating the modulus squared and applying ensemble averaging gives

Φalias(f) =
1

4 sinc2(fd)
×

∑

m

∑

m
′

∑

l

∑

l′

A†(fm, t)A(fm′ , t)E†
l (fm, t)El′(fm′ , t)

〈
ϕ̃†l (fm, t)ϕ̃l′(fm′ , t)

〉
. (46)

We are saved from total catastrophe by assuming that separate turbulence layers are uncorrelated, and that turbulence
at different spatial frequencies are uncorrelated also. The last term then becomes 〈ϕ̃†lmϕ̃l′m′〉 = δll′δmm′〈|ϕ̃lm|

2〉, and
the El term loses its complex exponential to the modulus, which leaves the almost manageable final expression:

Φalias(f) =
0.00575

sinc2(fd)
×

∑

m6=(0,0)

(|fm|
2 + f2

0 )−11/6(f−1 · fm)2 sinc2(dfm)

Nl∑

l=1

r
−5/3
0l sinc2(fm · vlti). (47)

Note that the origin {m = 0, n = 0} is exluded from the double sum, but otherwise it runs over infinity. The terms
of the sum quickly tend toward zero thanks to the steep power law of Kolmogorov turbulence, so in practise no more
than a handful of terms need to be summed in each direction; this makes the expression possible to compute.

3.4 Aliasing (closed loop)

Looking to the closed loop modifications, we are now rewarded for having done most of the cumbersome calculations
already. The adjustment is simplest to account for by entering it into equation (45) of the El term by simply
substituting

exp(2πifm · vltd) → g

∞∑

n=1

(1− g)n−1 exp[2πifm · vl(td + nti)] (48)

= g exp(2πifm · vltd)×
eibl − a

1− 2a cos bl + a2
. (49)
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We had evaluated the sum already in the expression (34) for Γl, and the form (22) is retained with f replaced by

fm in the definition of bl. We now re-evaluate E†
l El. Defining c = 2πfm · vltd and z = eic(eibl − a) as the complex

numerator of (49) we have that

z†z = e−ic(e−ibl − a)× eic(eibl − a) (50)

= 1 + a2 − a(eibl + e−ibl) (51)

= 1 + a2 − 2a cos bl, (52)

which is exactly the denominator of (49). Hence the modified expression for E†
l El in closed loop is simply

E†
l (fm, t)El(fm, t) =

g2 sinc2(fm · vlti)

1− 2a cos bl + a2
, (53)

And the closed loop aliasing PSD is finally

Φalias(f) =
0.00575

sinc2(fd)
×

∑

m6=(0,0)

(f−1 · fm)2 sinc2(dfm)

(|fm|2 + f2
0 )11/6

Nl∑

l=1

r
−5/3
0l

g2 sinc2(fm · vlti)

1− 2a cos bl + a2
, (54)

where a = 1− g and bl = 2πfm · vlti.

4 Sample numerical results

See Figures 1-3. Although the aliasing error is a function of the gain, the shape of the PSD is almost unchanged
within realistic gain values (e.g. 0.1-0.9). The right-hand graph of figure 3 shows the temporal averaging effect, that
the aliasing error decreases as the integration time increases.

5 Summary

Comparing to the results presented in [2], the major differences in the current text are

1. Closed analytical form of the loop recursion function Sl (32) derived

2. Simpler (and more accurate) closed-loop servo-lag term, by the new derivation of Sl

3. Completely new derivation of the aliasing term (hopefully correct this time), also utilizing Sl

4. Noise expression the same, but generalized for any shape input power spectrum Φν
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Figure 1: Servo-lag, noise and aliasing PSDs (all plotted with different stretch).

Figure 2: One-dimensional cuts through the 2D PSDs in Figure 1. Servo-lag and noise can be approximated over the majority

of the frequency range by −5/3 and −2 power laws, respectively. Aliasing is essentially flat.

Figure 3: Servo-lag (black line), noise (red) and aliasing (orange) wavefront errors as functions of the integrator gain g (left)

and the WFS integration time ti (right).
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